
ECHO: A Novel Method for the Multiplierless

Design of Constant Array Vector Multiplication

Levent Aksoy
INESC-ID

Lisbon, Portugal

Email: levent@algos.inesc-id.pt

Paulo Flores
INESC-ID/Tecnico ULisboa

Lisbon, Portugal

Email: pff@inesc-id.pt

Jose Monteiro
INESC-ID/Tecnico ULisboa

Lisbon, Portugal

Email: jcm@inesc-id.pt

Abstract-The constant array vector multiplication (CAVM)
operation realizes the multiplication of a constant array by a
vector of variables and occurs in the design of direct form finite
impulse response (FIR) and infinite impulse response (IIR) filters.
In this paper, for the first time, we directly target the optimization
of the multiplierless design of a CAVM operation and introduce a
novel algorithm, called ECHO, that can find the fewest number of
adders and subtractors required for its implementation. We also
describe some hardware optimization techniques that can reduce
the gate-level area and delay of the CAVM design. It is shown
that the solutions of ECHO include significantly less number of
operations and yield less area in FIR filter designs than those of
previously proposed state-of-art algorithms.

I. INTRODUCTION

In digital signal processing (DSP) systems, such as fast
Fourier transforms (FFTs), FIR filters, and discrete cosine
transforms (DCTs), the multiplication of constant(s) by vari­
able(s) is a ubiquitous operation and has a significant impact
on the design complexity and performance. Based on its
occurrences, it can be categorized in four classes [1]:

I) Single constant multiplication (SCM) realizes the
multiplication of a single constant C by a single
variable x, i.e., y = CX. It is used in FFTs and fast
DCTs [2].

2) Multiple constant multiplication (MCM) implements
the multiplication of a set of n constants C by a single
variable x, i.e., Yi = CiX, with 1 ::.; i ::.; n. It is found
in transposed form FIR filters (Fig. I a) [3].

3) Constant array vector multiplication (CAVM) realizes
the multiplication of a 1 x n constant array C by an
n x 1 variable vector X, i.e., Y = 2..:j CjXj, with
1 ::.; j ::.; n. It occurs in IIR and direct form FIR
filters (Fig. lb) [4].

4) Constant matrix vector multiplication (CMVM) im­
plements the multiplication of an m x n constant
matrix C by an n x 1 variable vector X, i.e.,
Yi = 2..:J CijXj, with 1 ::.; i ::.; m and 1 ::.; j ::.; n. It
appears III error correcting codes, DCTs, and integer
cosine transforms (ICTs) [5].

Since the realization of a multiplier in hardware is ex­
pensive in terms of area and the constants are determined
beforehand in these DSP systems, these constant multiplica­
tions are generally realized using shifts, adders, and subtractors
under the shift-adds architecture. Note that shifts by a constant
value can be realized using only wires having no hardware
cost. Hence, the fundamental optimization problem is defined
as finding the minimum number of adders and subtractors

978-1-4799-3432-4114/$3l.00 ©20 14 IEEE 1456

x

y

r---
I MCM Block :

I I
: _____________________________ R_e!l iste�-��� �I���:

(a)

x ---..----1

y I
I

I CAVM Block I
�--�

(b)

Fig. 1. Design of an N-tap FIR filter: (a) transposed form; (b) direct form.

required to realize the constant multiplications. This is an
NP-complete problem even in the case of SCM [6].

Over the years many efficient algorithms [1]-[8] have been
introduced, including the exact methods of [2], [8] which
can guarantee a solution with minimum number of operations
in SCM and MCM instances of real-world DSP systems.
However, the techniques designed for the CMVM operation
have been based on heuristics, meaning that they can neither
ensure the minimum solution nor provide any information on
how far away their solutions are from the minimum [I]. This is
because the complexity of the optimization problem increases
as the number of variables and outputs increases. Also, there
has been no algorithm designed especially for the CAVM
operation for which a CMVM method is used in practice.

In this paper, an efficient method for the multiplierless
realization of the CAVM operation, called ECHO, is introduced.
It consists of two parts. First, given the 1 x n constant array C,
the multiplierless realization of the n constants of C is found
using an MCM algorithm. Second, a set of transformations
is iteratively applied to the constant multiplications in the
CAVM operation, considering the realization of each constant
in MCM. Since the MCM solution has a direct impact on
the number of operations and adder-steps, i.e., the maximum
number of operations in series, of the CAVM design, in its
first part, we preferred to use the exact algorithm of [8],
which can find the fewest number of operations, and the
approximate algorithm of [8], which is modified to handle a
delay constraint. In its second part, we also consider some
optimization techniques to further reduce the area and delay of

the CAVM design. We show its effectiveness on randomly gen­
erated instances, comparing with efficient CMVM algorithms
and on FIR filters, comparing with direct form FIR filters
designed using efficient CMVM methods and with transposed
form FIR filters designed using prominent MCM methods.

II. MCM ALGORITHMS

Since the common input variable x is multiplied by multi­
ple constants in MCM, the implementation of constant multi­
plications is in fact equal to the implementation of constants.
For example, 3x realized as 3x = x « 1 + x can be rewritten
as 3 = 1 « 1 + 1 by removing the variable x from both sides.
This terminology is used interchangeably through this paper.

Since the sign of a constant multiplication can be adjusted
where it is required and shifts by a constant value have no
hardware cost, given the set of constants C, the MCM methods
find a solution on unrepeated positive and odd versions of the
constants of C. The basic operation in the shift-adds design
of MCM, called A-operation in [6], realizes an adder or a
subtractor with an arbitrary number of shifts and is given as:

11) = A(u, v) = 12hu + (-1)S212vI2-r
= I(u« h) + (-l)S(v « 12)1» r

(1)

where h, 12 ::;:, 0 are integers denoting left shifts of the
operands u and v, respectively, r ::;:, 0 is an integer indicating
a right shift, and S E {O, I} is the sign which determines if an
addition or a subtraction operation is to be performed.

Although the MCM algorithms are equipped with different
search techniques, their common purpose is to maximize the
sharing of partial products. They can be grouped in two classes
as common subexpression elimination (CSE) and graph-based
(GB) algorithms [1]. The CSE methods [4], [5], [7] first define
the constants under a number representation such as binary
or canonical signed digit (CSD)! [4]. Then, they consider
possible subexpressions, which can be extracted from the
nonzero digits in representations of constants, and choose the
"best" subexpression, generally the most common, to be shared
among the constant multiplications. The GB methods [3], [6],
[8] are not restricted to any particular number representation
and find the intermediate partial products which enable to
realize the constant multiplications with minimum number of
operations. They obtain better results than the CSE methods,
since they consider a large number of alternative realizations of
a constant [8]. As a simple example, consider C = {51, 77}.
Their realizations obtained by the exact CSE algorithm [7]
when constants are defined under CSD and by the exact GB
algorithm [8] are respectively given in Figs. 2a-b.

The delay of a multiplierless MCM design is generally
considered as the number of adder-steps. The minimum num­
ber of adder-steps of a single constant e is computed as
ilog2S(e)l, where S(e) denotes the number of nonzero digits
in the CSD representation of e [3]. Thus, for a set of n
constants C, the minimum number of adder-steps, MASi\ICM,
is determined as maxi{ ilog2S(ei)l} with 1 :::; i :::; n [3].
Given the constant set C and a delay constraint de with
de ::;:, MASMCM, the optimization problem is to find the

1 An integer is written in CSD representation using k digits as L:�; bi 2i,
where bi E {-I, 0, I}. The nonzero digits are not adjacent and a constant is
represented with minimum number of nonzero digits under CSD.

1457

77
(a)

77
(b)

77 51

(e)

Fig. 2. Shift-adds design of 51 and 77: (a) exact CSE method [7]; (b) exact
GB method [8]; (c) approximate GB algorithm [8] under a delay constraint.

fewest number of A-operations, realizing the constants of C
without violating de [3]. Returning to our example, the solution
of the approximate GB algorithm [8] modified to handle the
delay constraint is given in Fig. 2c, where de was set to
MASMCM which is 2. When compared to the minimum
solution in terms of the number of operations (Fig. 2b), it
includes one more operation, but one less adder-step.

III. ECHO: THE CAVM ALGORITHM

This section introduces ECHO and describes its two main
parts through a simple example with C = [51,77,154].

In its first part, given the constant array C, we find the
multiplierless realization of the constants of C using an MCM
algorithm. As will be shown, the MCM solution has a direct
impact on the CAVM design in terms of the number of
operations and adder-steps. Hence, in ECHO, the exact GB
method [8] and the modified version of the approximate GB
method [8], which can handle the delay constraint, are used,
since they obtain better solutions in terms of the number of
operations than other prominent MCM algorithms. These GB
methods were also needed to be modified to generate a solution
including A-operations with right shifts r equal to 0 (Eq. 1),
otherwise a constant multiplication in the CAVM operation
may not be synthesized. Such operations rarely occur in GB
algorithms, and depending on constants, the MCM design
requires zero or a few extra operations under this constraint.
For our example, the MCM solutions for the unrepeated odd
constants of C, i.e., {51, 77}, are given in Figs. 2b-c.

Then, the adders and subtractors in the MCM solution are
stored in a set called 0 and the level of each constant p
generated by an operation, level(p), is found starting from the
primary input 1 with level(l) = o. The maximum value of the
levels of constants, mle, is also computed. For our example,
considering the MCM solution of Fig. 2b, level(3), level(51),
and level(77) are 1, 2, and 3, respectively and mle is 3.

Its second part starts by multiplying the 1 x n constant
array C by the n x 1 variable vector X and obtaining y in the

form of y = dlXI « lSI + d2x2 « IS2 + ... + dnxn « lsn .

where ei = di « lSi with 1 :::; i :::; n. For our example, y is
written as 51xI « 0 + 77x2 « 0 + 77x3 « 1.

Then, we apply the CONv2cAVM procedure in Fig. 3,
where T will include linear subexpressions to be realized in the
CAVM operation and step, set to mle in the beginning, will be
used in its iterative loop. First, we find the common constants

CONV2CAVM(0, level, mlc, y)
1: l' = [], step = mlc
2: y = factor(y), [T, y] = eliminate(T, y)
3: repeat
4: for k = 1 to #vatiables of y do
5: if step = level (dk) then
6: y = substitute(y, 0, dk)
7: y = expand(y), y = factor(y), [1', y] = eliminate(T, y)
8: step = step - 1
9: until step = 0

10: T = TUy
11: return l'

Fig. 3. The cONv2cAVM procedure in the second part of ECHO.

in y if available and group them using the factor function and
replace the factored subexpressions with new variables and
remove them from y to T using the eliminate function. In our
example, y is obtained as 51xl « 0 + 77(X2 « 0 + X3 « 1)
after the factor function and as 51xl « 0 + 77a « 0 after
the eliminate function, where a = X2 « 0 + X3 « 1 which
is stored in T. Then, in its iterative loop, all the constants of
y having the step value are replaced with their realizations
in 0 using the substitute function. For our example, when
step is 3, 77 is replaced with its realization in Fig. 2b as
y = 51xl « 0 + (128 - 51)a « O. Then, y is expanded using
the expand function, and the factor and eliminate functions
are applied. For our example, after expansion, y is computed
as 51xl « 0 + a « 7 - 51a « 0, and after factorization
and elimination at the end of the first iteration, it is found as
51b « 0 + a « 7, where b = Xl « 0 - a « O. The iterative
loop continues until step is 0, considering all constants in the
MCM solution. For our example, y is 3c « 0 + a « 7 and
c + c « 1 + a « 7 at the end of the second and third iteration,
respectively, where c = b + b « 4. Then, the final y is added
to T. Note that all the linear subexpressions of T require a
total of]vI + nzc - 1 operations, where]vI is the number
of operations found by the MCM algorithm and nzc is the
number of nonzero constants of C. For our example, both lvI
and nzc are 3 and a single operation is required for a, b, and c
and 2 adders are needed for the final y, a total of 5 operations.

Finally, each linear subexpression in T is realized in order
using 2-input adders/subtractors. For subexpressions including
t terms with t > 2, since there are more than one possible
realization, we consider the bitwidth or adder-step of each term
to reduce the area or delay of the CAVM design, respectively.
We iteratively find 2 terms with the minimum bitwidth (adder­
step), realize them using an adder or a subtractor, and replace
these two terms with the output of this operation. If there exist
more than 2 terms with minimum bitwidth (adder-step), we
favor the ones with the smallest adder-step (bitwidth). This
iterative loop continues until the number of terms is 1. For
our example, considering the bitwidths of terms, the final y
with t is 3, is realized as d = c + c « 1 and y = d + a « 7.

Thus, two variations of ECHO were developed. ECHO-A
uses the exact GB algorithm [8] and realizes the linear
subexpressions in T considering the bitwidths of their terms.
ECHO-D uses the approximate GB algorithm [8], which obtains
a solution under the delay constraint equal to MASi\ICM,
and realizes the linear subexpressions in T considering the
adder-steps of their terms. For our example, the solutions of
ECHO-A (as described in this section) and ECHO-D obtained
respectively based on the MCM solutions in Figs. 2b-c are

1458

X1 X2 X3

y

X1

y

X2 X3

(a) (b)

Linear subexpressions in T:

e = X2 « 0 + X3« 1

f = X1« 0 + X1 « 4 - e « a
y = f« 0 + f« 1 + e « 4 + e « 6

T he realizations of f and y:

9 = X1« 0 + X1 « 4

f = 9 « 0 - e « 0

h=e« O+e« 2

i=f« O +f« 1

y=h« 4+i« O

Fig. 4. Realizations of 51xl + 77x2 + 1 54x3: (a) ECHO-A: (b) ECHO-D.

given in Figs. 4a-b. The linear subexpressions found by ECHO­
D and their realizations are also given in Fig. 4b. Observe that
ECHO-D finds a CAVM solution with one more operation than
ECHO-A, but with one less adder-step, showing the impact of
the MCM solution and the strategy used in the realization of
subexpressions in T.

I V. EXP ERIMENTAL RESULTS

As the first experiment set, we used 12-bit randomly
generated 1 x n constant arrays, where n is in between 10 and
80. For each n, there were 30 CAVM instances. The results
of the proposed algorithms are presented in Fig. 5, which are
compared to those of the state-of-art CMVM algorithms [1],
HCMVM and HCMVM-DC, that respectively can find a solution
without a delay constraint and with a delay constraint set to
the minimum adder-steps of the CAVM operation [I]. All these
algorithms were written in MAT LAB and run on a PC with Intel
Xeon at 2.4GHz and 10GB memory.

The proposed algorithms find significantly better solutions
than the CMVM methods on CAVM instances in terms of the
average number of operations, where the difference between
the results of HCMVM (HCMVM-DC) and ECHO-A (ECHO-D)
increases as n increases and reaches up to 24.47 (26.13). The
CP U time required for the proposed techniques is related to the
performance of the MCM algorithms and is less than those of
the CMVM algorithms when n:;o.30. Although ECHO-D obtains
solutions with less number of adder-steps than ECHO-A and
close to those of HCMVM-DC, it cannot ensure the minimum
number of adder-steps in CAVM as HCMVM-DC.

As the second experiment set, we used 3 low-pass FIR
filters whose specifications are given in Table I. The results of
algorithms on the multiplierless design of the MCM (CAVM)
blocks of the transposed (direct) form FIR filters as shown
in Fig. I a (Fig. I b) are presented in Table II. In this table,
MBO and AS stand respectively for the number of operations
and adder-steps in the multiplier blocks and TO is the total
number of operations in the whole filter, considering the ones
in the register-add block of the transposed form (Fig. I a).
These filters were described in VHDL and synthesized using
the Synopsys Design Compiler with the UMCLogic 0.18-ILm
Generic II library, when the bitwidth of the filter input was

120
100
80
60

_HeM,"
�
I

_ ECHO-A
20 I � HCMVM_OC I c:] ECHO-D

15

10

30 40 50 00 70 80
Size of constant arrays (n)

,�l . " "' 70 80
Size of constant arrays (n)

(a) (b) (c)
Fig. 5. Average results on randomly generated CAVM instances: (a) number of operations; (b) number of adder-steps; (c) CPU time in seconds in log scale.

TABLE I. SPECIFICATIONS OF FILTERS WITH SYMMETRIC

COEFFICIENTS.

filter
length

60
80

100

normalized
passband

0.15
0.12
0.18

normalized
stopband

0.2
0.15
0.2

quantization
value

16
16
16

16. Their gate-level results are also given in Table II, where
A, D, and P are respectively the total area in mm2, the critical
path delay in ns, and the dynamic power dissipation in m W
obtained with the use of 10,000 input vectors in simulation.

The proposed algorithms obtain better solutions in terms
of the number of operations for the CAVM blocks of the direct
form FIR filters with respect to the CMVM algorithms. This
advantage also yields significant area reduction in the filter
designs, where the maximum gain is found as 12.1 % on Filter 1
when the solutions of HCM VM-DC and ECHO-D are compared.
The solutions of ECHO-D lead to filters with less delay than
those of ECHO-A, where the maximum gain is computed as
22.9% on Filter 1, taking into account a slight increase in area.
The filters designed based on the solutions of the proposed
algorithms and those of [1] have similar power consumption.

Observe also that the number of total operations in the
direct form obtained by the proposed algorithms is the same
or very close to that of the transposed form, since the only
difference between the MCM algorithms is that, in ECHO-A

and ECHO-D, they are modified not to generate an operation
with a right shift greater than O. Moreover the direct form filters
occupy less area due to the size of registers and consume less
power, but may have a larger delay than the transposed form.

V. CONCLUSIONS

This paper presented a novel method for the multiplierless
design of the CAVM operation which is generally realized
using a CMVM algorithm. It uses the solutions of MCM
algorithms on the constants of the CAVM operation, where the
sharing of partial products is maximized. It is also equipped
with area and delay reduction techniques. The experiments
showed its effectiveness on the solution quality and runtime
with respect to the prominent CMVM algorithms.

VI. ACKNOWLE DGMENT

The authors thank to Prof. Ya Jun Yu for providing the main
idea behind the proposed algorithms. This work was supported
by national funds through FCT, Funda(,,:ao para a Ciencia e
a Tecnologia, under the project EXPLIEEI-ELC/lOI612012

1459

TABLE II SUMMARY OF RFSUI TS OF AI nORITHMS ON FIR FII TFRS

Fil. Form A1go.
High-level Gate-level

MBO AS TO A D P

Tran.
[8]* 31 11 90 100.1 12.4 10.3
[8]** 36 3 95 102.5 9.1 11.0

I [1]+ 109 20 109 71.7 11.5 2.4

Dir. [1]++ 109 7 109 74.3 10.1 2.5
ECHO-A 91 20 91 63.2 13.1 2.5
ECHO-I) 95 9 95 65.3 10.1 2.4

Tran.
[8]* 41 14 120 135.5 13.3 13.9
[8]** 49 3 128 139.5 9.4 14.7

2 [1] 145 22 145 97.7 10.6 3.3

Dir. [1]++ ISO 8 ISO 100.1 10.6 3.3
ECHO-A 121 16 121 �5.Y 12.7 j.4
ECHO-I) 128 10 128 89.4 10.5 3.3

Tran.
[8]* 48 7 147 167.3 13.0 18.2
[8]** 56 3 155 l71.9 9.4 18.9

3 [I] 173 20 173 116.6 10.5 4.1

Dir. [1]++ 177 8 177 118.8 10.8 4.0
ECHO-A 147 18 147 103.9 11.9 4.l
ECHO-j) 155 10 155 108.5 10.7 4.4

* + ++ -The exact GB algOrIthm [8] HCMVM HCMVM I)C

** The approximate GB algorithm [8] with a de set to MASMcM

QCell - Configurable Logic Block Cell for Quaternary FPGAs
and the project PEst-OE/EEI/LA002112013.

REFERENCES

[1] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, "Multiplierless Design of
Linear DSP Transforms," in VLSI-SoC: Advanced Research.f{Jr Systems

on Chip. Springer, 2012, ch. 5, pp. 73-93.

[2] 1. Thong and N. Nicolici, "A Novel Optimal Single Constant Multi­
plication Algorithm," in Proceedings oj'Design Automation Conference

(DAC), 2010, pp. 613-616.

[3] H.-J. Kang and I.-c. Park, "FIR Filter Synthesis Algorithms for Min­
imizing the Delay and the Number of Adders," IEEE Transactions on

Circuits and Systems lJ, vol. 48, no. 8, pp. 770-777,2001.

[4] R. Hartley, "Subexpression Sharing in Filters Using Canonic Signed Digit
Multipliers," IEEE Transactions on Circuits and Systems lJ, vol. 43,
no. 10, pp. 677-688, 1996.

[5] N. Boullis and A. Tisserand, "Some Optimizations of Hardware Multipli­
cation by Constant Matrices," IEEE Transactions on Computers, vol. 54,
no. 10, pp. 1271-1282,2005.

[6] Y. Voronenko and M. Piischel, "Multiplierless Multiple Constant Multi­
plication," ACM Transactions on Algorithms, vol. 3, no. 2, 2007.

[7] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, "Exact and Approximate
Algorithms for the Optimization of Area and Delay in Multiple Con­
stant Multiplications," IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 27, no. 6, pp. 1013-1026,2008.

[8] L. Aksoy, E. Gunes, and P. Flores, "Search Algorithms for the Multiple
Constant Multiplications Problem: Exact and Approximate," Elsevier

Journal on Microprocessors and Microsystems: Embedded Hardware
Design, vol. 34, no. 5, pp. 151-162,2010.

