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Abstract-The constant array vector multiplication (CAVM) 
operation realizes the multiplication of a constant array by a 
vector of variables and occurs in the design of direct form finite 
impulse response (FIR) and infinite impulse response (IIR) filters. 
In this paper, for the first time, we directly target the optimization 
of the multiplierless design of a CAVM operation and introduce a 
novel algorithm, called ECHO, that can find the fewest number of 
adders and subtractors required for its implementation. We also 
describe some hardware optimization techniques that can reduce 
the gate-level area and delay of the CAVM design. It is shown 
that the solutions of ECHO include significantly less number of 
operations and yield less area in FIR filter designs than those of 
previously proposed state-of-art algorithms. 

I. INTRODUCTION 

In digital signal processing (DSP) systems, such as fast 
Fourier transforms (FFTs), FIR filters, and discrete cosine 
transforms (DCTs), the multiplication of constant(s) by vari­
able(s) is a ubiquitous operation and has a significant impact 
on the design complexity and performance. Based on its 
occurrences, it can be categorized in four classes [1]: 

I) Single constant multiplication (SCM) realizes the 
multiplication of a single constant C by a single 
variable x, i.e., y = CX. It is used in FFTs and fast 
DCTs [2]. 

2) Multiple constant multiplication (MCM) implements 
the multiplication of a set of n constants C by a single 
variable x, i.e., Yi = CiX, with 1 ::.; i ::.; n. It is found 
in transposed form FIR filters (Fig. I a) [3]. 

3) Constant array vector multiplication (CAVM) realizes 
the multiplication of a 1 x n constant array C by an 
n x 1 variable vector X, i.e., Y = 2..:j CjXj, with 
1 ::.; j ::.; n. It occurs in IIR and direct form FIR 
filters (Fig. lb) [4]. 

4) Constant matrix vector multiplication (CMVM) im­
plements the multiplication of an m x n constant 
matrix C by an n x 1 variable vector X, i.e., 
Yi = 2..:J CijXj, with 1 ::.; i ::.; m and 1 ::.; j ::.; n. It 
appears III error correcting codes, DCTs, and integer 
cosine transforms (ICTs) [5]. 

Since the realization of a multiplier in hardware is ex­
pensive in terms of area and the constants are determined 
beforehand in these DSP systems, these constant multiplica­
tions are generally realized using shifts, adders, and subtractors 
under the shift-adds architecture. Note that shifts by a constant 
value can be realized using only wires having no hardware 
cost. Hence, the fundamental optimization problem is defined 
as finding the minimum number of adders and subtractors 
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Fig. 1. Design of an N-tap FIR filter: (a) transposed form; (b) direct form. 

required to realize the constant multiplications. This is an 
NP-complete problem even in the case of SCM [6]. 

Over the years many efficient algorithms [1]-[8] have been 
introduced, including the exact methods of [2], [8] which 
can guarantee a solution with minimum number of operations 
in SCM and MCM instances of real-world DSP systems. 
However, the techniques designed for the CMVM operation 
have been based on heuristics, meaning that they can neither 
ensure the minimum solution nor provide any information on 
how far away their solutions are from the minimum [I]. This is 
because the complexity of the optimization problem increases 
as the number of variables and outputs increases. Also, there 
has been no algorithm designed especially for the CAVM 
operation for which a CMVM method is used in practice. 

In this paper, an efficient method for the multiplierless 
realization of the CAVM operation, called ECHO, is introduced. 
It consists of two parts. First, given the 1 x n constant array C, 
the multiplierless realization of the n constants of C is found 
using an MCM algorithm. Second, a set of transformations 
is iteratively applied to the constant multiplications in the 
CAVM operation, considering the realization of each constant 
in MCM. Since the MCM solution has a direct impact on 
the number of operations and adder-steps, i.e., the maximum 
number of operations in series, of the CAVM design, in its 
first part, we preferred to use the exact algorithm of [8], 
which can find the fewest number of operations, and the 
approximate algorithm of [8], which is modified to handle a 
delay constraint. In its second part, we also consider some 
optimization techniques to further reduce the area and delay of 



the CAVM design. We show its effectiveness on randomly gen­
erated instances, comparing with efficient CMVM algorithms 
and on FIR filters, comparing with direct form FIR filters 
designed using efficient CMVM methods and with transposed 
form FIR filters designed using prominent MCM methods. 

II. MCM ALGORITHMS 

Since the common input variable x is multiplied by multi­
ple constants in MCM, the implementation of constant multi­
plications is in fact equal to the implementation of constants. 
For example, 3x realized as 3x = x « 1 + x can be rewritten 
as 3 = 1 « 1 + 1 by removing the variable x from both sides. 
This terminology is used interchangeably through this paper. 

Since the sign of a constant multiplication can be adjusted 
where it is required and shifts by a constant value have no 
hardware cost, given the set of constants C, the MCM methods 
find a solution on unrepeated positive and odd versions of the 
constants of C. The basic operation in the shift-adds design 
of MCM, called A-operation in [6], realizes an adder or a 
subtractor with an arbitrary number of shifts and is given as: 

11) = A(u, v) = 12hu + (-1)S212vI2-r 
= I(u« h) + (-l)S(v « 12)1» r 

(1) 

where h, 12 ::;:, 0 are integers denoting left shifts of the 
operands u and v, respectively, r ::;:, 0 is an integer indicating 
a right shift, and S E {O, I} is the sign which determines if an 
addition or a subtraction operation is to be performed. 

Although the MCM algorithms are equipped with different 
search techniques, their common purpose is to maximize the 
sharing of partial products. They can be grouped in two classes 
as common subexpression elimination (CSE) and graph-based 
(GB) algorithms [1]. The CSE methods [4], [5], [7] first define 
the constants under a number representation such as binary 
or canonical signed digit (CSD)! [4]. Then, they consider 
possible subexpressions, which can be extracted from the 
nonzero digits in representations of constants, and choose the 
"best" subexpression, generally the most common, to be shared 
among the constant multiplications. The GB methods [3], [6], 
[8] are not restricted to any particular number representation 
and find the intermediate partial products which enable to 
realize the constant multiplications with minimum number of 
operations. They obtain better results than the CSE methods, 
since they consider a large number of alternative realizations of 
a constant [8]. As a simple example, consider C = {51, 77}. 
Their realizations obtained by the exact CSE algorithm [7] 
when constants are defined under CSD and by the exact GB 
algorithm [8] are respectively given in Figs. 2a-b. 

The delay of a multiplierless MCM design is generally 
considered as the number of adder-steps. The minimum num­
ber of adder-steps of a single constant e is computed as 
ilog2S(e)l, where S(e) denotes the number of nonzero digits 
in the CSD representation of e [3]. Thus, for a set of n 
constants C, the minimum number of adder-steps, MASi\ICM, 
is determined as maxi{ ilog2S(ei)l} with 1 :::; i :::; n [3]. 
Given the constant set C and a delay constraint de with 
de ::;:, MASMCM, the optimization problem is to find the 

1 An integer is written in CSD representation using k digits as L:�; bi 2i, 
where bi E {-I, 0, I}. The nonzero digits are not adjacent and a constant is 
represented with minimum number of nonzero digits under CSD. 
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Fig. 2. Shift-adds design of 51 and 77: (a) exact CSE method [7]; (b) exact 
GB method [8]; (c) approximate GB algorithm [8] under a delay constraint. 

fewest number of A-operations, realizing the constants of C 
without violating de [3]. Returning to our example, the solution 
of the approximate GB algorithm [8] modified to handle the 
delay constraint is given in Fig. 2c, where de was set to 
MASMCM which is 2. When compared to the minimum 
solution in terms of the number of operations (Fig. 2b), it 
includes one more operation, but one less adder-step. 

III. ECHO: THE CAVM ALGORITHM 

This section introduces ECHO and describes its two main 
parts through a simple example with C = [51,77,154]. 

In its first part, given the constant array C, we find the 
multiplierless realization of the constants of C using an MCM 
algorithm. As will be shown, the MCM solution has a direct 
impact on the CAVM design in terms of the number of 
operations and adder-steps. Hence, in ECHO, the exact GB 
method [8] and the modified version of the approximate GB 
method [8], which can handle the delay constraint, are used, 
since they obtain better solutions in terms of the number of 
operations than other prominent MCM algorithms. These GB 
methods were also needed to be modified to generate a solution 
including A-operations with right shifts r equal to 0 (Eq. 1), 
otherwise a constant multiplication in the CAVM operation 
may not be synthesized. Such operations rarely occur in GB 
algorithms, and depending on constants, the MCM design 
requires zero or a few extra operations under this constraint. 
For our example, the MCM solutions for the unrepeated odd 
constants of C, i.e., {51, 77}, are given in Figs. 2b-c. 

Then, the adders and subtractors in the MCM solution are 
stored in a set called 0 and the level of each constant p 
generated by an operation, level(p), is found starting from the 
primary input 1 with level(l) = o. The maximum value of the 
levels of constants, mle, is also computed. For our example, 
considering the MCM solution of Fig. 2b, level(3), level(51), 
and level(77) are 1, 2, and 3, respectively and mle is 3. 

Its second part starts by multiplying the 1 x n constant 
array C by the n x 1 variable vector X and obtaining y in the 

form of y = dlXI « lSI + d2x2 « IS2 + ... + dnxn « lsn . 

where ei = di « lSi with 1 :::; i :::; n. For our example, y is 
written as 51xI « 0 + 77x2 « 0 + 77x3 « 1. 

Then, we apply the CONv2cAVM procedure in Fig. 3, 
where T will include linear subexpressions to be realized in the 
CAVM operation and step, set to mle in the beginning, will be 
used in its iterative loop. First, we find the common constants 



CONV2CAVM(0, level, mlc, y) 
1: l' = [ ], step = mlc 
2: y = factor(y), [T, y] = eliminate(T, y) 
3: repeat 
4: for k = 1 to #vatiables of y do 
5: if step = level (dk) then 
6: y = substitute(y, 0, dk) 
7: y = expand(y), y = factor(y), [1', y] = eliminate(T, y) 
8: step = step - 1 
9: until step = 0 

10: T = TUy 
11: return l' 

Fig. 3. The cONv2cAVM procedure in the second part of ECHO. 

in y if available and group them using the factor function and 
replace the factored subexpressions with new variables and 
remove them from y to T using the eliminate function. In our 
example, y is obtained as 51xl « 0 + 77(X2 « 0 + X3 « 1) 
after the factor function and as 51xl « 0 + 77a « 0 after 
the eliminate function, where a = X2 « 0 + X3 « 1 which 
is stored in T. Then, in its iterative loop, all the constants of 
y having the step value are replaced with their realizations 
in 0 using the substitute function. For our example, when 
step is 3, 77 is replaced with its realization in Fig. 2b as 
y = 51xl « 0 + (128 - 51)a « O. Then, y is expanded using 
the expand function, and the factor and eliminate functions 
are applied. For our example, after expansion, y is computed 
as 51xl « 0 + a « 7 - 51a « 0, and after factorization 
and elimination at the end of the first iteration, it is found as 
51b « 0 + a « 7, where b = Xl « 0 - a « O. The iterative 
loop continues until step is 0, considering all constants in the 
MCM solution. For our example, y is 3c « 0 + a « 7 and 
c + c « 1 + a « 7 at the end of the second and third iteration, 
respectively, where c = b + b « 4. Then, the final y is added 
to T. Note that all the linear subexpressions of T require a 
total of ]vI + nzc - 1 operations, where ]vI is the number 
of operations found by the MCM algorithm and nzc is the 
number of nonzero constants of C. For our example, both lvI 
and nzc are 3 and a single operation is required for a, b, and c 
and 2 adders are needed for the final y, a total of 5 operations. 

Finally, each linear subexpression in T is realized in order 
using 2-input adders/subtractors. For subexpressions including 
t terms with t > 2, since there are more than one possible 
realization, we consider the bitwidth or adder-step of each term 
to reduce the area or delay of the CAVM design, respectively. 
We iteratively find 2 terms with the minimum bitwidth (adder­
step), realize them using an adder or a subtractor, and replace 
these two terms with the output of this operation. If there exist 
more than 2 terms with minimum bitwidth (adder-step), we 
favor the ones with the smallest adder-step (bitwidth). This 
iterative loop continues until the number of terms is 1. For 
our example, considering the bitwidths of terms, the final y 
with t is 3, is realized as d = c + c « 1 and y = d + a « 7. 

Thus, two variations of ECHO were developed. ECHO-A 
uses the exact GB algorithm [8] and realizes the linear 
subexpressions in T considering the bitwidths of their terms. 
ECHO-D uses the approximate GB algorithm [8], which obtains 
a solution under the delay constraint equal to MASi\ICM, 
and realizes the linear subexpressions in T considering the 
adder-steps of their terms. For our example, the solutions of 
ECHO-A (as described in this section) and ECHO-D obtained 
respectively based on the MCM solutions in Figs. 2b-c are 
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Linear subexpressions in T: 

e = X2 « 0 + X3« 1 

f = X1« 0 + X1 « 4 - e « a 
y = f« 0 + f« 1 + e « 4 + e « 6 

T he realizations of f and y: 

9 = X1« 0 + X1 « 4 

f = 9 « 0  - e « 0 

h=e« O+e« 2 

i=f« O +f« 1 

y=h« 4+i« O 

Fig. 4. Realizations of 51xl + 77x2 + 1 54x3: (a) ECHO-A: (b) ECHO-D. 

given in Figs. 4a-b. The linear subexpressions found by ECHO­
D and their realizations are also given in Fig. 4b. Observe that 
ECHO-D finds a CAVM solution with one more operation than 
ECHO-A, but with one less adder-step, showing the impact of 
the MCM solution and the strategy used in the realization of 
subexpressions in T. 

I V. EXP ERIMENTAL RESULTS 

As the first experiment set, we used 12-bit randomly 
generated 1 x n constant arrays, where n is in between 10 and 
80. For each n, there were 30 CAVM instances. The results 
of the proposed algorithms are presented in Fig. 5, which are 
compared to those of the state-of-art CMVM algorithms [1], 
HCMVM and HCMVM-DC, that respectively can find a solution 
without a delay constraint and with a delay constraint set to 
the minimum adder-steps of the CAVM operation [I]. All these 
algorithms were written in MAT LAB and run on a PC with Intel 
Xeon at 2.4GHz and 10GB memory. 

The proposed algorithms find significantly better solutions 
than the CMVM methods on CAVM instances in terms of the 
average number of operations, where the difference between 
the results of HCMVM (HCMVM-DC) and ECHO-A (ECHO-D) 
increases as n increases and reaches up to 24.47 (26.13). The 
CP U time required for the proposed techniques is related to the 
performance of the MCM algorithms and is less than those of 
the CMVM algorithms when n:;o.30. Although ECHO-D obtains 
solutions with less number of adder-steps than ECHO-A and 
close to those of HCMVM-DC, it cannot ensure the minimum 
number of adder-steps in CAVM as HCMVM-DC. 

As the second experiment set, we used 3 low-pass FIR 
filters whose specifications are given in Table I. The results of 
algorithms on the multiplierless design of the MCM (CAVM) 
blocks of the transposed (direct) form FIR filters as shown 
in Fig. I a (Fig. I b) are presented in Table II. In this table, 
MBO and AS stand respectively for the number of operations 
and adder-steps in the multiplier blocks and TO is the total 
number of operations in the whole filter, considering the ones 
in the register-add block of the transposed form (Fig. I a). 
These filters were described in VHDL and synthesized using 
the Synopsys Design Compiler with the UMCLogic 0.18-ILm 
Generic II library, when the bitwidth of the filter input was 
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Fig. 5. Average results on randomly generated CAVM instances: (a) number of operations; (b) number of adder-steps; (c) CPU time in seconds in log scale. 

TABLE I. SPECIFICATIONS OF FILTERS WITH SYMMETRIC 

COEFFICIENTS. 

filter 
length 

60 
80 

100 

normalized 
passband 

0.15 
0.12 
0.18 

normalized 
stopband 

0.2 
0.15 
0.2 

quantization 
value 

16 
16 
16 

16. Their gate-level results are also given in Table II, where 
A, D, and P are respectively the total area in mm2, the critical 
path delay in ns, and the dynamic power dissipation in m W 
obtained with the use of 10,000 input vectors in simulation. 

The proposed algorithms obtain better solutions in terms 
of the number of operations for the CAVM blocks of the direct 
form FIR filters with respect to the CMVM algorithms. This 
advantage also yields significant area reduction in the filter 
designs, where the maximum gain is found as 12.1 % on Filter 1 
when the solutions of HCM VM-DC and ECHO-D are compared. 
The solutions of ECHO-D lead to filters with less delay than 
those of ECHO-A, where the maximum gain is computed as 
22.9% on Filter 1, taking into account a slight increase in area. 
The filters designed based on the solutions of the proposed 
algorithms and those of [1] have similar power consumption. 

Observe also that the number of total operations in the 
direct form obtained by the proposed algorithms is the same 
or very close to that of the transposed form, since the only 
difference between the MCM algorithms is that, in ECHO-A 

and ECHO-D, they are modified not to generate an operation 
with a right shift greater than O. Moreover the direct form filters 
occupy less area due to the size of registers and consume less 
power, but may have a larger delay than the transposed form. 

V. CONCLUSIONS 

This paper presented a novel method for the multiplierless 
design of the CAVM operation which is generally realized 
using a CMVM algorithm. It uses the solutions of MCM 
algorithms on the constants of the CAVM operation, where the 
sharing of partial products is maximized. It is also equipped 
with area and delay reduction techniques. The experiments 
showed its effectiveness on the solution quality and runtime 
with respect to the prominent CMVM algorithms. 
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TABLE II SUMMARY OF RFSUI TS OF AI nORITHMS ON FIR FII TFRS 

Fil. Form A1go. 
High-level Gate-level 

MBO AS TO A D P 

Tran. 
[8]* 31 11 90 100.1 12.4 10.3 
[8]** 36 3 95 102.5 9.1 11.0 

I [1]+ 109 20 109 71.7 11.5 2.4 

Dir. [1]++ 109 7 109 74.3 10.1 2.5 
ECHO-A 91 20 91 63.2 13.1 2.5 
ECHO-I) 95 9 95 65.3 10.1 2.4 

Tran. 
[8]* 41 14 120 135.5 13.3 13.9 
[8]** 49 3 128 139.5 9.4 14.7 

2 [1] 145 22 145 97.7 10.6 3.3 

Dir. [1]++ ISO 8 ISO 100.1 10.6 3.3 
ECHO-A 121 16 121 �5.Y 12.7 j.4 
ECHO-I) 128 10 128 89.4 10.5 3.3 

Tran. 
[8]* 48 7 147 167.3 13.0 18.2 
[8]** 56 3 155 l71.9 9.4 18.9 

3 [I] 173 20 173 116.6 10.5 4.1 

Dir. [1]++ 177 8 177 118.8 10.8 4.0 
ECHO-A 147 18 147 103.9 11.9 4.l 
ECHO-j) 155 10 155 108.5 10.7 4.4 

* + ++ -The exact GB algOrIthm [8] HCMVM HCMVM I)C 

** The approximate GB algorithm [8] with a de set to MASMcM 

QCell - Configurable Logic Block Cell for Quaternary FPGAs 
and the project PEst-OE/EEI/LA002112013. 
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