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The last two decades have seen tremendous effort on the development of high-level synthesis

algorithms for efficient realization of the multiplication of a variable by a set of constants using only

addition, subtraction, and shift operations. These algorithms generally target the minimization of the

number of adders and subtractors, assuming that shifts are realized using only wires due to the bit-

parallel processing of the input data. On the other hand, digit-serial architectures offer alternative low-

complexity designs since digit-serial operators occupy less area and are independent of the data

wordlength. However, in this case, shifts are no longer free in terms of hardware and require D flip-

flops. Moreover, each digit-serial addition, subtraction, and shift operation has different implementa-

tion cost at gate-level. Hence, this article introduces high-level algorithms that optimize the area of

digit-serial constant multiplications under the shift-adds architecture by taking into account the

implementation cost of each operation at gate-level. Experimental results indicate that our high-level

algorithms obtain better solutions than prominent algorithms designed for the minimization of the

number of operations in terms of gate-level area and their solutions lead to less complex digit-serial

MCM designs. It is also shown that the use of shift-adds architecture yields significant area reductions

when compared to the constant multiplications designed using generic digit-serial constant multipliers.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

In several computationally intensive Digital Signal Processing
(DSP) algorithms, such as Fast Fourier Transforms (FFT) and Finite
Impulse Response (FIR) filters (illustrated in Fig. 1), the same input
is multiplied by a set of constant coefficients, an operation known
as Multiple Constant Multiplications (MCM). In addition to its
applications in DSP systems, the MCM operation frequently occurs
in cryptography, compilers, and computer arithmetic. In many
cases, hardwired dedicated architectures are the best option for
maximum performance and minimum power consumption.

Although area, delay, and power efficient multiplier architec-
tures, such as Wallace [1] and modified Booth [2] multipliers, have
been proposed, the full-flexibility of a multiplier is not necessary
for constant multiplications, since constant coefficients are fixed
and determined beforehand. Hence, constant multiplications are
generally replaced by addition/subtraction and shift operations [3].
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Note that in bit-parallel MCM design, shifts can be realized using
only wires without representing any hardware cost. Thus, a
fundamental optimization problem, known as the MCM problem,
is defined as finding the minimum number of addition/subtraction
operations that implement the constant multiplications. Note also
that the MCM problem is an NP-complete problem [4].

For the implementation of constant multiplications under the
shift-adds architecture, a straightforward method, generally
known as the digit-based recoding [5], initially defines the
constants in multiplications under binary representation. Then,
for each 1 in the representation of the constant, according to its
bit position, it shifts the variable and adds up the shifted variables
to obtain the result. As a simple example, consider the constant
multiplications 29x and 43x. Their decompositions in binary are
listed as:

29x¼ ð11101Þbinx¼ x54þx53þx52þx

43x¼ ð101011Þbinx¼ x55þx53þx51þx

and require six addition operations as given in Fig. 2(a).
However, the digit-based recoding technique does not con-

sider the sharing of common partial products among the constant
multiplications that significantly reduces the area and power
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Fig. 1. Transposed form of a digital FIR filter.

Fig. 2. Shift-adds implementations of 29x and 43x: (a) without partial product

sharing [5]; with partial product sharing: (b) the algorithm of [8]; (c) the

algorithm of [11].

1 The maximization objective can be easily converted to a minimization

objective by negating the cost function. Less-than-or-equal and equality con-

straints are accommodated by the equivalences, A � xrb3�A � xZ�b and

A � x¼ b3ðA � xZbÞ4ðA � xrbÞ, respectively.
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dissipation of the MCM design. The algorithms that aim to
maximize the sharing of partial products can be categorized in
two classes: Common Subexpression Elimination (CSE) [6–8]
techniques and graph-based (GB) [9–11] methods. The CSE algo-
rithms first define the constants under a particular number
representation namely, binary, Canonical Signed Digit (CSD) [6],
or Minimal Signed Digit (MSD) [7], and then, find the ‘‘best’’
subexpression, generally the most common, among the constant
multiplications. The GB algorithms are not restricted to any
particular number representation and consider a large number
of alternative implementations of a constant multiplication,
yielding better solutions than the CSE algorithms as shown in
[10,11]. Returning to our example in Fig. 2, the exact CSE
algorithm [8] obtains a solution with four operations by finding
the most common partial products 3x¼ ð11Þbinx and 5x¼ ð101Þbinx

when constants are defined under binary (Fig. 2(b)). The exact GB
algorithm [11] finds the minimum number of operations solution
with three operations by sharing the common partial product 7x

in both multiplications (Fig. 2(c)). Observe that the partial product
7x¼ ð111Þbinx cannot be extracted from the binary representa-
tions of both multiplications 29x and 43x in the exact CSE
algorithm [8].

In the MCM problem, it is assumed that the input data x is
processed in parallel. Although shifts can be realized using only
wires in this case, the implementation cost of an addition/
subtraction operation realizing a constant multiplication depends
on the bit-width of the input data and the constant [12]. On the
other hand, in digit-serial arithmetic, the input data is divided
into digit sets, consisting of d bits that are processed one at a time
[13]. Thus, the implementation cost of a digit-serial addition/
subtraction operation depends on the digit size d, requiring
significantly less hardware when compared to its bit-parallel
implementation. However, in this case, shifts require D flip-flops
to be implemented due to the serial processing. Hence, the high-
level algorithms should consider the sharing of addition/subtrac-
tion operations as well as the sharing of shifts with respect to the
MCM problem. Moreover, as shown in [12], a solution with the
minimum number of operations does not always yield a solution
with minimum area at gate-level. In order to optimize the gate-
level area of the design, the high-level algorithms should also take
into account the implementation cost of each addition, subtrac-
tion, and shift operation.

Hence, this article introduces two high-level algorithms, called
HCUBþ ILP-DS and MINAS-DS that target the optimization of gate-level
area in digit-serial MCM operation. In the HCUBþ ILP-DS algorithm,
we initially find a solution with the fewest number of operations
that generate MCM, using the Hcub algorithm [10] designed for
the MCM problem. Then, we obtain a set of operations that yields
a digit-serial MCM design with optimal area by formalizing the
optimization of gate-level area problem in digit-serial MCM
design as a 0–1 Integer Linear Programming (ILP) problem on
the solution of Hcub and finding the minimum solution using a
generic 0-1 ILP solver. This article also describes the MINAS-DS

algorithm [14] that iteratively finds the partial products which
are required to realize the constant multiplications and which
lead to digit-serial MCM designs with optimal area at gate-level.

The experimental results on a comprehensive set of instances
indicate that the high-level algorithms introduced in this article
yield digit-serial MCM designs using less area when compared to
those obtained by prominent algorithms designed for the MCM
problem. It is pointed out that the digit-serial realization of the
MCM operation leads to alternative low-complexity designs with
respect to its bit-parallel realization and a designer can easily find
the optimal tradeoff between area and delay in the MCM design
by changing the digit size d. The experimental results also show
that the design of the digit-serial MCM operation under the shift-
adds architecture with the use of high-level algorithms yields
significant savings in area when compared to those designed
using generic digit-serial constant multipliers [15].

The rest of the article proceeds as follows. Section 2 presents
the background concepts and an overview on related work is
given in Section 3. The HCUBþ ILP-DS and MINAS-DS algorithms are
introduced in Sections 4 and 5, respectively. Experimental results
are presented in Section 6 and finally, Section 7 concludes
the paper.
2. Background

This section presents the main concepts related with the
proposed algorithms and gives the problem definitions.

2.1. 0–1 Integer linear programming

The 0–1 ILP problem is the minimization or the maximization
of a linear cost function subject to a set of linear constraints and is
generally defined as follows1:

Minimize wT � x ð1Þ

Subject to A � xZb, xAf0;1gn ð2Þ

In (1), wj in w is an integer value associated with each of n

variables xj, 1r jrn, in the cost function, and in (2), A � xZb denotes
the set of m linear constraints, where bAZm and AAZm

� Zn.

2.2. Multiplierless constant multiplications

Since the common input variable x is multiplied by multiple
constants in MCM, the implementation of constant multiplications is
in fact equal to the implementation of constants. For example, the
implementation of 3x given as 3x¼ x51þx¼ ð151þ1Þx can be



Fig. 3. The digit-serial operations when d is 3: (a) addition operation; (b) subtraction operation; (c) left shift by two times; (d) left shift by four times.

Fig. 4. Bit-serial design of shift-adds implementation of 29x and 43x given in Fig. 2(c).
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rewritten as 3¼ 151þ1 by eliminating the variable x from both
sides. In the rest of the article, these notations will be used
interchangeably.

In multiplierless constant multiplications, the fundamental
operation, called A-operation in [10], is an operation with two
integer inputs and one integer output that performs a single
addition or a subtraction, and an arbitrary number of shifts. It is
defined as:

w¼ Aðu,vÞ ¼ 92l1 uþð�1Þs2l2 v92�r
¼ 9ðu5 l1Þþð�1Þsðv5 l2Þ9br

ð3Þ

where l1,l2Z0 are integers denoting left shifts of the operands,
rZ0 is an integer indicating a right shift of the result, and
sAf0;1g is the sign, which determines if an addition or a
subtraction operation is to be performed.

In the MCM problem, the complexity of an adder and a
subtracter in hardware is assumed to be equal. It is also assumed
that the sign of the constant can be adjusted at some part of the
design and the shifting operation has no cost in hardware due to
the bit-parallel processing. Thus, only positive and odd constants
are considered in the MCM problem. Observe from Eq. (3) that in
the implementation of an odd constant with any two odd
constants at the inputs, one of the left shifts, l1 or l2, is zero and
r is zero, or both l1 and l2 are zero and r is greater than zero.
Hence, only one of the shifts, l1, l2, or r, is greater than zero. It is
also necessary to constrain the left shifts, l1 and l2, otherwise
there exist infinite ways of implementing a constant. In the exact
algorithm of [11], the number of shifts is allowed to be at most
bwþ1, where bw is the maximum bit-width of the constants to be
implemented. Thus, the MCM problem [10] is defined as:
Definition 1 (THE MCM PROBLEM). Given the target set composed of
positive and odd unrepeated target constants to be implemented,
T ¼ ft1, . . . ,tng �N, find the smallest ready set, R¼ fr0,r1, . . . ,rmg,
with T � R, under the conditions of r0 ¼ 1 and for all rk with
1rkrm, there exist ri,rj with 0r i,jok and an A-operation

rk ¼ Aðri,rjÞ.
Hence, the number of operations required to be implemented
for the MCM problem is 9R9�1, as given in [10].

2.3. Implementation of digit-serial constant multiplications under

the shift-adds architecture

In digit-serial processing, the input data x is divided into d bits
and processed serially by applying each d-bit data in parallel. The
special cases of the digit-serial computation, called bit-serial and bit-
parallel processing, occur when the digit size d is equal to 1 and
equal to the input data wordlength, respectively. The digit-serial
computation plays an important role when the bit-serial implemen-
tations cannot meet delay requirements and the bit-parallel designs
require excessive hardware. Thus, an optimal tradeoff between area
and delay can be obtained by changing the digit size parameter (d).

The fundamental digit-serial operations can be found in [13]. The
digit-serial addition, subtraction, and left shift operations are
depicted in Fig. 3 using a digit size d equal to 3, where the bits
with indices 0 and 2 denote the least and most significant bits,
respectively. Notice from Fig. 3(a) that a digit-serial addition opera-
tion, in general, requires d full adders (FAs) and 1 D flip-flop. The
subtraction operation (Fig. 3(b)) is implemented using 2’s comple-
ment, requiring the initialization of the D flip-flop with 1 and
additional d inverter gates with respect to the digit-serial addition
operation. In a digit-serial left shift operation (Fig. 3(c,d), the number
of required D flip-flops is equal to the shift amount and it is realized
in d horizontal layers. The correspondence between the input (ai)
and the output (ci) of the left shift operation and the number of flip-
flops (#FFai

) cascaded serially for each input at each layer (ai) of the
left shift operation are given in Eqs. (4) and (5), respectively. Note
that i ranges from 0 to d�1 and ls denotes the amount of left shift:

ai ) cðiþ lsÞmod d ð4Þ

#FFai
¼
bls=dc if iod�ðls mod dÞ

dls=de otherwise

(
ð5Þ

As an example on digit-serial realization of constant multi-
plications under the shift-adds architecture, Fig. 4 illustrates the



Fig. 5. The storage circuit for an 8-bit constant multiplication cx: (a) when d is 2; (b) when d is 3.
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bit-serial (d¼1) implementation of 29x and 43x obtained by the
exact GB algorithm [11] given in Fig. 2(c). As can be easily
observed, the network includes 2 bit-serial additions, 1 bit-serial
subtraction, and 5 D flip-flops for all the left shift operations. In
this network, at each clock cycle, one bit of the input data x is
applied to the network input and one bit of the constant multi-
plication output is computed at the output of a bit-serial addition/
subtraction operation. In general, d bits are processed at each
clock cycle.

While the sharing of addition/subtraction operations reduces
the complexity of the digit-serial MCM design (since each addi-
tion and subtraction operation requires a digit-serial operation),
the sharing of shift operations for a constant multiplication also
reduces the number of D flip-flops and, consequently, the area of
the digit-serial MCM design. Observe from Fig. 4 that two D flip-
flops cascaded serially to generate the left shift of 7x by two times
can also generate the left shift of 7x by one time without adding
any hardware cost. Hence, the problem of optimizing the number
of addition, subtraction, and shift operations can be given as:

Definition 2 (THE MCM-DS PROBLEM). Given the target set T ¼ ft1, . . . ,
tng �N, find the ready set R¼ fr0,r1, . . . ,rmg such that under the
same conditions on the ready set given in Definition 1, the set of
A-operations includes the minimum number of addition, subtrac-
tion, and shift operations.

For the digit-serial MCM realization, it is assumed that an A-
operation that generates a constant multiplication has a right shift
which is always 0 [16,17]. This is simply because the complexity
of the control logic is significantly increased to realize the MCM
operation when there exists such an A-operation. Note that a
constant multiplication is rarely realized by such an A-operation

in GB algorithms and it never occurs in CSE algorithms.
As can be observed from Fig. 3, the implementation costs of

digit-serial addition, subtraction, and left shift operations are
different at gate-level. Thus, to optimize the area of a digit-serial
MCM operation, one has to maximize the sharing of addition/
subtraction and shift operations considering the implementation
cost of each operation. Hence, the optimization of gate-level area
problem in digit-serial MCM operation can be defined as:

Definition 3 (THE OPTIMIZATION OF GATE-LEVEL AREA PROBLEM IN DIGIT-SERIAL MCM

OPERATION). Given the digit size d and the target set T ¼ ft1, . . . ,
tng �N, find the ready set R¼ fr0,r1, . . . ,rmg such that under the
same conditions on the ready set given in Definition 1, the set of
A-operations yields a digit-serial MCM design using optimal area
at gate-level.

2.4. Design details in digit-serial MCM

Although the digit-serial design of the MCM operation occu-
pies significantly less area when compared to its bit-parallel
design, the latency of the MCM computation (LMCM), which is
dependent on the bit-width of the input data, is increased due to
the serial processing. It can be determined in terms of clock cycles
as:

LMCM ¼ dðbwþNÞ=de ð6Þ

where bw is the maximum bit-width of the constants to be
implemented, N is the bit-width of the input variable x, and d is
less than N. Note that Eq. (6) does not apply to bit-parallel
processing (when d¼N), where the latency of the MCM computa-
tion is only one clock cycle. Returning to our bit-serial MCM
design given in Fig. 4, suppose that x is a 16-bit input value. Thus,
we need a total of 22 clock cycles to obtain the actual output of
29x and 43x. Note also that, as a sign-extension, d� LMCM�N bits
must be padded to the input data x, which are 0s, if x is an
unsigned input, or sign bits, otherwise.

When the conversion from digit-serial to bit-parallel is
required in the digit-serial MCM design, the d-bit outputs of the
operations realizing the target constants, generated at each clock
cycle, need to be stored. Note that the bit-width of the constant
multiplication cx, i.e., bwcx, is computed as dlog2ceþN. Thus, given
the digit size d, we need dbwcx=de cascaded D flip-flops (actually, a
shift register) in d layers (a total of d� dbwcx=de D flip-flops) to
store the digit-serial output produced in each clock cycle. As an
example, suppose that bwcx is 8, i.e., cx is (cx7,cx6, . . . ,cx0).
Fig. 5(a,b) illustrate the required circuits to store the d-bits of
the output of the operation generating cx when d is 2 and 3,
respectively.

Also, the MCM operation generally includes constants with
different bit-widths. Hence, a control logic is needed to store the
constant multiplications accurately. This process can be con-
trolled using one counter and some constant comparators. In this
case, the counter is a dlog2LMCMe-bit counter, which increments by
1 in each clock cycle. Note that LMCM is the latency of the MCM
operation, determined as given in Eq. (6). Thus, the storage of the
constant multiplication cx can be controlled by shifting the
outputs of the operation implementing cx into the related storage
block if dbwcx=de is less than or equal to the value of the counter.
Otherwise, the outputs of the operation are not shifted. Thus, at
the end of the maximum clock cycle determined by LMCM, the
outputs of the constant multiplications are available at the out-
puts of the D flip-flops as illustrated in Fig. 5. Although positive
and odd constants are realized in the MCM design, whenever the
even or negative version of a constant multiplication is required,
this output is obtained by shifting the related constant multi-
plication or taking its 2’s complement.
3. Related work

For the MCM problem, the exact CSE algorithms were intro-
duced in [18,19]. In these algorithms, initially the target constants
are defined under a number representation and all possible
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implementations of constants are extracted from its representa-
tion. Then, the MCM problem is defined as a 0–1 ILP problem and
a solution is obtained using a generic 0–1 ILP solver. The problem
reduction and model simplification techniques, that significantly
reduce the 0–1 ILP problem size and, consequently, the run-time
of the 0–1 ILP solver, were introduced in [8,20]. Prominent CSE
heuristics were also presented in [6,7,21].

The first GB methods for the MCM problem, ‘add-only’, ‘add/
subtract’, ‘add/shift’, and ‘add/subtract/shift’, were proposed in
[22]. The ‘add/subtract/shift’ algorithm was modified in [9], called
BHM, by extending the possible implementations of a constant,
considering only odd numbers, and processing constants in order
of increasing single constant cost that is evaluated by the
algorithm of [23]. In [9], the RAG-n algorithm that includes two
parts, optimal and heuristic, was also introduced. In its optimal
part, each target constant that can be implemented with a single
operation is synthesized. If there exist unimplemented elements
left in the target set, the algorithm switches to its heuristic part.
In this iterative part of the algorithm, RAG-n initially chooses a
single unimplemented target constant with the smallest single
coefficient cost evaluated by the algorithm of [23] and then,
synthesizes it with a single operation including one (two) inter-
mediate constant(s) that has (have) the smallest value among the
possible constants. However, since the intermediate constants are
selected for the implementation of a single target constant in each
iteration, the intermediate constants chosen in previous iterations
may or may not be shared for the implementation of not-yet
synthesized target constants in later iterations, thus yielding a
local minimum solution. The GB heuristic of [10], called Hcub,
includes the same optimal part of RAG-n, but uses a better
heuristic that considers the impact of each possible intermediate
constant on the not-yet synthesized target constants. For the
implementation of a single target constant, in each iteration of
Hcub, a single intermediate constant that yields the best cumu-
lative benefit over all unimplemented target constants is chosen.
The approximate algorithm of [11], which includes the same
optimal part as RAG-n and Hcub, computes all possible inter-
mediate constants that can be synthesized with the current set of
implemented constants using a single operation and chooses a
single intermediate constant that synthesizes the largest number
of target constants in each iteration of its heuristic part. The exact
GB algorithms that search the minimum number of operations
solution in breadth-first and depth-first manners were introduced
in [11].

Although there exist many efficient algorithms designed for
the MCM problem, there are only a few algorithms designed for
the MCM-DS problem. The GB algorithms, called RSAG-n [16] and
RASG-n [17], are based on the RAG-n algorithm designed for the
MCM problem. In each iteration of RSAG-n, the intermediate
constant(s) that require the minimum number of shifts, are
chosen. On the other hand, RASG-n selects the intermediate
constant(s) with the minimum cost value as done in RAG-n but,
if there are more than one possible intermediate constant, it
favors the one that requires the minimum number of shifts.

For the optimization gate-level area problem in digit-serial
MCM operation, to the best of our knowledge, there are only the
exact CSE [24] and approximate GB [14] algorithms. The exact CSE
algorithm [24] formalizes this problem as a 0-1 ILP problem when
constants are defined under a number representation. The GB
algorithm of [14] is described briefly in Section 5.
Fig. 6. The HCUBþ ILP-DS algorithm.
4. The HCUBþ ILP-DS algorithm

The HCUBþ ILP-DS algorithm consists of two main parts. In the
first part, a solution with the fewest number of operations, that
generates MCM, is found by the Hcub algorithm [10]. In the
second part, the gate-level area optimization problem in digit-
serial MCM operation is formalized as a 0–1 ILP problem and a set
of operations that yields a digit-serial MCM design with optimal
area at gate-level, is obtained. In the first part of the algorithm, in
fact, any algorithm designed for the MCM problem can be applied.
Although there exist many efficient algorithms, we preferred to
use Hcub since it is one of the best algorithms designed for the
MCM problem [10]. Also, Hcub can find more than one solution of
an MCM problem (if there exists) with the use of randomness in
the selection of intermediate constants. This enables the proposed
approach to iteratively consider a local point in the search space
of many possible MCM realizations. However, while finding a
solution with the fewest number of operations, Hcub does not
consider the gate-level cost of each operation under the digit-
serial architecture. Hence, the ILP technique used in the second
part of the algorithm initially generates all possible implementa-
tions of constants based on the solution of Hcub and then, finds a
set of operations that leads to optimal area by taking into account
the implementation of each operation under the digit-serial
architecture. The ILP formalization is based on the optimization
model described in [24], but it is applied on the solution of Hcub
in this case.

4.1. Implementation of the HCUBþ ILP-DS algorithm

In the preprocessing phase of HCUBþ ILP-DS, the constants to be
multiplied by a variable are converted to positive and then, made
odd by successive divisions by 2. The resulting constants are
stored without repetition in a set called target set T and the
maximum bit-width of the target constants, bw, is determined.
The HCUBþ ILP-DS algorithm, whose pseudo-code is given in Fig. 6,
takes these parameters and also the digit size d as an input.

In the iterative loop of HCUBþ ILP-DS (lines 3–16), we initially
find a set of operations, O, that implements the constant multi-
plications using Hcub [10] with a different seed at each time (line
5). If the solution of Hcub includes an A-operation with a right
shift greater than 0, then we apply the Reconfigure function, which
replaces these operations by those including a right shift equal to
zero (lines 6–7). These operations are found using a technique
similar to the RAG-n algorithm [9]. Then, we determine the
intermediate and target constants in O and store them in a set
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called ready set, R (line 8). In order to increase the number of
possible implementations of a constant in the ILP function,
described in Section 4.2, we add the depth-1 constants to R if
they do not exist (line 9). The depth-1 constants are in the form of
2iþ1
�1 and 2i

þ1, where i ranges in between 1 and bw, which can
be realized using a single A-operation whose inputs are 1. To avoid
unnecessary computations, we check if R is already included in
Rset which is a set that stores all the ready sets given to the ILP

function (line 10). Then, the ILP function is applied on this ready
set R to find a set of A-operations that yields a digit-serial MCM
design with optimal area (line 12). After a solution is obtained by
the ILP function, the implementation cost of the digit-serial MCM
design, icost, is computed as if A-operations were designed using
digit-serial operations, as described in Section 2.3 (line 13). If its
cost value is smaller than the best one (icostb) found so far, then
Ob and icostb are updated (lines 14–15). The iterative loop
terminates whenever the number of elements in Rset reaches to
100 or the last 20 ready sets obtained by Hcub are identical2

(line 16).

4.2. Implementation of the ILP technique

The ILP function used in HCUBþ ILP-DS consists of four main
parts: (i) generation of constant implementations; (ii) construc-
tion of the Boolean network that represents the implementations
of constants; (iii) formalization of the problem as a 0–1 ILP
problem; (iv) obtaining the minimum solution. These parts are
described in detail next.

4.2.1. Generation of constant implementations

After the set of operations (O) realizing the MCM instance is
found by Hcub, in the GenerateReadySet function, we also com-
pute the depth (adder-step [8]) of each intermediate and target
constant of R in the network of addition and subtraction opera-
tions of O.3 After the depth-1 constants are included into R, we
sort the constants in R according to their depth values in
ascending order. The part of the algorithm, where the implemen-
tations of constants are found, is given as follows:
1.
29,
Take an element from R, ri, except ‘1’ that denotes the variable
which the constants are multiplied with. Form an empty set, Ii,
associated with ri that will include the inputs and the amount of
left shifts at the inputs of each A-operation which computes ri.
2.
 For each A-operation that generates ri,
(a) Make each of its inputs positive and odd, and determine

the amount of left shifts of the inputs.
(b) Add its positive and odd inputs and their amount of left

shifts to the set Ii.
2 Th
3 Co

and
3.
 Repeat step 1 until all elements of R are considered.

To find all possible A-operations that implement an element of
R, ri, we assign ri to the output of an A-operation given in Eq. (3).
Then, for each constant rj, where 0r jr i�1, we assign rj to the
input u of the A-operation and by changing the left shifts l1 and l2
(the right shift r is set to 0), and the sign s values, we compute the
input v of the A-operation. Note that left shifts are restricted to
bwþ1 and only one of them is set to a value greater than 0 and
the other is set to 0, since only positive and odd constants are
considered. If v is an element of R, rk, where 0rkr i�1, this
operation is determined as a possible implementation of ri. These
restrictions come from the fact that the MCM operation forms a
ese values are determined empirically based on experiments.

nsidering the shift-adds network of Fig. 2(c) as an example, the depth of 7,

43 is computed as 1, 2, and 3, respectively.
directed acyclic graph and does not include feedback loops [25].
By doing so, we also ensure that the implementation of each
constant determined by Hcub is considered in the 0–1 ILP
formalization. Thus, we guarantee that the optimized digit-serial
MCM design will always have less or equal area as the digit-serial
MCM design obtained by Hcub.

As a simple example, consider one of the solutions of Hcub
on a single constant 21 which requires two operations, i.e,
17¼ 154þ1 and 21¼ 152þ17. After the depth-1 constants
are added to R, the ready set is formed as R¼{1, 3, 5, 7, 9, 15, 17,
31, 33, 63, 21}. Among many others, five implementations of the
constant 21 including also the solution of Hcub can be given as
21¼ 152þ17, 21¼ 154þ5, 21¼ 751þ7, 21¼ 351þ15, and
21¼ 353�3. We note that each of these operations yields
different implementation cost when they are realized under the
digit-serial architecture.
4.2.2. Construction of the boolean network

After all possible implementations of constants in R are found,
these implementations are represented in a Boolean network that
includes only AND and OR gates. The properties of the Boolean
network can be given as follows:
1.
 The primary input of the network is the input to be multiplied
with the constants denoted by ‘1’.
2.
 An AND gate in the network represents an addition or a
subtraction operation and has two inputs.
3.
 An OR gate in the network represents a target or an inter-
mediate constant and combines all possible implementations
of the constant.
4.
 The outputs of the network are the OR gate outputs associated
with the target constants.

The part of the algorithm where the network is constructed is
given as follows:
1.
 Take an element from R, ri, except ‘1’.

2.
 For each input pair of an A-operation in Ii, generate a two-input

AND gate. The inputs of the AND gate are the elements of the
input pair, i.e., ‘1’ or the outputs of the OR gates representing
the target and intermediate constants in the network.
3.
 Generate an OR gate associated with ri where its inputs are the
outputs of AND gates determined in Step 2.
4.
 If ri is a target constant, assign the output of the corresponding
OR gate as the output of the network.
5.
 Repeat Step 1 until all elements in R are considered.

The network generated for the target constant 21, which
shows only its five realizations listed previously, is given in
Fig. 7. In this figure, 1-input OR gates for the intermediate
constants 5, 7, 15, and 17 are omitted and the type of each
operation is shown inside of each AND gate.
4.2.3. The 0–1 ILP formalization

We need to include optimization variables into the network, so
that the gate-level area optimization problem in digit-serial MCM
design can be easily formed as a 0–1 ILP problem. To do this, we
associate the optimization variables with two parameters that
have different implementation costs at gate-level, i.e., addition/
subtraction operations and left shifts of constants.

For each AND gate that represents an addition/subtraction
operation in the network, we introduce an optimization variable
associated with the operation, i.e., opta7b, where a and b denote
the inputs of an operation, and we add this variable to the input of



Fig. 7. Representation of limited implementations of 21 in a Boolean network.

Fig. 8. Inclusion of optimization variables into the network constructed for the

target constant 21 given in Fig. 7.
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the AND gate. In the cost function to be minimized, the cost value
of this type of optimization variable is determined as the
implementation cost of the digit-serial operation at gate-level
considering its type (addition or subtraction) and the digit size
(d), as described in Section 2.3.

In order to maximize the sharing of left shifts, i.e., the D flip-
flops at gate-level, for each constant c in the network, we initially
find the maximum amount of left shift that the constant c has, i.e.,
mlsc. Then, for each constant c with mlsc greater than zero, we
introduce mlsc optimization variables representing left shifts of c

from 1 to mlsc, i.e., optc51,optc52, . . . ,optc5mlsc
. In the cost

function to be minimized, the cost value of this type of optimiza-
tion variable is determined as the implementation cost of one D
flip-flop, as described in Section 2.3. The inclusion of these
optimization variables into the network is done for each AND gate
in the network representing an addition/subtraction operation. If
an input signal of an operation c0 (denoting the input variable, an
intermediate constant, or a target constant) is shifted by ls40
times, then to the related AND gate, we include ls additional inputs
standing for the optimization variables associated with the ls left
shift of the input signal c0, i.e., optc051,optc052, . . . ,optc05 ls.

Some simplifications in the network can be also achieved. Note
that the variable denoted by 1, which represents the input
variable x, can be eliminated from the inputs of the AND gates,
because its logic value is always one (i.e., it is always available).
Thus, Fig. 8 illustrates the network generated for the target
constant 21 after the simplifications are done and the optimiza-
tion variables are added.

After the optimization variables are added into the network,
the generation of the 0–1 ILP problem is straightforward. The cost
function of the 0–1 ILP problem is constructed as a linear function
of optimization variables, where the cost value of each optimiza-
tion variable is determined as described before. Also, the con-
straints of the 0–1 ILP problem are obtained by finding the
Conjunctive Normal Form (CNF) formulas of each gate in the
network and expressing each clause of the CNF formulas as a
linear inequality, as described in [26]. For example, a 3-input
AND gate, d¼ a4b4c, is translated to CNF as ðaþdÞðbþdÞ

ðcþdÞðaþbþcþdÞ and converted to linear constraints as
a�dZ0, b�dZ0, c�dZ0, �a�b�cþdZ�2. The outputs of the
network, i.e., the outputs of OR gates associated with the target
constants, are set to 1, since the implementation of target
constants is aimed. Thus, the generated model can serve as an
input to a generic 0–1 ILP solver.
4.2.4. Finding the minimum solution

A generic 0–1 ILP solver will search the minimum value of the
cost function on the generated 0–1 ILP problem by satisfying the
constraints that represent how the target and intermediate con-
stants are implemented. The set of operations, which yields the
minimum area solution, consists of the addition/subtraction opera-
tions whose optimization variables are set to 1 by the 0–1 ILP solver.
5. The MINAS-DS algorithm

As opposed to HCUBþ ILP-DS that iteratively finds a local mini-
mum solution of the MCM problem and searches a digit-serial
MCM design with optimal area around this local minimum
solution, MINAS-DS searches the ‘‘best’’ intermediate constants that
lead to a digit-serial MCM operation with optimal area while
synthesizing all the target constants. During the selection of an
intermediate constant for the implementation of the not-yet
synthesized target constants in each iteration, MINAS-DS favors
the one that can be synthesized using the least hardware and
will enable to implement the not-yet synthesized target constants
in a smaller area with the available constants. After a set of target
and intermediate constants that realizes the MCM operation is
found, each constant is synthesized using an A-operation that
yields optimal area in digit-serial MCM design.

The preprocessing phase of the MINAS-DS algorithm is the same as
that of the HCUBþ ILP-DS algorithm. The main part of the algorithm and
its routines are given in Figs. 9 and 10, respectively. In MINAS-DS, the
ready set, R¼{1}, is formed initially and then, the target constants
that can be implemented with the elements of the ready set using a
single operation are found and moved to the ready set iteratively
using the Synthesize function presented in Fig. 10. Note that as done in
the algorithms of [16,17], the right shift of an A-operation is always
assumed to be zero in MINAS-DS. If there exist unimplemented
constants in the target set, then in its iterative loop (lines 3–13 of
Fig. 9), an intermediate constant is added to the ready set until there
is no element left in the target set. The MINAS-DS algorithm considers
the positive and odd constants that are not included in the current
ready and target sets (lines 4 and 5) and that can be implemented
with the elements of the current ready set using a single operation



Fig. 9. Main part of the MINAS-DS algorithm.
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(lines 6 and 7) as possible intermediate constants. In MINAS-DS, the
ComputeCost function (line 6) searches all A-operations that compute
the constant with the elements of the current ready set. If the
implementations of the constant are found, it determines the cost
of each operation under the digit-serial architecture (as described in
Section 2.3) and returns its minimum implementation cost among
possible operations. Otherwise, it returns a 0 value indicating that the
constant cannot be synthesized using an operation with the elements
of the current ready set. After a possible intermediate constant is
found, it is included into the working ready set, A, and its implications
on the current target set are found by the ComputeTCost function
(lines 8 and 9). In this function, similar to ComputeCost, the minimum
implementation costs of the target constants that can be synthesized
with the elements of the working ready set A, are determined under
the digit-serial architecture. For each target constant, tk, that cannot
be implemented with the elements of A, its cost value is determined
as its maximum implementation cost, maxcostðtkÞ, computed as if it
requires a digit-serial addition operation with digit size d and dlog2tke

D flip-flops for the left shifts. Then, the cost of the intermediate
constant is determined as its minimum implementation cost plus the
implementation costs of the not-yet synthesized target constants
(line 10). After the cost value of each possible intermediate constant is
found, the one with the minimum cost is added to the current ready
set and its implications on the current target set are found using the
Synthesize function (lines 11–13).

When there are no elements left in the target set, the
SynthesizeMinArea function (line 14) is applied on the final ready
set to find the set of A-operations that yields a digit-serial MCM
design with optimal area. Note that in each iteration of MINAS-DS,
the cost of an intermediate constant is determined by an opera-
tion whose inputs are available in the current ready set. However,
the recently added intermediate constants may yield better
realizations of previously added constants. Hence, we formalize
this problem as a 0–1 ILP problem, similar to the formalization
described in Section 4.2. In this case, the possible implementa-
tions of the constants are found by the GenerateImp function
given in Fig. 10.
Fig. 10. Routines of the MINAS-DS algorithm.

6. Experimental results

This section presents the results of the HCUBþ ILP-DS and MINAS-DS

algorithms at both high-level and gate-level and compare them
with those of prominent algorithms designed for the MCM
problem and the optimization of gate-level area problem in
digit-serial MCM operation. This section is divided into two parts.
In the first part, we introduce the results of high-level algorithms
on randomly generated instances and on the multiplier blocks of
FIR filters. In the second part, we present the gate-level results of
digit-serial MCM and FIR filter designs that are implemented
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based on the solutions of high-level algorithms and we compare
them with those realized using generic digit-serial constant
multipliers [15].

6.1. Results on high-level implementations

As the first experiment set, we used sets of instances that
include a number of constants, n, ranging from 10 to 100, where
each set includes 30 instances and the constants are 12-bit
randomly generated numbers. Table 1 presents the high-level
results of the algorithms [8,10,11] designed for the MCM problem
and the exact CSE algorithm of [24], HCUBþ ILP-DS, and MINAS-DS

designed for the optimization of gate-level area problem in digit-
serial MCM operation. In this experiment, the digit size d was
taken as 1. In CSE algorithms [8,24], the constants were defined
under MSD representation. In this table, op and sh stand for the
average number of operations and shifts, respectively. Also, hc (in
mm2) denotes the average implementation cost of bit-serial MCM
designs obtained by the high-level algorithms. In the computation
of hc, the cost of an FA, a D flip-flop, and an inverter was taken as
90, 52, and 6, respectively, the area (in mm2) of these components
in UMCLogic 0:18 mm Generic II design library.

Observe from Table 1 that the algorithms designed for the MCM
problem find solutions with fewer number of operations than those
designed for the optimization of gate-level area problem in digit-
serial MCM operation. However, their solutions yield bit-serial MCM
designs that occupy larger area than those obtained by the algo-
rithms designed for the optimization of gate-level area problem in
digit-serial MCM operation. This is simply because the algorithms
designed for the MCM problem do not consider the sharing of shifts
Table 1
Summary of results of high-level algorithms on randomly generated 12-bit constants w

Optimization of the number of operations

Exact CSE [8] Hcub [10] Exact GB [11]

n op sh hc op sh hc op sh hc

10 15.5 28.6 3.7 13.9 26.9 3.4 12.8 25.0 3.1

20 26.5 42.5 6.0 22.5 35.3 5.0 21.4 33.2 4.8

30 36.7 53.3 8.0 30.4 39.4 6.4 30.1 39.3 6.4

40 46.0 60.6 9.8 39.4 47.5 8.1 39.4 47.9 8.1

50 55.9 68.7 11.6 49.0 52.9 9.8 49.0 53.2 9.8

60 65.4 77.0 13.4 59.0 58.6 11.5 59.0 58.7 11.5

70 75.1 83.3 15.2 68.2 60.7 13.0 68.2 61.8 13.1

80 83.2 89.5 16.7 77.7 73.9 15.1 77.7 74.5 15.1

90 92.7 99.9 18.6 86.8 73.9 16.4 86.8 73.8 16.4

100 101.7 104.7 20.2 96.5 83.9 18.3 96.5 86.0 18.4

Table 2
Summary of results of high-level algorithms on randomly generated 16-bit constants w

Optimization of the number of operations Optimiza

RAG-n [9] Hcub [10] RAG-Nþ ILP

n op sh hc op sh hc op

10 28.7 87.3 8.6 22.2 53.4 5.9 25.7

20 48.3 133.7 13.9 35.2 74.1 8.9 42.8

30 62.1 162.8 17.4 47.5 96.9 11.9 55.2

40 74.2 184.9 20.3 59.0 111.5 14.3 67.4

50 82.9 189.5 21.8 70.0 124.3 16.6 77.0

60 93.5 205.0 24.2 79.2 134.8 18.5 87.4

70 100.3 201.3 25.0 88.1 147.5 20.4 95.1

80 106.4 206.7 26.1 98.3 165.5 22.8 103.6

90 114.5 206.7 27.3 107.5 173.9 24.6 112.5

100 123.7 219.2 29.3 117.2 190.6 26.9 121.3
that require D flip-flops in digit-serial arithmetic. Note that while
the average number of operations on solutions found by the exact
GB algorithm [11] and MINAS-DS is the same on instances where n is
larger than 20, the reduction on the average number of shift
operations on solutions obtained by these algorithms reaches up
to 77% when n is 100. A similar observation is also valid between
Hcub and HCUBþ ILP-DS. We also note that both exact CSE algorithms
[8,24] obtain worse solutions than the GB algorithms under their
optimization objectives. This is simply due to the smaller search
space of a CSE algorithm, which is restricted by a particular number
representation.

As the second experiment set, we again used randomly gener-
ated instances whose specifications are similar to the one given in
the first experiment set, except 16-bit constants are used in this
case. Table 2 presents the high-level results of only GB algorithms,
since the exact CSE algorithm of [24] finds these instances hard to
handle. This table introduces the results of the RAG-n [9] algorithm
designed for the MCM problem and the RAG-Nþ ILP-DS algorithm,
designed for the optimization of gate-level area problem in digit-
serial MCM operation. The RAG-Nþ ILP-DS algorithm is similar to
HCUBþ ILP-DS given in Fig. 6, except RAG-n is used to obtain a solution
on an MCM instance instead of Hcub on line 5 of Fig. 6. In the
algorithms given in Table 2, d was taken as 1.

As can be observed from Table 2, RAG-Nþ ILP-DS and HCUBþ ILP-DS

significantly improve the solution of RAG-n and Hcub, respectively
for the digit-serial MCM design. The maximum and minimum
average area improvements between RAG-n and RAG-Nþ ILP-DS are
computed as 25.4% and 13.7% when n is 20 and 90, respectively.
These maximum and minimum values between Hcub and
HCUBþ ILP-DS are 25.4% and 14.4% when n is 10 and 70, respectively.
hen d is 1.

Optimization of area in digit-serial MCM design

Exact CSE [24] HCUBþ ILP-DS MINAS-DS

op sh hc op sh hc op sh hc

17.1 15.7 3.2 13.7 17.7 2.8 13.1 18.9 2.8

29.2 19.7 5.2 22.7 23.3 4.4 21.5 26.5 4.4

39.9 23.1 6.9 31.0 25.2 5.7 30.1 28.8 5.8

50.2 24.9 8.5 40.2 24.8 7.0 39.4 28.5 7.1

59.8 27.6 10.0 49.5 23.2 8.3 49.0 26.5 8.4

69.8 29.3 11.5 59.1 21.9 9.5 59.0 23.9 9.6

79.5 31.0 13.0 68.4 21.0 10.8 68.2 23.1 10.9

87.6 31.3 14.2 77.7 19.0 12.0 77.7 20.7 12.2

97.2 32.0 15.6 86.9 19.1 13.4 86.8 20.9 13.5

106.4 32.4 17.0 96.5 18.0 14.7 96.5 19.8 14.8

hen d is 1.

tion of area in digit-serial MCM design

-DS HCUBþ ILP-DS MINAS-DS

sh hc op sh hc op sh hc

65.0 7.0 19.9 36.7 4.7 19.7 51.2 5.4

95.4 11.1 32.8 52.5 7.4 32.8 66.0 8.1

117.8 14.0 44.8 65.8 9.9 43.4 79.2 10.4

131.7 16.5 55.8 78.4 12.1 53.9 91.0 12.5

139.5 18.3 66.1 87.0 14.1 64.0 98.4 14.4

151.0 20.4 76.4 96.5 16.0 73.7 108.9 16.3

147.8 21.3 86.3 103.5 17.8 82.4 120.0 18.1

151.1 22.8 95.4 114.2 19.7 91.1 124.6 19.6

150.1 24.0 104.8 119.3 21.3 99.8 132.6 21.3

155.9 25.6 114.7 129.6 23.3 109.3 142.5 23.2



Table 3
FIR filter specifications.

Filter pass stop # tap width

1 0.10 0.15 200 16

2 0.10 0.15 240 16

3 0.10 0.25 180 16

4 0.10 0.25 200 16

5 0.10 0.20 240 16

6 0.10 0.20 300 16

7 0.15 0.25 200 16

8 0.15 0.25 240 16

9 0.20 0.25 240 16

10 0.20 0.25 300 16
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This is simply due to the ILP technique used in the algorithms of
RAG-Nþ ILP-DS and HCUBþ ILP-DS. Also, the solution of an MCM algo-
rithm used in the approach of Fig. 6, i.e., RAG-n or Hcub in this
case, has a significant impact on the implementation cost of the
bit-serial MCM design. While RAG-n finds a solution with larger
number of operations when compared to Hcub on these instances,
the solutions of RAG-Nþ ILP-DS also include larger number of bit-serial
addition, subtraction, and left shift operations than HCUBþ ILP-DS,
increasing the complexity of the bit-serial MCM design. Observe
from Tables 1 and 2 that HCUBþ ILP-DS obtains the best solutions
in terms of the implementation cost on most of the instances.
Note that MINAS-DS finds solutions with less number of addition
and subtraction operations and its solutions generally include
greater number of left shift operations than HCUBþ ILP-DS, yielding
bit-serial MCM designs with larger implementation cost. How-
ever, as the number of constants (n) and the bit-width of
the constants increase, e.g, when n is greater than 70 in Table 2,
MINAS-DS finds significantly better solutions than HCUBþ ILP-DS in
terms of the number of addition and subtraction operations that
makes its results on the implementation cost competitive with
HCUBþ ILP-DS.

As the third experiment set, we used the FIR filters4 given in
Table 3 where coefficients were computed with the remez algo-
rithm in MATLAB. In this table, pass and stop are normalized
frequencies that define the passband and stopband, respectively,
#tap is the number of coefficients, and width is the bit-width of
the filter coefficients.

The high-level results of algorithms on the multiplier blocks of
these FIR filters when d is equal to 1 are presented in Table 4. In
this table, mul stands for the number of required bit-serial
constant multipliers, which is actually the number of unrepeated
positive and odd filter coefficients. Also, cpu denotes the required
CPU time in seconds for the high-level algorithms to find a
solution on a PC with Intel Xeon at 2.33 GHz and 4 GB of memory
running Linux. We note that although HCUBþ ILP-DS and MINAS-DS

were written in MATLAB, HCUBþ ILP-DS uses Hcub written in Cþþ and
both algorithms use SCIP 2.0 [27] as a 0–1 ILP solver, which is also
implemented in Cþþ.

As can be observed from Table 4, although HCUBþ ILP-DS and
MINAS-DS obtain similar results in terms of implementation cost,
there are instances that MINAS-DS find better solutions than
HCUBþ ILP-DS, e.g., Filters 1, 2, 6, and 8. Moreover, both HCUBþ ILP-DS

and MINAS-DS obtain better solutions than the algorithms designed
for the MCM problem. However, their solutions require higher
computational effort than these algorithms. For HCUBþ ILP-DS, this
depends heavily on the performance of the 0-1 ILP solver and on
how many different MCM solutions that the algorithm considers.
We note that the run-time of the SCIP 2.0 solver on the 0–1 ILP
4 The filters are available at http://algos.inesc-id.pt/multicon
problems generated by ILP function took maximum 23.17 s and
4.86 s on average, on overall instances. For MINAS-DS, it depends on
the number of intermediate constants considered in its loop given
on lines 3–13 of Fig. 9. Hence, there are instances that MINAS-DS can
find a solution in less run-time than HCUBþ ILP-DS, e.g., Filters 4, 7, 9,
and 10. Note also that while HCUBþ ILP-DS and MINAS-DS have to
consider all possible implementations of constants in order to find
the minimum gate-level cost of each operation under the digit-
serial architecture, in the algorithms designed for the MCM
problem, finding only one A-operation is enough to implement a
constant.

6.2. Results on gate-level implementations

Table 5 presents the gate-level results of the bit-serial MCM
designs obtained by the high-level algorithms in Table 4, which
were obtained using the Synopsys Design Compiler with UMCLo-
gic 0:18 mm Generic II library. In this table, A, D, and P denote,
respectively, the area in mm2, the delay of the critical path in ns,
and the total dynamic power dissipation in nW. This table also
presents the gate-level results of each MCM block designed using
bit-serial constant multipliers, which is adapted from the sequen-
tial multiplier described in [15]. Note that the bit-width of the
filter input (N) was taken as 16 and the necessary hardware to
convert the bit-serial outputs to parallel, as described in Section
2.4, was also included in the MCM designs for both design
architectures. During the technology mapping, the bit-serial
MCM operations were synthesized under the minimum area
design strategy without a constraint on the clock frequency.

Observe from Tables 4 and 5 that although the bit-serial MCM
designs are synthesized using the Synopsys Design Compiler,
which includes advanced optimization algorithms, there is a high
correlation between the implementation costs (hc) at high-level
and the gate-level area (A) results. As expected from high-level
results, the solutions of HCUBþ ILP-DS and MINAS-DS yield less com-
plex bit-serial MCM designs when compared to those obtained by
the algorithms designed for the MCM problem. Although the
delay in the critical path is increased, power dissipation is
decreased slightly in bit-serial MCM designs obtained by
HCUBþ ILP-DS and MINAS-DS. Also, the design of bit-serial MCM
operations under the shift-adds architecture lead to significant
area improvement with respect to those realized with bit-serial
constant multipliers [15].

Among the filters in Table 3, we selected Filter 4 to further
analyze our algorithms since the multiplier block of this filter
requires the largest number of addition and subtraction opera-
tions as shown in Table 4. Table 6 presents the gate-level results
on its multiplier block designed based on the solutions of
HCUBþ ILP-DS and MINAS-DS when d is 1, 2, 4, and 8. We note that N

was again taken as 16 and the maximum bit-width of filter
coefficients (bw) is 16. Thus, according to Eq. (6), the number of
clock cycles required to obtain the results of all constant multi-
plications is 32, 16, 8, and 4 when d is equal to 1, 2, 4, and 8,
respectively. Hence, in this table, L denotes the latency
(#clockcycles� D) and E stands for the consumed energy
(#clockcycles� D� P) in f J (10�15 W s) in the MCM design while
obtaining the results of all constant multiplications. Also, ALP and
AEP stand for the area–latency product and the area–energy
product, respectively.

Observe from Table 6 that as the digit size is decreased, the
area and delay of the MCM design is also decreased. However, as
the digit-size is decreased, the number of clock cycles required to
obtain the filter output is increased, that consequently increases
the latency and the energy consumed by the design. This enables
a designer to explore the optimal tradeoff between area, latency,
and consumed energy by changing the digit size parameter (d).

http://algos.inesc-id.pt/multicon


Table 6
Gate-level results of digit-serial multiplier block of Filter 4.

Algorithm d 1 2 4 8

HCUBþ ILP-DS A (mm2) 82.7 87.0 94.0 111.2

D (ns) 5.53 6.87 7.51 8.52

L (ns) 176.96 109.92 60.08 34.08

ALP 14 635 9563 5648 3790

P (mW) 0.169 0.200 0.238 0.321

E (fJ) 29.85 21.98 14.27 10.93

AEP 2469 1913 1341 1215

MINAS-DS A (mm2) 82.8 87.0 94.1 111.5

D (ns) 4.47 4.90 5.65 7.33

L (ns) 143.04 78.40 45.20 29.32

ALP 11 844 6821 4253 3269

P (mW) 0.165 0.196 0.235 0.318

E (fJ) 23.60 15.37 10.62 9.32

AEP 1954 1337 1000 1040

Table 5
Summary of gate-level results of MCM blocks of the FIR filters in Table 3 for d¼1.

Optimization of the number of operations Optimization of area in digit-serial MCM design Bit-serial constant multipliers [15]

Hcub [10] Exact GB [11] HCUBþ ILP-DS MINAS-DS

Fil. A D P A D P A D P A D P A D P

1 74 368 4.13 153 74 344 4.13 153 72 459 5.62 150 72 367 5.03 148 99 424 5.13 196

2 77 530 4.13 159 77 280 4.13 161 75 720 5.60 156 75 677 5.47 156 104 347 4.17 205

3 41 699 4.13 89 41 740 4.12 91 40 662 6.11 89 40 642 4.12 87 58 577 4.13 113

4 84 186 4.14 173 83 921 4.14 172 82 716 5.53 169 82 757 4.47 165 112 416 4.14 220

5 59 823 4.13 122 59 432 4.13 123 57 788 4.65 118 57 783 4.98 118 80 114 4.13 153

6 62 775 3.99 130 62 723 3.99 132 61 516 5.34 128 61 492 5.13 127 84 855 4.01 167

7 54 883 4.13 114 54 943 4.13 114 53 694 5.91 111 53 756 4.41 111 74 907 4.12 143

8 62 640 4.13 128 62 488 4.13 130 61 105 4.97 127 61 159 4.94 126 86 180 4.14 167

9 73 175 4.13 146 73 145 4.13 147 71 932 6.75 145 71 986 5.69 145 100 124 7.49 191

10 75 235 4.13 152 75 168 4.13 154 73 650 4.43 149 73 726 4.09 151 103 126 4.61 200

Tot. 666 314 41.16 1366 665 184 41.16 1377 651 242 54.91 1342 651 345 48.33 1334 904 070 46.08 1755

Table 4
Summary of results of algorithms on MCM blocks of the FIR filters in Table 3 for d¼1.

Optimization of the number of operations Optimization of area in digit-serial MCM design

Hcub [10] Exact GB [11] HCUBþ ILP-DS MINAS-DS

Fil. op sh hc cpu op sh hc cpu op sh hc cpu op sh hc cpu mul

1 80 135 18.5 0.1 79 130 18.2 1.7 81 31 13.2 80.7 79 31 12.9 317.6 78

2 84 128 18.8 0.1 83 126 18.6 1.8 83 36 13.7 169.1 83 32 13.5 758.4 82

3 47 90 11.5 0.1 47 93 11.6 1.5 47 34 8.5 86.5 47 34 8.5 401.7 46

4 87 124 19.0 0.1 87 111 18.3 1.6 87 41 14.6 11.7 87 43 14.7 3.7 87

5 64 123 15.7 0.1 63 115 15.1 1.3 63 27 10.4 74.4 63 26 10.4 549.3 62

6 68 105 15.3 0.1 68 104 15.2 3.8 68 31 11.4 53.9 68 29 11.3 68.4 67

7 59 86 13.0 0.1 59 92 13.3 0.7 59 23 9.6 19.2 59 24 9.7 1.7 59

8 70 94 15.0 0.1 69 99 15.1 1.4 69 28 11.3 92.3 69 23 11.0 657.8 68

9 78 92 16.1 0.1 78 92 16.1 0.8 78 30 12.7 10.1 78 32 12.8 4.6 78

10 81 97 16.8 0.1 81 94 16.7 0.9 81 20 12.6 33.1 81 21 12.7 4.8 81

Tot. 718 1074 159.9 1.0 714 1056 158.2 15.6 716 301 118.0 631.0 714 295 117.6 2768.0 708

L. Aksoy et al. / INTEGRATION, the VLSI journal 45 (2012) 294–306304
Moreover, although HCUBþ ILP-DS and MINAS-DS obtain similar gate-
level area results, the solutions of MINAS-DS yield high-speed and
low-power digit-serial MCM designs and have lower ALP and AEP

values when compared to those obtained by the solutions of
HCUBþ ILP-DS. This is simply due to the lower delay values of the
MCM designs obtained by MINAS-DS. Thus, this observation suggests
that in order to reduce the latency and consumed energy of digit-
serial MCM design, the high-level algorithms should also take into
account the delay of the design, which is generally defined as the
maximum number of operations in series and commonly known
as the number of adder-steps [8].

Table 7 presents the gate-level results of digit-serial designs of
Filter 4, which is implemented in its transposed form as given in
Fig. 1 under two architectures: shift-adds (shift-adds) and generic
constant multipliers (cons. mult.). When d is 1, 2, 4, and 8, the
multiplier block of the FIR filter is designed using digit-serial
addition, subtraction, and shift operations determined by the
solution of MINAS-DS under the shift-adds architecture and it is
implemented using digit-serial constant multipliers [15] under
the cons. mult. architecture. For bit-parallel processing (when
d¼16), under the shift-adds architecture, the multiplier block is
designed using addition and subtraction operations obtained by
the solution of the exact GB algorithm [11]. Under the cons. mult.

architecture, the multiplication of each filter coefficient by the
filter input in the multiplier block is initially described as
constant multiplications in VHDL and then, the FIR filter with
this multiplier block is designed by the logic synthesis tool. We
note that the bit-width of the filter output is 35, hence, the
number of clock cycles required to obtain the filter output is 35,
18, 9, and 5 when d is 1, 2, 4, and 8, respectively. When d is 16, the
filter output is obtained in 1 clock cycle.

Observe from Table 7, although latency and consumed energy
is slightly increased on some cases under the shift-adds architec-
ture with respect to cons. mult., the area is always smaller and the
maximum area reduction between these architectures reaches up



Table 7
Gate-level results of complete digit-serial Filter 4.

Arch. d 1 2 4 8 16

Shift-adds A (mm2) 201.7 214.8 228.9 281.1 322.9

D (ns) 5.45 6.16 6.94 7.70 9.90

L (ns) 190.75 110.88 62.46 38.50 9.90

ALP 38 474 23 817 14 297 10 822 3197

P (mW) 0.503 0.593 0.694 0.923 1.06

E (fJ) 95.95 65.75 43.35 35.54 10.49

AEP 19 353 14 123 9922 9989 3389

cons.mult. A (mm2) 252.0 264.8 269.7 377.9 439.0

D (ns) 3.97 5.79 6.92 12.00 9.00

L (ns) 138.95 104.22 62.28 60.00 9.00

ALP 35 015 27 597 16 797 22 674 15 804

P (mW) 0.619 0.706 0.779 1.023 1.22

E (fJ) 86.01 73.58 48.52 61.38 43.92

AEP 21 675 19 484 13 085 23 196 19 281
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to 34.1% when d is equal to 8. Moreover, although the bit-parallel
implementation of the FIR filter has the best ALP and AEP values,
its digit-serial realizations yield less complex FIR filters albeit
with a cost of an increased latency and energy consumption.
7. Conclusions

This article presented high-level algorithms for the optimiza-
tion of gate-level area in digit-serial MCM design. The main
advantage of these algorithms is that they consider the gate-level
cost of each digit-serial addition, subtraction, and shift operation
while synthesizing the constant multiplications. The experimen-
tal results showed that they yield less complex digit-serial MCM
designs when compared to those obtained by prominent algo-
rithms designed for the MCM problem. It was indicated that the
use of shift-adds architecture leads to significant area improve-
ment in digit-serial MCM designs with respect to those realized
with digit-serial constant multipliers. It was also shown that the
realization of digit-serial MCM operations and FIR filters under
different digit sizes enables a designer to explore the optimal
tradeoff between area and delay and to find a circuit that fits best
on a specific application.
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Técnico, Technical University of Lisbon, where he is
currently an Associate Professor in the Department of
Computer Science and Engineering. He is currently
Director of the Instituto de Engenharia de Sistemas e

Computadores (INESC-ID), Lisbon. His main interests

are computer architecture and CAD for VLSI circuits, with emphasis on synthesis,
power analysis, and low-power and design validation. Dr. Monteiro received the
Best Paper Award from the IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRA-
TION (VLSI) SYSTEMS in 1995. He has served on the Technical Program Commit-
tees of several conferences and workshops.


	High-level algorithms for the optimization of gate-level area in digit-serial multiple constant multiplications
	Introduction
	Background
	0-1 Integer linear programming
	Multiplierless constant multiplications
	Implementation of digit-serial constant multiplications under the shift-adds architecture
	Design details in digit-serial MCM

	Related work
	The hcub+ilp-ds algorithm
	Implementation of the hcub+ilp-ds algorithm
	Implementation of the ILP technique
	Generation of constant implementations
	Construction of the boolean network
	The 0-1 ILP formalization
	Finding the minimum solution


	The minas-ds algorithm
	Experimental results
	Results on high-level implementations
	Results on gate-level implementations

	Conclusions
	Acknowledgment
	References




