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Dynamic programming algorithms are widely used to find the optimal sequence alignment between any
two DNA sequences. This manuscript presents a new, flexible and scalable hardware accelerator architec-
ture to speedup the implementation of the frequently used Smith–Waterman algorithm. When inte-
grated with a general purpose processor, the developed accelerator significantly reduces the
computation time and memory space requirements of alignment tasks. Such efficiency mainly comes
from two innovative techniques that are proposed. First, the usage of the maximum score cell coordi-
nates, gathered during the computation of the alignment scores in the matrix-fill phase, in order to sig-
nificantly reduce the time and memory requirements of the traceback phase. Second, the exploitation of
an additional level of parallelism in order to simultaneously align several query sequences with the same
reference sequence, targeting the processing of short-read DNA sequences. The results obtained from the
implementation of a complete alignment system based on the new accelerator architecture in a Virtex-4
FPGA showed that the proposed techniques are feasible and the developed accelerator is able to provide
speedups as high as 16 for the considered test sequences. Moreover, it was also shown that the proposed
approach allows the processing of larger DNA sequences in memory restricted environments.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The advent of the latest generations of sequencing technologies
[1] has opened many new research opportunities in the fields of
biology and medicine, including cell Deoxyribonucleic Acid
(DNA) sequencing, gene discovery and evolutionary relationships.
These technologies have contributed to the exponential growth
of biological data that is available for researchers. For instance,
the GenBank [2] has doubled its data size approximately every
18 months and in its December 2010 release it included over
122 � 109 base pairs (bps) from several different species.

To assist the biologists in the extraction of useful information
and in the interpretation of the huge sized sequence databases, a
set of alignment algorithms (e.g. the widely used Smith–Waterman
(S–W) [3]) have been developed to solve many open problems in
the field of bioinformatics, such as (i) DNA re-sequencing, where
genome assembly is done against a reference genome; (ii) Multiple
Sequence Alignment (MSA), where multiple genomes are aligned to
perform genome annotation; and (iii) Gene finding, where Ribonu-
cleic Acid (RNA) sequences (the transcriptome) are aligned against
the organism genome to identify new genes.
ll rights reserved.

bastião).
Currently, a common sequencing approach is based on the
application of High Throughput Short Read (HTSR) technologies
[4], to reduce the cost of the sequencing process. This technique
consists of cutting the DNA fragments under analysis into shorter
fragments (reads), which are individually sequenced and aligned
against a reference sequence.

At present, the three most important HTSR sequencing
platforms are: the GS FLX Genome Analyzer (454), the Solexa
1G Sequencer (lllumina) and the SOLiD Sequencer (Applied
Biosystems). The biochemistry technology underlying each of
these platforms leads to very different characteristics, in terms of
reads length, throughput and raw errors. However, independently
of the adopted platform, the length of the reads produced by these
platforms is small when compared to previous generation
sequencing technologies and much smaller than the original
complete DNA sequence. Nevertheless, the sheer volume of data
that is generated and the need to align these reads to large
reference genomes limits a direct and naive application of standard
Dynamic Programming (DP) techniques. One simple example of a
common challenge comes from the need to align up to 100 million
reads against a reference genome that can be as large as 3 Gbp. For
the SOLiD sequencer, with reads as short as 30 bps, this corre-
sponds to the computation of 100 million matrices of dimension
3 � 109 � 30, which results in a computational task that is unfeasi-
ble even for a standard high performance machine.
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Hence, the computational demands for the analysis of the bio-
logical data produced by the various sequencing technologies has
lead to the development of several accelerating strategies that
aim at parallelizing the execution of the alignment algorithms.
Some of these strategies are software based, while others use ded-
icated hardware implementations. Among the former, an opti-
mized implementation using Single-Instruction Multiple-Data
(SIMD) instructions for current CPUs [5] is commonly adopted in
sequence alignment programs, like SSEARCH35. Other software
implementations make use of the highly parallel execution capa-
bilities presented by Graphics Processing Unit (GPU) to achieve a
high alignment throughput [6]. With regard to the hardware
implementations, these include both Application Specific Inte-
grated Circuit (ASIC) [7–10] and Field Programmable Gate Array
(FPGA) [11–15] implementations. Regardless of the considered
implementation, the most common and efficient hardware archi-
tectures map the alignment algorithm to a systolic array of Pro-
cessing Element (PE). Furthermore, although some bidimensional
arrays have been presented [16], the most common implementa-
tions adopt unidimensional (linear) arrays [7–13,15]. In fact, the
main differences among the several implementations relate to
the design of the individual PE. However, some of these designs
oversimplify the implemented algorithm, by only calculating the
edit distance between a sequence pair [12,14], therefore not being
suited to accelerate the more generic S–W algorithm. A commer-
cial solution [17], developed by CLC bio and implemented in FPGA,
was also made available but little information is given about its
architecture.

Nevertheless, all the previously presented hardware solutions
only focus on accelerating the first phase of the S–W algorithm
(DP matrix fill), completely disregarding the second phase (trace-
back), which is typically performed using a General Purpose Pro-
cessor (GPP) in a post processing step. In Ref. [18] it was
proposed a hardware architecture that also accelerates the trace-
back phase. However, only the global alignment problem is ad-
dressed. Furthermore, the previously proposed hardware
architectures are not easily optimized to deal with short reads se-
quences, obtained from current HTSR sequencing platforms (e.g.
Illumina).

In another perspective, there has been a growing interest in the
development of processing solutions that merge, in a single pack-
age, the reconfiguration capabilities offered by FPGAs with the
advantages of a hardwired CPU. Such solutions, like the Intel Atom
E645C processor [19], allow to implement highly specialized hard-
ware accelerators tightly coupled with a general purpose CPU, in
order to significantly improve the overall system performance. Fur-
thermore, by making use of the offered reconfiguration capabili-
ties, it is possible to implement a wide range of accelerators
according to the specific task that is currently being executed. This
task-multiplexing capability along the time reduces the total cost
of ownership of such system due to its adaptability, low initial cost
and high performance.

To overcome the limitations of previous accelerator architec-
tures, to improve the overall sequencing performance and to make
use of the advantages provided by current FPGAs, a new hardware
accelerator architecture together with a new technique to speedup
the sequence alignment, is now proposed. Such accelerator, target-
ing an embedded platform, is based on the exploitation of the fol-
lowing two important contributions that are extensively described
in the remaining sections of the manuscript:

� An innovative and quite efficient technique that makes use of
the information gathered during the computation of the align-
ment scores in the matrix fill phase (in hardware), in order to
significantly reduce the time and memory requirements of the
traceback phase (later implemented in software) [20]. To
support such technique, the developed hardware accelerator
architecture was tightly integrated with a GPP, to form a com-
plete and quite efficient local alignment system implemented
in an FPGA. The obtained experimental results show that the
proposed accelerating structure may provide speedups as high
as 16 for the implementation of the whole alignment procedure
when compared to an Intel Core2 Duo processor. It is also
observed that a significant reduction of the memory resources
required by the subsequent traceback phase is achieved.
� An additional level of parallelism is also exploited in the pro-

posed accelerating structure, to further increase its perfor-
mance. With the presented structure, several query sequences
may be simultaneously aligned with the same reference
sequence, thus allowing a significant acceleration of the align-
ment task of the short reads against the reference genome, as
used by HTSR techniques. This is achieved by configuring the
developed accelerator in a multiple-stream structure, by includ-
ing multiple linear arrays that work in parallel. Besides the
speedup that is achieved with such improvement, which is pro-
portional to the number of linear arrays that are implemented
(defined through platform parameterization), the accelerator
also takes advantages of the temporal locality in the manipula-
tion of the larger reference genome, thus reducing the number
of required memory and I/O accesses to perform the alignment.

This manuscript is organized as follows: Section 2 gives a brief
overview on the widely adopted S–W algorithm to determine the
optimal alignment. The proposed technique to speed up the trace-
back phase is presented in Section 3. Section 4 introduces the new-
ly developed accelerator architecture that implements the
proposed enhancements in the alignment procedure, including
the optimizations for short reads sequences. A performance model
of the entire alignment system is presented in Section 5. In Sec-
tion 6, the prototyping platform that integrates the proposed accel-
erator and a GPP is presented while in Section 7 the obtained
results are discussed and the achieved speedups are presented.
The conclusions are drawn in Section 8.
2. Pairwise local sequence alignment

Sequence alignment is the method by which useful information
is extracted from the large amounts of sequenced DNA. The align-
ments can be classified either as local or global. In global align-
ments, the complete sequences are aligned from one end to the
other, whereas in local alignments only the subsequences that
present the highest similarity are considered. In practice, the local
alignment is generally preferred when searching for similarities
between distantly related biological sequences, since this type of
alignment more closely focuses on the subsequences that were
conserved during evolution.

One of the most widely adopted algorithms to find the optimal
local alignment between a pair of sequences is the S–W algorithm
[3]. This algorithm is based on a DP method and is characterized by
the smallest runtime among the optimal local alignment algo-
rithms. With a runtime complexity of O(nm), where n and m de-
note the sizes of the sequences being aligned, the S–W algorithm
computes the alignment in two phases: a DP matrix fill phase and
a traceback phase.
2.1. Smith–Waterman algorithm

Consider any two strings S1 and S2 of an alphabet R with sizes n
and m, respectively. The local alignment of strings S1 and S2 reveals
which pair of substrings of S1 and S2 optimally align, such that no
other pairs of substrings have a higher alignment score. Let G(i, j)



Table 1
Example of a substitution score matrix.

Fig. 1. Obtained local alignment for the considered example sequences.
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represent the best alignment score between a suffix of string
S1[1..i] and a suffix of string S2[1..j]. The S–W algorithm allows
the computation of G(n, m) by recursively calculating G(i, j), which
will reveal the highest alignment score between the substrings of
strings S1 and S2.

The recursive relation to calculate the local alignment score
G(i, j) is given by Eq. (1), where Sbc(S1(i), S2(j)) denotes the substi-
tution score value obtained by aligning character S1(i) against char-
acter S2(j) and a represents the gap penalty cost (the cost of
aligning a character to a space, also known as gap insertion). An
example of a substitution function is shown in Table 1.

Gði; jÞ ¼max

Gði� 1; j� 1Þ þ SbcðS1ðiÞ; S2ðjÞÞ
Gði� 1; jÞ � a
Gði; j� 1Þ � a
0

8>>><
>>>:

Gði;0Þ ¼ Gð0; jÞ ¼ 0

ð1Þ

The alignment scores are usually positive for characters that
match, thus denoting a similarity between them. Mismatching
characters may have either positive or negative scores, according
to the type of alignment that is being performed, denoting the bio-
logical proximity between them. Different substitution score
matrices may be used to reveal different types of alignments. In
fact, the particular score values are usually defined by biologists,
according to evolutionary relations. The gap penalty cost a is
always a positive value.

As soon as the entire score matrix G is filled, the substrings of S1

and S2 with the best alignment can be found by locating the cell
with the highest score in G. Then, all matrix cells that lead to this
highest score cell are sequentially determined by performing a
traceback phase. This last phase concludes when a cell with a zero
score is reached, identifying the aligned substrings as well as the
corresponding alignment. The path taken at each cell is chosen
based on which of the three neighboring cells (left, top-left and
top) was used to calculate the current cell value using the recur-
rence given by Eq. (1).

Table 2 shows an example of the calculated score matrix for
aligning two sequences (S1 = CAGCCTCGCT and S2 = AATGCCATTGAC)
Table 2
Example of an alignment score matrix.
using the substitution score matrix presented in Table 1 (a match
has a score of 3 and a mismatch a score of �1). The gap penalty
has a value of 4. The shadowed cells represent the traceback path
(starting at the highest score cell (8, 10)) that was taken in order to
determine the best alignment. The resulting alignment is illus-
trated in Fig. 1.

3. Tracking the alignment origin and end indexes

As previously referred, whenever a sequence pair alignment is
required, it is necessary to implement the traceback phase of the
S–W algorithm. Most sequence alignment hardware accelerators
that have been proposed until now [11,15,16] only implement
the score matrix computation (without performing the traceback
phase). Therefore, they simply output the calculated alignment
score (the highest value of matrix G). Afterwards, whenever the ob-
tained score is greater than a given user-defined threshold, the
whole G matrix must be recalculated (usually by software, using
a GPP). However, contrasting to what happened in the hardware
accelerator, in this recalculation all the intermediate data that is
required to perform the traceback and retrieve the corresponding
alignment must be maintained in the GPP memory. Moreover, this
re-computation does not re-use any data from the previous calcu-
lation performed by the hardware accelerator. Such situation can
be even aggravated by the fact that typical alignments consider se-
quences with a quite dissimilar size, with m� n (e.g. HTSR
sequencing analysis). Therefore, the size of the subsequences that
participate in the alignment is always in the order of n, meaning
that a large part of matrix G that must be completely recomputed
in the GPP is not even required to obtain the alignment.

To overcome this inefficiency, an innovative technique is now
proposed to significantly reduce the time and memory space that
is required to find the local alignment in the traceback phase of this
algorithm. In fact, assuming that it is possible to know that the lo-
cal alignment of a given sequence pair S1 and S2 starts at position
S1(p) and S2(q), denoted as (p, q), and ends at position S1(u) and
S1(v), denoted as (u, v), then the local alignment can be obtained
in the traceback phase by just considering the score matrix corre-
sponding to substrings Sa = S1[p..u] and Sb = S2[q..v].

To determine the character position where the alignment starts,
an auxiliary matrix Cb is proposed. Let Cb(i, j) represent the coordi-
nates of the score matrix cell where the alignment of strings S1[1..i]
and S2[1..j] starts. Using the same DP method that is used to calcu-
late matrix G(i, j), it is possible to simultaneously build matrix Cb,
with the same size as G, that tracks the cell that originated the
score that reached cell G(i, j) (i.e. the start of the alignment ending
at cell (i, j)). The recursive relations to compute matrix Cb are given
by Eq. (2), with initial conditions of Cb(i, 0) = Cb(0, j) = (0, 0).

Cbði; jÞ ¼

ði; jÞ; if Gði; jÞ ¼ Gði� 1; j� 1Þ
þSbcðS1ðiÞ; S2ðjÞÞ
and Cbði� 1; j� 1Þ ¼ ð0;0Þ

Cbði� 1; j� 1Þ; if Gði; jÞ ¼ Gði� 1; j� 1Þ
þSbcðS1ðiÞ; S2ðjÞÞ
and Cbði� 1; j� 1Þ– ð0;0Þ

Cbði� 1; jÞ; if Gði; jÞ ¼ Gði� 1; jÞ � a
Cbði; j� 1Þ; if Gði; jÞ ¼ Gði; j� 1Þ � a
ð0;0Þ; if Gði; jÞ ¼ 0

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð2Þ



Table 3
Example of an AOEI tracking matrix.

Table 4
Reduced alignment score matrix.
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Hence, by applying the proposed technique, denoted as Align-
ment Origin and End Indexes (AOEI) tracking, and by knowing
the cell where the maximum score (G(u, v)) occurred, it is possi-
ble to determine from Cb(u, v) = (p, q) the coordinates of the cell
where the alignment began. Consequently, to obtain the desired
alignment, the traceback phase only has to rebuild the score ma-
trix for the subsequences S1[p..u] and S2[q..v], which are usually
considerably smaller than the entire S1 and S2 sequences.

The obtained matrix Cb for the alignment example of sequences
S1 and S2, whose G matrix was presented in Table 2, is shown in
Table 3. In this example, by knowing from G matrix that the
maximum score occurs at cell (8, 10), it is possible to retrieve the
coordinates of the beginning of the alignment in cell Cb(8, 10) =
(3, 4). With this information, the optimal local alignment between
S1 and S2 can be found by processing only the substrings
Sa = S1[3..8] = GCCTCG and Sb = S2[4..10] = GCCATTG. Such alignment
(between Sa and Sb) can now be determined by computing a much
smaller G0 matrix in the traceback phase, as shown in Table 4.

The major advantage of this technique is the significant reduc-
tion of the time and memory space required to recompute matrix G
for the subsequences that actually participate in the alignment,
when compared to the entire sequences. Therefore, it provides a
PE1

S1(1)

S2(1)S2(2)S2(M) ...

Reference Sequence

SR

Auxiliary Que

Sbc(S1(1),*) Sbc(S1(2),

Query Sequence Data
(substitution matrix column)

Fig. 2. Systolic array structu
great reduction of the computational effort (time and space) of
the whole alignment algorithm.
4. Alignment core architecture

The local alignment algorithm described in Section 2 is usually
applied to process biological sequences with pronounced dissimi-
lar sizes m and n, where m� n (e.g. m � 106 and n � 102). The ma-
trix fill phase of the alignment algorithm is the most
computationally intensive part being, therefore, a good candidate
for parallelization. However, the data dependencies that exist in
the calculation of each matrix cell highly restrict the parallelization
model. In fact, only the computation of the values along the matrix
anti-diagonal direction can be performed in parallel (to calculate
the value for cell G(i, j) it is necessary to know the values of
G(i � 1, j � 1), G(i, j � 1) and G(i � 1, j)).

Specialized parallel hardware that is capable of performing a
great number of simultaneous arithmetic operations is especially
suited for this task. In particular, linear systolic arrays with several
identical Processing Elements (PEs), as shown in Fig. 2, have proved
to be efficient structures to implement this type of computation, by
simultaneously computing the values of matrix G that are located
in a given anti-diagonal [15].
4.1. Base processor element architecture

The PE’s architecture proposed in this paper is based on the PE
structure described in Ref. [15] and illustrated in Fig. 3. This base PE
only implements the basic score matrix calculation and it is com-
posed by a two stage pipelined datapath that calculates each ma-
trix cell value (output in G(i, j)). The throughput of each element
is one score value per clock cycle. Since the S–W algorithm requires
the evaluation of the maximum score value among the set of scores
that compose the entire matrix, it is necessary to include an
additional datapath that selects the maximum value that was
PE2 PEi PEN

S1(2) S1(i) S1(N)

Query Sequence

SR SR SR

ry Sequence Data Load Structure

*) Sbc(S1(i),*) Sbc(S1(N),*)

re for DNA algorithms.
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calculated in the whole PE array (output Max(i, j)). The width of the
buses, denoted as Sw and Sbcw, are constrained by the considered
implementation conditions of the accelerator. In particular, the
width of the score bus, Sw, is directly constrained by the maximum
size of the query sequence (the shortest among the two sequences)
and the score matrix values. Such substitution score values also
determines the size of the corresponding bus (Sbcw). With such
datapath, PEi outputs the maximum score that was computed by
PEs 1 through i.

The array evolves along the time, by shifting the reference se-
quence characters through the PEs. The query sequence character
S1(i) is allocated to the ith PE and this PE performs, at every clock
cycle, the computations required to determine the score value of
a certain matrix cell. After all the reference sequence characters
S2(j) have passed through all the PEs, the alignment score is avail-
able at output Max(i, j) of the last PE.

The computation that is performed in each PE requires, among
other operations, the selection of the substitution score corre-
sponding to the two characters, i.e. the value of Sbc(S1(i), S2(j)).
Since each PE always operates with the same character of S1, it only
needs to store the column of the substitution score matrix (Sbc)
that represents the costs of aligning character S1(i) with the entire
alphabet.

In the computation of each matrix cell value G(i, j), the evalua-
tion of the maximum value among the results of the three distinct
possibilities presented in Eq. (1) is also required. In particular, the
zero condition of the S–W algorithm is implemented by controlling
the reset input of the registers that store the G(i, j) value. Such reset
makes use of the sign bit of the score value, i.e. if the maximum va-
lue among the three partial scores is negative, then the registers
that hold that score are cleared.
4.2. Enhanced processor element architecture

The PE architecture that is now proposed implements the AOEI
accelerator technique that was described in Section 3. With this
technique, the re-computation of the entire G matrix when
performing the traceback phase is avoided. It is implemented by
propagating, through the PEs, not only the partial maximum scores
(as in the base PE), but also the coordinates of their origin (the
beginning of the alignment), together with the coordinates where
the maximum score occurred. As it was shown in Section 3, this
greatly simplifies the traceback phase by only focusing on the
substrings that are actually involved in the alignment and avoiding
the re-computation of the whole matrix G.

The architecture of the enhanced PEs is presented in Fig. 4. Each
PE features a datapath that implements Eqs. (1) and (2). The addi-
tional hardware that is required to implement Eq. (2) (the AOEI
technique) is mainly composed of multiplexers and registers. The
signals that control these additional multiplexers are generated
by the magnitude comparators integrated in the MAX units and
that were already present in the base PE architecture. The widths
of the coordinates’ buses, Cqw and Crw, are constrained by the max-
imum query sequence size and the maximum reference sequence
size, respectively. The width of the Cw bus is the sum of Cqw and
Crw.

The coordinates of the matrix cell under processing are ob-
tained by using the hardwired PE index (i) and the symbol coordi-
nate (j) that comes alongside with the sequence character present
at input S2(j). Regarding the input data signals, the origin coordi-
nates that correspond to the score at input G(i � 1, j) are present
at input Cb(i � 1, j). Likewise, the origin coordinates corresponding
to the score at output G(i, j) are present at output Cb(i, j). Finally,
the coordinates of the currently highest score (present at Max(i, j))
are output at MaxCb(i, j).
4.3. Short-read optimizations

When the query sequences under processing are acquired by
short-read sequencing platforms, the sample sequences can be ex-
tremely short and in some cases they may even have less symbols
than the number of available PEs in the array. For instance, the
reads generated by the Illumina platform can be as short as
35 nucleotides long. In such a case, several of the PEs do not
perform any useful calculations, due to the fact that no query se-
quence symbol is attributed to them. This situation would certainly
result in a substantial decrease of the throughput of the array.
Therefore, considering that in most practical setups there is a very
significant number of short-read sequences that must be aligned
with the same reference sequence, alternative arrangements of
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the available PE resources may be considered in order to make it
possible to simultaneously perform the alignment of more than
one short query sequence to the same reference sequence.

This optimization can be achieved with the proposed architec-
ture by configuring the hardware accelerator in a multiple-stream
processing scheme. In such configuration, the accelerator includes
SA(1) S

S2(1)S2(2)S2(M) ...

Query

Reference Sequence

SX(1) S

PE1A

PE1X

P

P

PE1B P
SB(1) S

Fig. 5. Example configuration of a multiple-stre
several coupled linear arrays of PEs that work in parallel and align
to the same reference sequence. Hence, while the reference
sequence is simultaneously shifted to the multiple arrays, the set
of independent query sequences to be processed is distributed
and assigned among the PEs of the multiple-stream array, as
shown in Fig. 5. The exact number of parallel PE arrays is
A(2) SA(i) SA(N)

 Sequences A, B, ... ,X

X(2) SX(i) SX(N)

E2A

E2X

PEiA

PEiX

PENA

PENX

E2B PEiB PENB

B(2) SB(i) SB(N)

am PE array (several independent streams).



102 N. Sebastião et al. / Microprocessors and Microsystems 36 (2012) 96–109
configurable according to the size of the short-read sequences to be
aligned and to the amount of available hardware resources.

It is worth noting that the implemented multiple-stream array
also allows an improvement of the resource usage of the accelera-
tor, since it is possible to share a set of resources that are common
among the multiple parallel PEs that are processing the same
reference sequence. This is accomplished by using a common set
of registers that hold the reference symbol (S2(j)) and the respec-
tive coordinate (j) for the several elements of the array that work
in parallel, as shown in Fig. 6 for a dual-stream configuration.
Fig. 6. Example of a multiple-stream PE in dual-stream configuration.
This optimization can significantly increase the actual through-
put of the array since an increased number of PEs is performing
useful computations and the alignment of more than one query se-
quence may be simultaneously performed, therefore leading to a
greater speedup than would be achieved with just a single array.
Furthermore, the use of such configuration also leads to a reduc-
tion of the amount of data that is transferred to the accelerator,
since the reference sequence is simultaneously aligned with more
than one query sequence. This is especially significant when a large
number of short-read query sequences are aligned to a large refer-
ence genome sequence.

4.4. Array programming

Since each PE compares the reference sequence symbols with a
single query sequence character, it will just access the values present
at the corresponding column of the substitution matrix. Therefore,
each PE will only receive the substitution score matrix column that
corresponds to the query sequence character allocated to that PE.

Such data is stored in dedicated registers within each PE, since
this allows for a fast reprogramming of a new query sequence. In
the event of a PE is not being used (because the query sequence
has a smaller size than the number of available PEs (N)), the substi-
tution score data that is stored in such PE corresponds to a matrix
column in which every value is zero.

To program the score values corresponding to query sequence
S1, an auxiliary data load structure, composed by a n bit-width shift
register, was included in the array. This structure allows the pre-
loading of the next query sequence data into this temporary stor-
age shift register, by serially shifting the substitution matrix col-
umn, while the array is still processing the data corresponding to
the current query sequence. As soon as the array has finished the
processing of the current query sequence, the next query sequence
data (already stored in the auxiliary shift register) is parallel loaded
(in just one clock cycle) into the respective PEs. In case the pro-
posed accelerator architecture is configured as a multiple-stream
structure, each individual PE array has the corresponding auxiliary
data load structure for the query sequence, which allows the
simultaneous load of the query information to the several PEs. This
allows to mask the time that would be required to shift the next
query sequence data into the array and therefore significantly re-
duces its programming time. Furthermore, the use of this shift reg-
ister also provides a scalable method to program the processor
array, as it avoids the use of a common data bus to program the
several PEs.

4.5. Interface

To integrate the proposed hardware accelerator with the GPP
that will implement the remaining alignment procedure (i.e. the
PE array

Controller

...

Data buffer

...

Output buffer

...

Command buffer
Status

GPP

Interconnection Bus

Fig. 7. Accelerator interface and interconnection with the GPP in the prototyping
platform.
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traceback), the systolic array includes an embedded controller
that is responsible for decoding seven instructions (required to
properly control the array), as well as to receive the data to
be processed. The developed interface, illustrated in Fig. 7, is
composed of two input First-In First-Out (FIFO) queue (one for
the reference sequence and the other for commands and the
query sequence), one output FIFO queue (to return the processed
values) and one status register. The two input FIFOs allow the
next query sequence to be loaded into the array while the cur-
rent alignment is being processed, without increasing the com-
plexity of the control that would arise from having all of the
data (query and reference sequences data) input through
the same FIFO. In the case of a multiple-stream configuration,
the several query sequences are input using the previously men-
tioned input FIFO and are then sent to a specific PE array, based
on the information defined by the main program running on the
GPP. Afterwards, as soon as the alignment scores and corre-
sponding AOEI coordinates are calculated, they are serially
stored in the output FIFO for later processing in the GPP.

Each FIFO has a depth of 64 words and is 32-bits wide, to match
the bus-width adopted by most current GPPs. The status register
contains some information about the available positions in each
of the input FIFOs, allowing the implementation of a flow control
mechanism. Furthermore, this status register also contains some
information regarding to the availability of output data in the out-
put FIFO, indicating when the accelerator has concluded the
alignment.

The developed interface allows this accelerator to be intercon-
nected to several types of interconnection buses, requiring only
the design of the appropriate logic to decode the specific bus con-
trol signals. The input and output FIFOs can be mapped to the GPP
memory address space and therefore be easily accessible using
common load/store instructions. This type of interface can be used
either in PCI, PCIe, AMBA–APB or other types of interconnections,
therefore allowing this accelerator to be used in a wide range of
platforms.

5. Performance model

The performance of a complete alignment system composed of
several different modules depends on the performance of each
individual module and how they interact. Among these are the
CPU performance, the interconnection (bus) throughput and the
accelerator performance (if present). To better understand and
evaluate the advantages provided by the proposed alignment
structure, this section presents a thorough modelization of the
resulting global performance.

Typically, the set of operations that are required to perform an
alignment in a system without an accelerator are: (i) database
read, (ii) data transfer to the processing device and (iii) computa-
tion, which includes the matrix fill and the traceback phases.
Assuming that these operations are completely sequential, the to-
tal alignment time (Ts) can be modeled as the sum of the database

read time (Tdb), the data transfer time Tds
i

� �
and the CPU processing

time for the matrix fill phase TMs
c

� �
and the traceback phase TT

c

� �
:

Ts ¼ Tdb þ Tds
i þ TMs

c þ TT
c ð3Þ

The time corresponding to each individual component is given
by:

Tdb ¼ n þ m
fdBw

d Cgd
; ð0 < gd 6 1Þ

Tds
i ¼ n þ m

fiB
w
i Cgi

; ð0 < gi 6 1Þ

Ts
c ¼ TMs

c þ TT
c ¼

cðn�mÞ
fcgc
þ ck

fcgc
; ð0 < gc 6 1; c P 1Þ

ð4Þ
where n and m denote the query and reference sequence sizes, k
represents the number of cells traversed during the traceback
phase, fd, fi and fc denote the database read, interconnection bus
and CPU processing frequencies, respectively. C represents the com-
pression factor (how many nucleotides are encoded in an 8-bit
word), while Bw

d and Bw
i denote the width (in bytes) of the database

read device and of the interconnection (bus), respectively. The gd, gi

and gc parameters denote efficiency factors, which take into ac-
count eventual contention on accessing the database, the intercon-
nection and the CPU, as well as inherent wait states and protocol
dependent control operations. Finally, c represents the average
number of CPU clock cycles required to process a single cell of the
DP matrix.

In sequential single-core CPUs (without any accelerator),
Ts

c � Tdb þ Tds
i , due to the OðnmÞ runtime of the matrix fill phase,

which leads to the commonly observed total alignment time of
Ts � Ts

c. In contrast, when the proposed accelerator is present, the
processing is split among the accelerator and the CPU. By consider-
ing (as an example) the architecture of the proposed accelerator in
a single-stream configuration, the time it takes to compute the
whole DP score matrix, in the accelerator (Ta) is given by:

Ta ¼
N þm� 1

fa
; ðn 6 NÞ ð5Þ

where N represents the number of PEs in the array and fa denotes
their operating frequency. In this parallel processing scheme, the
accelerator computes the whole score matrix (G), of size n �m,
while the CPU performs a much simpler matrix fill (time TMr

c ) and
traceback over the smaller matrix G0, totaling a computation time
of Tr

c ¼ TMr
c þ TT

c . Typically, an alignment only includes part of the
considered sequences. Hence, the number of traversed cells during
the traceback (k) can be used to major the size of the subsequences
that are used to compute the smaller matrix G0, which will thus
have a maximum size of k � k.

By using the proposed accelerator, it is possible to parallelize
some operations. In this case, the accelerator performs the DP ma-
trix fill phase of the current sequence pair alignment, while the CPU
implements the traceback of the previous sequence pair. Therefore,
both the accelerator and the CPU work in a pipelined way. Further-
more, it is also possible to read the next query sequence (as well as
the reference sequence, if necessary) from the database in parallel
with the processing of both the accelerator and the CPU. This type
of processing involves three distinct data transfers, with the
respective duration: (i) from the database to the system’s main

memory Tds
i

� �
, (ii) from the system’s main memory to the acceler-

ator Tsa
i

� �
, and (iii) from the accelerator to the system’s main mem-

ory Tas
i

� �
. The time to transfer the score and coordinates output

from the accelerator to the CPU Tas
i

� �
, which consists of no more

than five 32-bit values, is quite small and thus can be neglected
when compared to the other parcels Tas

i � Tsa
i

� �
. The data transfers

between the several components can occur in parallel with the

remaining processing (time Tr
i � Tds

i þ Tsa
i ). Therefore, the total

alignment time can be modeled as:

Tp � max Ta; Tds
i þ Tsa

i ; TMr
c þ TT

c ; Tdb

n o
ð6Þ

Assuming that a data parallel 32-bit wide bus is used to inter-
connect the accelerator, then Bw

i ¼ 4. The same width is also typi-
cally used in the database device interface, making Bw

d ¼ 4.
Furthermore, the used 2-bit encoding per nucleotide leads to
C ¼ 4. Therefore, the alignment time for these particular conditions
becomes:

Tp�max
Nþm�1

fa
;

nþm
4 �4 f i gi

þ nþm
4 �4 f i gi

;
c ðk�kÞ

fc gc
þ ck

fc gc
;

nþm
4 �4 f d gd

� �
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Tp �max
N þm� 1

fa
;

nþm
16 f i gi

þ nþm
16 f i gi

;
c ðk2 þ kÞ

fc gc
;

nþm
16 f d gd

( )

ð7Þ

Hence, in an alignment scenario where the same reference se-
quence is aligned to a large number of query sequences (Q) and
assuming that the reference sequence can be permanently stored
in the system’s main memory while aligning all the respective
query sequences, the database reading time and the corresponding
data transfer time to the system’s memory are reduced, leading to
an average alignment time per query sequence ðT1Þ:

T1 �max
N þm� 1

fa
;

nþm=Q
16 f i gi

þ nþm
16 f i gi

;
c ðk2 þ kÞ

fc gc
;

nþm=Q
16 f d gd

( )

ð8Þ

Moreover, considering that the accelerator may be able to per-
form b simultaneous alignments by using the multiple-stream fea-
ture, the average alignment time for each sequence pair ðTbÞ is
given by

Tb �max
Nþm� 1

fa b
;

nþm=Q
16 f i gi

þ nþm=b
16 f i gi

;
c ðk2 þ kÞ

fc gc
;

nþm=Q
16 f d gd

( )

ð9Þ

As an example, Fig. 8 depicts the total alignment time according
to the model described by Eq. (7), in which the reference sequence
is read from the database for each query sequence (worst case).
The considered model parameters are: n = k = 128, c = 50,
N = 128, fa = fi = fc = fd = 100 MHz, gi = 0.2, gc = 0.8 and gd = 0.5.

One interesting observation that can be extracted from the
presented model is concerned to the accelerator role in the resulting
performance of the whole alignment system. In fact, as the relation
between the reference and the query sequence size increases, the
accelerator becomes the most limiting performance factor, as it
has the highest workload. Therefore, the increase of the CPU
performance, above a given minimum value, does not significantly
influence the performance of the alignment system leading to a
quasi-stationary speedup value. In the presented example, the
threshold value is about 8000, which corresponds to the relation
between the reference and query sequences sizes frequently
adopted in bioinformatic applications.
6. Prototyping platform

To validate the functionality and to assess the performance of
the proposed hardware accelerator in a practical realization, a
complete local alignment system based on the S–W algorithm
was developed and implemented. The basic configuration of this
system, used as a proof-of-concept, consists of a Leon3 GPP proces-
sor [21] that executes all operations of the S–W algorithm, except
those concerning the score matrix computation phase. Such phase
is executed by the proposed hardware accelerator, acting as a spe-
cialized functional unit of the GPP.

The software implementation of the S–W algorithm includes
some optimizations in order to achieve more efficient applications
in embedded systems. In particular, all memory accesses were
optimized by using a static memory allocation mechanism. Special
attention was also devoted to the data transfers of both the refer-
ence and query sequences from the GPP to the proposed hardware
accelerator, so that a high level of efficiency is achieved.

6.1. Leon3 processor

The Leon3 processor [21] is one of the most used processor
cores that are freely available. It was specifically designed for
embedded applications by the European Space Agency, although
nowadays it is maintained by Gaisler Research. It consists of a
highly configurable and fully synthesizable core, described in
VHDL, implementing a RISC architecture conforming to the SPARC
v8 definition. Such freely available VHDL description allows this
GPP to be implemented in several different platforms (e.g. ASIC),
unlike other proprietary GPPs (e.g. Xilinx’s MicroBlaze). Further-
more, the availability of reliable software development tools (e.g.
compiler and debugger) for the Leon3 processor make it an ade-
quate choice for the proof-of-concept system.

The Leon3 32-bit core is based on a Harvard micro-architec-
ture with a 7-stage instruction pipeline and 32-bit internal reg-
isters. The core functionality can be easily extended by means of
the AMBA–2.0 AHB/APB on-chip buses. The AMBA–2.0 AHB is
used to connect the Leon3 processor with high-speed controllers,
such as the cache and memory controllers. On the other hand,
the AMBA–2.0 APB is used to access most on-chip peripherals
and is connected to the Leon3 processor via the AHB/APB Bridge.
External memory access and memory mapped I/O operation are
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provided by a programmable memory controller with interfaces
to PROM, SRAM and SDRAM chips.

6.2. DNA alignment peripheral

A new peripheral, consisting of the proposed hardware acceler-
ator for DNA alignment, was developed and embedded in the
Leon3 processor (see Fig. 7). This alignment peripheral was con-
nected to the AMBA–2.0 APB as a slave device. This bus was se-
lected not only because it has enough bandwidth for all of the
sequence data transfers, but also because it offers a simple inter-
face and low-power consumption.

Some additional wrapper logic, responsible for the adaptation of
the accelerator to the AMBA–2.0 APB bus, was also included, con-
sisting mostly of multiplexers, decoders and a simple control unit
that implements the bus protocol. The I/O FIFOs and the status reg-
ister of the alignment core are mapped in the Leon3 memory ad-
dress space. Hence, by using such interface, the write and read
operations over this peripheral can be easily implemented using
simple load and store operations.

6.3. FPGA implementation

The implementation of the proposed local alignment system
was realized in an FPGA device by using a GR-CPCI-XC4V develop-
ment board from Pender Electronic Design. Such development sys-
tem includes a Virtex4 XC4VLX100 FPGA device from Xilinx, a
133 MHz 256 MB SRAM memory bank, and several peripherals
for control, communication and storage purposes.

The adopted Leon3 processor is based on version gpl-1.0.20-
b3403 of GRLIB. This soft-processor core was configured to incor-
porate a hardware divide and multiply unit, an interrupt controller,
separate data and instruction cache controllers and an SRAM mem-
ory controller, all interconnected with the AMBA–2.0 AHB inter-
face. Moreover, such core also encompasses two 32-bit timers
and the proposed DNA Alignment peripheral, which were all
connected to the system AMBA–2.0 APB.
Table 5
FPGA resource allocation of a single-stream array.

PE Score width Maximum si

Type # Reference

Leon3 0 – –
Base 16 7 –
Base 64 9 –
Base 128 10 –
Enh. 16 7 216

Enh. 64 9 222

Enh. 128 10 222

Table 6
Processing time results for the alignment system when using a single-stream array with 1

Reference
size

Processing time using only the Leon3
processor (ms)

Processing time using the Leon3

Matrix fill

TMs
c

Traceback

TT
c

Total Ts Score and coordinates (HW)
maxfTa; Tsa

i g

17,878 7493.6 0.9 7494.5 0.7
83,648 35049.2 0.9 35050.1 3.2

136,980 57390.4 1.0 57391.4 5.2
295,301 123757.5 0.9 123758.4 11.1
566,490 237377.8 0.9 237378.8 21.3
745,211 312359.1 1.0 312360.0 28.0

1,311,701 – – – 49.3
2,623,402 – – – 98.5
7. Experimental results

The previously presented accelerator architecture, described
using parameterizable VHDL code, was synthesized using Xilinx
ISE 10.1 (SP3) software tools and implemented in the previously
described FPGA. This reconfigurable embedded system, used fun-
damentally as a proof-of-concept prototyping platform, is com-
posed by the Leon3 GPP and the alignment accelerator core with
an array composed by a maximum of 128 PEs. Although the max-
imum operating frequency of the accelerator core is 120 MHz, the
actual operating frequency of the entire system is 60 MHz, as a
consequence of a limitation imposed by the considered Leon3 pro-
cessor implementation. However, as it was explained in Section 5,
for the usual ranges of the relation between the reference and
query sequences sizes this GPP limitation does not significantly
constraint the overall performance of the system.

7.1. Single-stream configuration

The obtained resource allocation results of the entire alignment
system, when considering the single-stream array configurations,
are presented in Table 5. The resources solely occupied by the
Leon3 processor are also presented as a reference. These results
show that the Leon3 processor alone occupies 18% of the available
logic resources of the used FPGA device. In what concerns the re-
source allocation for the systolic array using the enhanced PEs, it
is possible to observe that it is 77% larger in relation to the corre-
sponding base configuration, without the AOEI tracking functional-
ity. However, the exact increase of the amount of used hardware
depends on the considered operating environment, namely, the
size of the sequences to be aligned (which determines the bit-
width of the coordinate representation) and the adopted scoring
scheme (which influences the bit-width of the score calculations).

To validate and assess the performance of the proposed system,
a set of real DNA sequences was used for the reference sequence.
These sequences were obtained from the GenBank database [2]
and their size ranges from about 17 � 103 to 2.6 � 106 nucleotides.
ze Resource usage

Query Registers LUTs

– 6246 (6%) 17,788 (18%)
16 7441 (8%) 19,818 (20%)
64 11,736 (12%) 28,148 (29%)

128 16,031 (16%) 34,130 (35%)
16 9499 (10%) 22,168 (23%)
64 22,625 (23%) 36,114 (37%)

128 40,024 (41%) 56,541 (58%)

28 PEs and a query sequence of 128 nucleotides.

processor and the proposed accelerator (ms) Speedup

Reduced matrix fill

(Leon3) TMr
c

Reduced traceback

(Leon3) TT
c

Cycle
period Tp

45.7 0.9 46.6 161
54.4 1.0 55.4 633
54.4 1.0 55.4 1036
49.5 1.0 50.5 2451
49.5 0.9 50.5 4701
50.7 1.0 51.7 6042
50.9 1.0 51.9 –
50.8 1.0 98.5 –



Table 7
FPGA resource usage of the multiple-stream arrays.

PE Score width Resource usage

Type # n-Stream Registers LUTs

Leon3 0 – – 6246 (6%) 17,788 (18%)
Enh. 128 1 10 40,024 (41%) 56,541 (58%)
Enh. 64 1 9 22,625 (23%) 36,114 (37%)
Enh. 64 2 9 38,349 (39%) 54,183 (55%)
Enh. 35 1 9 15,427 (16%) 28,071 (29%)
Enh. 35 2 9 24,149 (25%) 38,169 (39%)
Enh. 35 3 9 32,687 (33%) 48,205 (49%)
Enh. 37 3 13 34,299 (35%) 50,143 (51%)
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In what concerns the query sequences, their maximum size is lim-
ited by the number of available PEs in the array. Consequently, for
the implemented configuration, it must not be greater than
128 nucleotides long (a size entirely compatible with the latest
Next-Generation Sequencing technologies [1]). In this particular
instantiation, the size of the chosen query sequences is 128 nucle-
otides. For larger query sequences, the number of PEs in the array
has to be increased and, if necessary, the array can be expanded by
connecting another FPGA device.

The advantages provided by the proposed AOEI technique, as
well as the performance of the developed hardware accelerator,
were assessed using the previously selected sequences, which
were aligned using two different methods: (i) pure software imple-
mentation, where the alignment between each sequence pair is
obtained using a pure and straight-forward implementation of
the S–W algorithm running exclusively on the GPP (keeping the
entire score matrix in memory) and (ii) hardware accelerated
implementation, where the alignment is obtained by using the
developed accelerator (with the enhanced PEs) and the GPP. The
obtained execution time results for both of these methods are
presented in Table 6. While the total processing time for the pure
software implementation (Ts) is the sum of the partial times, the
total time of the hardware accelerated implementation (Tp) consid-
ers the fact that the accelerator and the GPP work concurrently in a
pipelined scheme: the accelerator determines the score and the
alignment coordinates of a given sequence pair while the GPP is
performing the matrix recomputation and traceback for the previ-
ous pair of processed sequences. Therefore, in the concurrent
configuration, the presented total time (Tp) is the maximum value
between the hardware accelerator max Ta; Tsa

i

� 	� �
and GPP execu-

tion times TMr
c þ TT

c

� �
(see Eqs. (6) and (7)). It should be noted that

the presented results for the accelerator processing time already
consider the communication between the GPP and the accelerator
max Ta; Tsa

i

� 	� �
and that the database reading and corresponding

data transfer times are not considered, since the queries and refer-
ence sequence were pre-loaded to the system’s main memory. The
obtained speedup was determined by comparing the time required
to obtain each whole alignment using the pure software sequential
implementation of the S–W algorithm and the time required to
obtain the same alignment with the aid of the proposed AOEI
technique and the corresponding hardware accelerator.

According to the obtained results, the attained speedups may be
as high as 6042. These speedups are in accordance to the trends
predicted in Section 5 (see Fig. 8) and are the consequence of a
twofold contribution: on the one hand, the parallelization of the
whole matrix fill phase by the systolic array; on the other hand,
the reduction of the processing time required to perform the trace-
back in the GPP, due to the significant reduction of the size of the
score matrix that must be recomputed in this phase. At this respect
it is worth noting that the time complexity of the G matrix compu-
tation during the matrix fill phase implemented in the GPP is
O(nm), whereas in the accelerator this complexity is reduced to
O(m), due to the parallel processing in the n PEs. These two factors
justify the significant speedup value that is attained in determining
the local alignment score as it was described in Section 5.

In what concerns the traceback phase, the time complexity is
the same in both cases (O(n + m)). In fact, in order to perform
the traceback in the GPP it is necessary to recompute the whole
G matrix. Nevertheless, this recomputation time is significantly
reduced when the proposed AOEI technique is adopted. As an
example, and considering the alignment of the 128 nucleotide
query sequence with the 1,311,701 reference sequence, the ob-
tained local alignment spans over only a 124 nucleotide long
subsequence of the reference sequence and over a 123 nucleo-
tide subsequence of the query sequence. If the entire G matrix
had to be recomputed to obtain the alignment, it would have
approximately 168 � 106 cells, which significantly contrasts with
the situation provided by the proposed AOEI technique, where
the size of the G0 matrix that needs to be recomputed in the
GPP is reduced to only 124 � 123 � 16 � 103 cells. This signifi-
cant reduction (of about four orders of magnitude) is particularly
important when the implementation of the alignment procedure
is considered in embedded systems, with strict memory and
power consumption restrictions. Hence, not only does the pro-
posed technique allow to significantly reduce the time required
to obtain the alignment, but it also makes it possible to process
larger sequences as it significantly reduces the amount of mem-
ory used by the GPP (e.g. the 2,623,402 nucleotide long reference
sequence, whose memory requirements prevent it from being
aligned using the pure software approach on the GPP).

Finally, it is also important to note that the obtained throughput
results of the proposed systolic PE array are in line with the results
corresponding to similar architectures presented in the past
[11,15,16]. However, such past architectures were only focused on
accelerating the matrix-fill phase of the S–W algorithm. In contrast,
besides accelerating the matrix-fill phase, the presented accelerator
architecture also implements the new AOEI method and therefore
returns additional information that is subsequently used to further
reduce the computational requirements. Such feature is not
included in any other proposals, therefore being a differentiating
characteristic of this work and hindering a direct and fair
comparison.
7.2. Multiple-stream configuration

To evaluate the developed multiple-stream capability, several
different configurations of the alignment system were imple-
mented. The corresponding resource usage results are presented
in Table 7. The maximum number of implemented multiple-
streams was 3, since the resources of the considered FPGA device
do not allow for additional streams. However, any number of pro-
cessing streams is supported if there are enough resources avail-
able to implement them. All of the considered configurations
have a maximum reference sequence size of 222.

As expected, the results in Table 7 show a slight reduction in the
amount of used resources when compared to an identically sized
single-stream array (i.e. when the number of PEs of the single-
stream array is equal to the number of PEs of the multiple-stream
array multiplied by the number of streams). This reduction is due
to the shared resources among the multiple-stream PEs, as well as
the reduction in the bit-width required to represent the AOEI coor-
dinates, since the query sequence being aligned is smaller. There-
fore, in terms of used resources, a triple-stream configuration is
more advantageous to align several short-read sequences when
compared to three completely independent arrays.

To evaluate the performance of the alignment task, three
streams of short-read query sequences, each with 35 nucleotides
and obtained with the Illumina sequencing platform, were aligned



Table 8
Processing time results using multiple-stream array configurations, to align three query sequence streams, each with 35 nucleotides.

# PE n-Stream Reference size Processing time using the Leon3 processor and the proposed accelerator (ms) PE occupancy rate (%)

Score and coordinates (HW) Reduced matrix fill (Leon3) Reduced traceback (Leon3)

128 1 2,623,402 304.4 11.4 0.8 27

64 1 2,623,402 302.9 11.4 0.8 55
64 2 204.9

35 1 2,623,402 301.5 11.4 0.8 100
35 2 204.9
35 3 103.4

Table 9
Performance comparison with an Intel Core2 Duo CPU.

Query size

128 35

Device Intel CPU Accelerator (128 � 1) Intel CPU Accelerator (35 � 1) Accelerator (35 � 3)

Time (ms) 882.5 98.5 1712.3 301.5 103.4
Speedup 1 9.0 1 5.7 16.6

Equivalent MCUPS 381 3409 161 914 2664
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to the same 2,623,402 nucleotides long reference sequence. Six dif-
ferent accelerator configurations, all with the proposed AOEI func-
tionality, were used to obtain the alignments: (i) the single-stream
configuration with 128 PEs that was used in the previous section,
(ii) a single-stream, and a (iii) dual-stream configurations with
64 PEs each, (iv) a single-stream, (v) a dual-stream, and (vi) a tri-
ple-stream configurations with 35 PEs each. The 35 PE arrays are
adequately fitted to the size of the short-reads being aligned using
this sequencing technology.

The achieved processing time results for aligning the three
query streams using the previously described accelerator configu-
rations are presented in Table 8. As it is possible to observe, the
alignment task is considerably faster when the accelerator is con-
figured as a multiple-stream array with the number of PEs in each
array identical to the query sequence size, since this leads to a con-
figuration where all the PEs are performing useful calculations,
leading to a PE occupancy ratio of 100%. If the single-stream array
with 128 PEs is used to align the three streams of 35 nucleotides
long query sequences, the PE occupancy ratio of the array is signif-
icantly decreased (down to 27%). This means that a significant part
of the PEs would be performing null operations, since only 35 of
them would have a query sequence symbol assigned, therefore
decreasing the actual throughput of the array. Consequently, the
required time to obtain the score and the index coordinates for
the three streams of query sequences is roughly three times the
time required to obtain the same information for a single stream
(see Table 6). However, using a triple-stream array where the num-
ber of PEs is adequately fitted to the query sequence size (35 nucle-
otides), it is possible to simultaneously align three different query
sequences using the same hardware resources, as presented in
Table 8. Therefore, not only is the overall efficiency of the system
significantly increased, as an additional speedup is also achieved,
proportional to the number of implemented linear arrays.

7.3. Comparison and discussion

To complete the presented architecture evaluation, the perfor-
mance of the proposed accelerator was also compared to the
performance of a pure-software implementation running on a
common CPU. The SSEARCH35 software program from the FASTA
framework was used for this purpose, since it is one of the most
used programs to determine the local alignment. This program
implements the state-of-the-art SIMD optimizations proposed in
Ref. [22] and was executed on a 2.4 GHz Intel Core2 Duo processor.
The execution times were obtained by aligning the same query and
reference sequences adopted in the previous evaluations.

The obtained execution times, presented in Table 9, show that
the speedup attained with the conceived accelerator when com-
pared with a pure software implementation running on the Core2
Duo may be as high as 16. In particular, the lower processing time
obtained for the short sequences is due to the better usage of the
available hardware resources provided by the accelerator, which
enabled a triple-stream configuration using the same FPGA device.
Table 9 also includes the equivalent million cell updates per second
(MCUPS) metric, which is commonly used to compare the perfor-
mance of alignment algorithms across different platforms. How-
ever, this metric only takes into account the throughput of the
matrix fill phase of the S–W algorithm, without considering the
traceback phase requirements. Nevertheless, the performance ob-
tained using the developed system still achieves a significant
speedup compared to the SSEARCH35 program. The decrease in
performance of the software based solution for the smaller query
sequences reveals its inability to maintain the performance levels
with such short sequences. Furthermore, it is important to recall
that the overall performance of the accelerator is proportional to
the total number of PEs, thus the apparent smaller equivalent per-
formance of the 35 triple-stream PEs (35 � 3 = 105) array when
compared to the 128 single-stream PEs array.

Regarding the database read rate, the implemented accelerator
requires one reference sequence nucleotide in each clock cycle. As
previously mentioned, four nucleotides are encoded in each byte,
thus the accelerator requires an input transfer rate of, at least,
15 MB/s. In the worst case scenario, in which the reference se-
quence is not stored in the main memory and needs to be read
from the database at each alignment, the database reading rate
(which also needs to account for the much smaller query sequence
reads) has to be higher than 15 MB/s in order to sustain the oper-
ation of the accelerator at its maximum performance. Current
mainstream storage devices (hard disk drives) have a sustained
throughput above 100 MB/s. Even when considering the accelera-
tor running at 120 MHz, the database reading rate would double
to 30 MB/s, still well below the throughput of the storage devices.
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To further demonstrate the implementation alternatives offered
by the proposed accelerator, the processing core was also synthe-
sized for the FPGA device available in the Intel Atom E645C proces-
sor, an Altera Arria II GX device [19]. The synthesis was performed
using the Quartus II v10.1 software from Altera. The obtained results
demonstrated that the processor is capable of operating at a clock
frequency of 120 MHz. Synthesis results also revealed that the avail-
able hardware resources of this device allow to implement acceler-
ators with 128 PEs in dual-stream configuration and with 35 PEs in a
6-stream configuration. According to the model derived in Section 5,
these configurations significantly improve the overall performance
of the accelerator allowing for the concurrent alignment of two
128 nucleotides long query sequences (N = 128, b = 2) or six
35 nucleotides long query sequences (N = 35, b = 6), respectively.
In this case, only the accelerator is implemented in the FPGA, while
the Intel Atom processor performs the role of the GPP.

Finally, a last observation concerning the system cost is de-
served. In fact, the acquisition cost of a system based on a hybrid
platform, like the Intel Atom E645C, is similar to the cost of current
off-the-shelf computing systems, like those based on the Intel
Core2 Duo processors. However, if the higher throughput provided
by the accelerator implemented in the FPGA is taken into account,
the alignment system based on this new platform will achieve a
much smaller cost per alignment than current implementations.
Moreover, the memory size reduction provided by the proposed
accelerator also allows a further reduction of the total system cost.

8. Conclusions

A highly efficient hardware accelerator architecture that signif-
icantly speedups the implementation of DNA local alignment algo-
rithms is presented. Such accelerator is based on the exploitation
of an innovative and quite efficient technique to significantly re-
duce the computational time and memory requirements of the
traceback phase that is executed as part of the widely used
Smith–Waterman algorithm. Furthermore, the developed structure
also exploits an additional level of parallelism, in order to simulta-
neously align several query sequences with the same reference se-
quence, by adopting a multi-stream processing flow. Such feature
is particularly useful in the processing of short-read DNA se-
quences obtained from current HTSR sequencing technologies.

The developed accelerator was integrated with a Leon3 general
purpose processor, in order to prototype a complete embedded
alignment system for DNA processing. The conceived platform was
implemented in a Virtex-4 FPGA. The obtained results demonstrate
that the developed accelerator provides speedups as high as 6042,
when compared with a pure software version of the Smith–Water-
man algorithm, running on the Leon3 processor. Speedups up to
16 were also achieved when compared to an highly optimized SIMD
software implementation running on an Intel Core 2 Duo Processor.

The obtained results also reveal that the proposed multiple-
stream configurations favor the exploitation of the available FPGA
resources and aid in maintaining the array running at maximum
performance in different alignment scenarios. Moreover, it was
shown that the use of the proposed accelerator enables the align-
ment of larger DNA sequences, even in a memory restricted
environments.
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