
Parallel Circuit Simulation

An accelerated version of Cinnamon

Lúıs Miguel Silveira

Paulo Flores

INESC/IST

R. Alves Redol, 9

1000 Lisboa

PORTUGAL

Abstract

This report sumarizes the steps taken in the development
of an accelerated version of the electrical circuit simulator
CINNAMON. The architectural and functional features of
an Alliant FX/4 computer are briely described and its use
as the underlying hardware accelerator is outlined.

This work was partially supported by the Esprit 1058 Project

Contents

1 Motivation 2

2 An Accelerated version of CINNAMON 4

2.1 The Hardware: Alliant FX/4 . 7

2.2 General Concepts . 13

2.3 Simulation Control Algorithm . 15

3 Conclusions and Results 19

1

1 Motivation

The implementation of computationally intensive algorithms on parallel processing

machines has been increasingly studied and regarded as the next step in the development

of computationally intensive environments.

Many state of the art CAD tools, require large amounts of CPU power. Circuit sim-

ulators are only an example of such tools. Due to the increase in the scale of integration,

complete systems are currently built on a single silicon chip, and although a “divide to

conquer” strategy is usually used for verifying them, a global view is very important and

requires the use of time consuming CAD tools. The costs of production, including design,

the probability that the circuit will work and the turnaround time from project to foundry

are greatly enhanced if proper simulation tools are available.

CINNAMON [1], a circuit simulator being developed at INESC, is based on new

techniques for simulation control, in order to achieve a high performance. The aim of the

simulator is to take advantage of the latency pervasive in circuits to dramatically increase

the speed of simulations.

The steps taken and the techniques used in order to achieve that speedup, have been

described elsewhere [1] [2], but will be summarized later. It is important to note however,

that the efficiency of the techniques used in the simulator vary with the size and the

activity of the circuit being simulated. For small circuits the results obtained do not, as

expected, show large improvements. Still, even for very small circuits, CINNAMON

2

keeps up with traditional simulators in terms of speed and accuracy, while for larger

circuits, large speedups have been obtained, depending only on the activity of the circuit.

One of the main ideas developed in CINNAMON is the concept of localized activ-

ity. It is fairly obvious that changes in one area of the circuit take some time to propagate

to other areas. This concept has lead to the use of event-driven techniques in order to

control the process of simulation.

Based on this concept of localized activity, it is evident that if two or more fairly

apart areas of a circuit, suffer “changes” at a certain time, those changes could be eval-

uated in the neighborhood were they occur and only later propagated to nearby areas.

This thought suggests that these areas, where primary “changes” occur “simultaneously”,

could if processors were available, be simulated in parallel and the results later propagated

to the rest of the circuit.

This report summarizes the first attempt of an implementation of the underlying

algorithm of CINNAMON on a parallel processing machine. This version is not based on

a parallel algorithm for CINNAMON. In fact it should only be viewed as an accelerated

version of the simulator. This important difference will, hopefully, be understood in the

remaining chapters.

3

2 An Accelerated version of CINNAMON

Parallel Processing architectures and algorithms can be divided in three basic

groups [3] [4]: pipeline,array processing and multiprocessing.

Pipelined architectures or algorithms derive from the generally called “Func-

tional Partitioning Strategy” by means of which a particular set of operations is divided

into related and consecutive steps that are performed sequentially on each set of data.

Parallelism is achieved by having each stage of the pipeline performing a certain number

of operations on the data. At each time instant, therefore, all the stages of the pipe can

be active, performing operations on data that is later transferred to the next stage. The

parallelism achieved by means of pipelining is usually described as performing a different

set of operations on the same data “simultaneously”.

Array Processing is a form of parallelism related with performing at the same time,

the same operation on different data. In Array Processing machines the data is parti-

tioned into a certain number of blocks and the same set of operations is simultaneously

performed over all blocks. Array Processing is therefore usually referred as “Data Parti-

tioning Parallelism”.

Multiprocessing is a form of parallelism where on each processor a set of unrelated

operations is performed over unconnected data. This structure is obviously the most

versatile one, since all the others can be emulated by a multiprocessor machine although

performance may decrease. This is sometimes the reason for its choice as the hardware

architecture for certain implementations.

4

The results obtained from parallel implementations are highly dependent upon the

application itself, i.e., the grain of parallelism achieved, the underlying hardware and the

structure chosen for the implementation. In any architecture, the maximum theoretical

speedup attainable is bounded by the number of processing units (stages in a pipeline

or processing units). However that maximum is rarely attained due to the nature of the

problem itself and the constraints it imposes.

In a pipelined architecture or one emulating a Functional Partitioning approach,

maximum speedup is only achieved if at each time slot, the data being operated upon,

at the various “stages”, is not allowed to be “write-shared” (i.e., it cannot be written

if any other stage of the pipe is using it), a characteristic that unfortunately is seldom

found in practical algorithms. This is one reason why Functional Parallelism is not

highly considered. Another reason is the difficulty to expand it to a great number of

processing units (“stages”). Implementations derived from this strategy are, however, not

particularly constrained by the architecture of the machine because the functional units

are normally defined at high levels and make use of architectural or operating system

primitives to emulate a pipelined environment.

Array Processors or SIMD, Single Instruction on Multiple Data, machines were

traditionally special-purpose machines and therefore rarely considered as a parallel envi-

ronment, due to its non-versatility. More recently, some effort has been devoted to its

study and development and some machines of this kind have been used for many parallel

computations (eg, the DAP machine and the Connection Machine).

Multiprocessors or MIMD, Multiple Instruction on Multiple Data machines are

5

the most widely used and explored architecture. They usually present features that allow

the emulation of all other architectures, making them a very convenient environment for

most developments.

From a certain point of view, this version can be understood as a data-partitioning

implementation and it was developed on a multiprocessor machine [5]. However, as will

soon be explained, the partitioning of data in this version is only performed at very well

defined and precise places of the simulation loop.

6

2.1 The Hardware: Alliant FX/4

The Alliant machine installed at INESC is an FX/4 mini-supercomputer. With a total

of 6 processors the Alliant is a high performance vector-parallel machine [6].

With 4 computational elements (expandable to 8) or CE’s, linked through a high-speed

crossbar interconnection network to cache memories that ensure faster access to data and

code while keeping memory coherency to all processors, the Alliant FX/4 achieves up to

5 MFLOPS peak performance on Linpack benchmarks (manufacturer data).

Two additional processors (expandable to twelve), the interactive processors or IP’s,

linked through caches to main memory, deal with interactive computing thus maintaining

high availability and network response, while enabling the CE’s to concentrate on compu-

tation intensive jobs. These processors basically execute interactive user jobs, operating

system tasks created by jobs running on the CE’s, like I/O, and general system activity

like paging.

An arbitrary number of CE’s can be defined at boot time to form the computational

complex, where parallel jobs will run. In this mode of functionment all CE’s defined to

be part of the complex can only run parallel tasks. However, another mode exists, when

the complex is formed, kept for a certain amount of time running parallel tasks, and then

it is blown and all CE’s become detached for a certain time interval. The procedure is

then periodically repeated. The scheduling of time for complex formation and the time

interval when CE’s will run in parallel can be defined and changed with no need for

system reboot. Also, in both modes not all CE’s need to be part of the complex: some

7

can be kept detached, the decision being left to the system supervisor to according to

local necessities. The machine on which the studies being described were developed, was

configured in a dynamic mode, three CE’s complex.

Although its reported performance can be considered exceptional, the machine has

mainly been developed for computationally intensive scientific calculations, rather than

as a general parallel multi-user multi-computer system. The difference can be seen by

the number of possibilities available for programmer to fully profit from the existing

parallelism.

A high performance “FORTRAN” compiler allows use of vector and concurrent facil-

ities to boost otherwise time-consuming code. These facilities are however not directly

available to the programmer and they are still very much fine-grained (at the instruction

level, like optimization of “FORTRAN” DO loops, etc). A similar “C” compiler has been

announced and will be available soon.

A “C” programmer has access to a “concurrent call” feature that allows subroutines

to be executed in parallel. A pool of vector and concurrent functions is also available for

scientific calculation [7]. General operating system mechanism supporting shared memory,

usual forms of synchronization and atomic locks are also available.

The version of CINNAMON being described, was written in “C”, since the original

code of the simulator was also written in “C” which seems a very appropriate language.

A single operating system feature allows the programmer to take advantage of con-

currency. It’s the concurrent call which has the form:

8

concurrent call(call flag | quit flag, func, n, arg1, . . . , argn)

A concurrent call issued from a process executing a “C” program creates “n” tasks

in the context of the process and schedules each task to an available processor. The “func”

function is typically

/∗ function called by concurrent call ∗/

func(np, arg1, . . . , argn)

int np ;

. . .

{

code for func ;

}

Note that “func” receives as its first dummy parameter the number of the call that it

is processing (calls are named “0” through “n− 1”).

There are three basic ways of calling concurrent call:

• if “call flag” = “CNCALL COUNT” a constant defined in “cncall.h” them the sys-

tem will create “n” tasks to run on the computational complex, which are scheduled

to start when processors become available

• if “call flag” = “CNCALL NUMPROC” the system will create one task for each

existing processor in the complex. In this case, the count argument (“n”) to con-

current call should be omitted

9

• if “call flag” = “CNCALL INFINITE” the system will continuously create tasks

each calling “func”. It is up to the programmer to provide mechanism to explicitly

quit this infinite loop and make sure that the program will eventually end

A concurrent call can terminate explicitely or implicitly by appropriately setting

the “quit flag”:

• if “quit flag” = “CNCALL NO QUIT” the concurrent call will terminate only after

all tasks were created and finish

• if “quit flag” = “CNCALL NONZERO QUIT” or if

“quit flag” = “CNCALL NEGATIVE QUIT” the concurrent call will return when

one of the tasks returns a nonzero (or negative) value

Primitives exist (quit enable() and quit disable()) that prevent or allow the complex to

be blown at a certain time. These primitives should surround code that the programmer

knows should not be interrupted. In normal functioning, however, the concurrent call

waits for all tasks (or only those already created) to terminate, in order to proceed,

therefore providing with a kind of synchronization-on-finish primitive.

Two other primitives, from a “common library”, are of interest:

lib number of processors()

that returns the number of CE’s defined to be part of the computational complex (thus

allowing programs to become independent from a particular configuration), and

lib processor number()

10

that returns the number of the processor where the task is running. Both functions are to

be used only in concurrent mode, i.e., they should only be called from within concurrent

calls (otherwise they return 0).

Usual facilities for shared-memory are also available. However, for anyone using task

parallelism (calling concurrent call), these features aren’t of much interest since all

tasks created trough the concurrent call primitive co-exist in the context of the calling

process and directly inherit access to all its memory space. The possibility of defining

shared-memory regions can nevertheless be of interest for certain applications.

Synchronization mechanisms are essential in such a machine. Atomic locks (and un-

locks) can be used either for a pool of tasks or processes sharing access to some data.

These standard library routines are indeed the basis for task synchronization in the ma-

chine since any other mechanism (message passing, signals, etc) seems awkward because

the tasks co-exist in the space of a single process and all the process memory is shared by

all tasks.

Some performance tests were carried in the Alliant, to evaluate the performance of

task creation, data locking and unlocking, etc: The fact that task generation is extremely

fast (about 400 times faster than creating a son process with the system call “fork()”)

is a good indicator of the level of performances that can be achieved on the machine. In

the Alliant, task generation takes about 2 µsecs; the operation of locking and unlocking

a memory position is also extremely fast (about 40 µsecs).

The version of CINNAMON described in this report is built around concurrent

11

call’s, using locks and unlocks as task synchronization primitives, wherever necessary.

12

2.2 General Concepts

CINNAMON is an event-driven electrical circuit simulator based on voltage axis

discretization techniques. An event in CINNAMON is caused by a change in a circuit

node. To evaluate an event means to “predict” the future consequences of the node’s

change in the state of the node itself and its neighbors.

In CINNAMON, all node events are kept in a list. Each node appears in the list

just once (except for voltage sources that are scheduled for all times at the beginning of

the simulation, and in the latest versions, use a separate list).

The information in each event structure says that node “k” will be at voltage “v” at

time “t”. When time “t” is reached (time is continuous and there is no notion of time

step in voltage discretization algorithms) the node’s voltage is updated to “v” and the

effects of that change are propagated. Consider that at time “to” node “k” changed to

“vo”. The nodes matrix equation of the circuit.

[C] [v̇] + [G] [v] = [ı] (1)

leads to an equation for node k in the form of

ckkv̇k + gkkvk −
∑
j 6=k

ckj v̇j −
∑
j 6=k

gkjvj = ık (2)

(where the sums are for all nodes in the circuit, except k, ckj refers to a capacitor connected

between nodes k and j, gkj is similar for conductances and ık is the sum of all current

sources entering node k).

13

The current approach in CINNAMON, decouples all nodes. The n ∗ n system of

equations of the circuit leads to:

ckkv̇k + gkkvk = ık +
∑
j 6=k

ckj v̇j +
∑
j 6=k

gkjvj (3)

The simplest approximation is to use the last estimate for v̇j and vj. The solution of the

linear differential equation then, reduces to:

vk(t) = (vk∞ − vko)e(t−t0)/τk + vk∞ (4)

where vk∞ = ik/gk and τk = ck/gk. Whenever this approximation is considered valid, we

can easily find the time when the node will reach the next voltage level (vko + ∆V) at

time

tnext = t0 + τk ln(
vko − vk∞ ±∆V

vko − vk∞
) (5)

and schedule the new event for the node. The change is then propagated to the adjacent

nodes by scheduling new events for them

The simulation is controlled by the list of events, and is considered to be terminated

when no more scheduled events are found in the list. Issues like equations for device

modeling and parameter calculations do not differ from other versions, and will not be

mentioned here, but they can be found elsewhere [8].

The approach taken in this version to achieve accelerated simulation will be described

in the next chapter.

14

2.3 Simulation Control Algorithm

The simulation control algorithm of the sequential uniprocessor standard CINNA-

MON is very simple:

simulation() /* either DC or TRAN analysis */

{

time = 0 ;

schedule voltage sources ;

while(there are more events and time < Maxtime) {

get next event information (ev_node, ev_time, ev_voltage) ;

time = ev_time ;

linearize devices connected to node (ev_node) ;

evaluate next change (ev_node, list of adjacents) ;

print information(ev_node, ev_time, ev_voltage) ;

}

}

In this version, the essential sequential algorithm was kept, but parallelism was seek

at a very fine-grain, by looking at actions that could be performed in parallel.

By looking at the basic simulation loop just presented, we could immediately detect

the existence of three different types of actions related to the “solution” of an event.

An essentially sequential part that has to due with getting the information related

with the event to be processed and later on with the recording of its results. A section

related to the set-up necessary, prior to the calculation of the elements that appear in the

circuits system of equations. A third section related to the calculations that are necessary

when solving an event, and which may cause new events to be scheduled.

These three sections of the simulation loop were dealt with in different ways. The

sequential part of it, was left untouched since little was to be gained by any change in

15

its structure. Nevertheless, it is worth saying that the printing of the results can in some

cases, represent a considerable fraction of the time spent in the simulation.

The setting up of the elements on the circuit equations deserves a bit more of attention.

Since the current algorithm in CINNAMON decouples the circuit’s equations at the

time of each event, only the elements appearing in one of the equations (the one for the

node that caused the event) are needed. Even in this simplified case, this requires the

linearization of all the circuit elements that are connected to the scheduled (or active)

node. Note that this is essentially a sequential task for each device, which can, in principle,

be linearized separately (therefore in parallel) from any other one. We see therefore, that

parallelism at this level can be of help and brings very little additional effort, since in this

case there is no data-dependency to check upon.

An event in CINNAMON is always related to changes in a node, thereafter called

active. The changes in the node’s voltage correspond to perturbations that may lead to

further changes in the node itself and its neighbor nodes. This perturbations, therefore,

have associated to them a concept of propagation. This means that changes in a node,

may propagate to its vicinity and henceforth to the rest of the circuit. Essentially, this

implies that when solving an event for a node, the node and its neighbors have to be

calculated, in order to ascertain if the perturbation is propagating or not. Once again in

the current algorithm, this can be performed in parallel, therefore leading to increased

reduction in simulation time.

There is however a significant difference in this last case. The fact that a perturbation

may propagate to the vicinity of an active node, means that when solving an event, new

16

events on the node itself and its neighbours, may have to be scheduled. As the event list

is unique for each simulation run, this implies that different processors, may try to change

the information on global data, by introducing (or extracting) events from the event list.

To ensure data consistency, a method is needed that provides for synchronization in

the access of the event list. In the present version mutual exclusion in the access to global

data is ensured by the use of atomic locks. The use of this lock variable can be understood

as if the processor were trying to lock the list itself so as to get exclusive access to it.

When a processor wants to change the structure of the event list it must lock the list in

order to be able to proceed. If when trying to lock it, it discovers that it is already locked,

it just sits back and waits for the list to be unlocked.

The algorithm for the present version as it stands, is therefore:

simulation() /* either DC or TRAN analysis */

{

time = 0 ;

schedule voltage sources ;

while(there are more events and time < Maxtime) {

get next event information (ev_node, ev_time, ev_voltage) ;

time = ev_time ;

node = ev_node ;

devices = = number of devices connected to the scheduled node ;

concurrent_call(..., LinearizeElements, devices, node) ;

neighbours = number of neighbours of scheduled node ;

concurrent_call(..., EvaluateNode, neighbours+1, nd) ;

/* +1 for the node itself */

print information(ev_node, ev_time, ev_voltage) ;

}

}

LinearizeElements(proc,nd) /* linearization of elements prior to

solving the equations */

int proc, nd ;

17

{

linearize the device number proc in the list for node nd ;

}

char EventList ; /* global semaphore variable for

synchronization in the access to

the event list */

EvaluateNode(proc,nd) /* evaluation of perturbation

propagation */

int proc, nd ;

{

n = node number proc attached to node nd ;

evaluate next change for node n ;

t = time of next change for n ;

lock(&EventList) ;

schedule node n at time t ;

unlock(&EventList) ;

}

Another acceleration technique that was seldom used, was to detect the existence of

computationally intensive portions of code that presented no data-dependency and having

them run in parallel. This approach, was carried out through a careful look at “profiles”

from the execution of the simulator and eventually lead to a decrease in simulation time

by having some time-consuming functions to be executed in parallel. Setting up the data

structures for simulation was one of the points were this technique was used.

The next chapter will address some of the results obtained thus far with the version

just described.

18

3 Conclusions and Results

The basic trends for this accelerated version of CINNAMON have been described.

The results obtained so far can be considered as acceptable. The acceleration factor

porsued has in fact been obtained. In the next pages, tables I and II present the results

obtained for this version, for a series of benchmark circuits. Table I shows the total

simulation time. Table II shows the timing results of the transient analysis of those

simulations and is therefore a better measure of the results obtained.

The circuits tested are very dissimilar in the hope of getting a better view of the

possibilities of this version. A short description of them follows:

• “100inv”: a chain of 100 CMOS inverters

• “2gi”: a series of two inverters and pass-gates with Grenoble models

• “2nc”: two NMOS inverters

• “a4”, “alu4”: 4-bit Mead & Conway ALU

• “a16”, “alu16”: 16-bit Mead & Conway ALU

• “a32”, “alu32”: 32-bit Mead & Conway ALU

• “bi02”: bootstrapped inverter

• “compt”: 4-bit comparator

• “fault”: a faulty chain of inverters

19

• “inv2”: two CMOS inverters

• “inv4”: four CMOS inverters

• “mem4”: a four bit memory element

• “nand5”: a five input nand gate

• “ring1”: a 19-stage ring oscillator

• “senser”: a sense-amplifier for a National memory

20

Table I

Total Time (secs.)

Circuit v4(VaxStation) v4(Alliant) v4(Accelerated) speedup
100inv 1:32.33 21.82 11.66 1.87
2gi 15.97 4.33 3.69 1.17
2nc 51.27 14.41 11.94 1.21
a16 10:04.70 2:48.91 1:27.24 1.93
a32 11:24.95 3:02.47 1:48.15 1.69
a4 1:15.98 21.46 11.74 1.83
alu16 5:40.60 1:36.23 58.26 1.65
alu32 38:43.58 11:26.31 6:01.72 1.90
alu4 4:34.81 1:20.27 42.11 1.91
bi02 9:10.34 2:50.25 2:17.17 1.24
compt 16:21.55 4:25.81 2:18.35 1.92
fault 15.27 5.17 4.86 1.06
inv2 5.83 1.72 1.69 1.02
inv4 10.52 2.91 2.29 1.27
mem4 39.70 11.30 7.49 1.51
nand5 13.23 3.66 2.75 1.33
ring1 57.18 14.75 8.81 1.67
senser 21.3 5.67 4.03 1.41

21

Table II

Transient Analysis Simulation Time (secs.)

Circuit v4(VaxStation) v4(Alliant) v4(Accelerated) speedup
100inv 1:27.96 20.02 9.78 2.04
2gi 15.40 4.15 3.20 1.30
2nc 51.27 13.99 11.38 1.23
a16 8:57.68 2:27.78 1:08.42 2.16
a32 8:45.50 2:21.80 1:03.98 2.22
a4 1:05.32 17.82 8.24 2.16
alu16 4:49.21 1:20.04 42.23 1.90
alu32 36:15.44 10:47.92 5:20.65 2.02
alu4 4:25.51 1:17.15 38.87 1.80
bi02 9:09.92 2:50.08 2:16.81 1.02
compt 16:15.29 4:23.45 2:15.80 1.94
fault 3.18 0.83 0.71 1.17
inv2 5.39 1.54 1.34 1.15
inv4 10.01 2.72 2.05 1.33
mem4 37.61 10.51 6.55 1.60
nand5 12.53 3.41 2.31 1.48
ring1 56.17 14.35 8.23 1.74
senser 18.47 4.58 3.06 1.50

22

The results presented in the previous tables deserve a more detailed inspection.

Roughly speaking, a factor of two has been obtained for most medium-size circuits, like

the alu’s and the ring oscillator. The other circuits are either too small or too active to

present a considerable degree of parallelism.

One should not forget that in this accelerated version, parallelism has only been

achieved at a very fine-grain, at the loop level. Therefore, even with three processors

(the configuration of the Alliant machine used), a 50 % speedup can already be consid-

ered a good figure, considering that access to the event-list are sequential, and that at

least half of the processing needed to solve an event is sequential: extract the event, deter-

mine the time and node that caused the event, plotting the event’s data and accessing the

event-list again for new scheduled nodes (which can happen several times for each event,

depending on the connectivity of the node causing the event). Plotting the data for an

event may take as much as 25 % of a normal simulation time, for certain circuits. The sum

of all these sequential actions is the real bottleneck for a greater efficiency achievement.

It should be noted that in the version just described, parallelism was seek at the “lin-

earization” and “event-solving” steps. In the first case, the potential speedup achievable

is bounded by the average number of non-linear devices connected to a node. Also, in

the second case, the possible speedup is bounded by the average node connectivity. In

both cases, therefore, it should be clear that the speedup obtained is not scalable with

the number of processors, but is dependent (and bounded) by the characteristics of the

circuit being simulated.

It is our belief that the goals intended with this version were fully obtained. In fact

23

the development of this version gave us a greater insight into the architectural features

of the Alliant computer, the way to explore its potential and to obtain an even faster

simulator without greatly modifying the original algorithm of the simulator. With this in

mind we believe the work as been rewarding in many ways.

24

References

[1] - Lúıs Vidigal et al.,

“CINNAMON: Coupled INtegration and Nodal Analysis of MOs Networks”,

Proc. 23rd ACM/IEEE Design Automation Conference, 1986

[2] - Lúıs Vidigal, Horácio Neto,

“CINNAMON: New Results and Improvements”,

European Conference on Circuit Theory and Design, Paris, France, September, 1987

[3] - Kai Hwang, Fayé A.Briggs,

“Computer Architecture and Parallel Processing”,

McGraw-Hill, 1984

[4] - Lúıs Miguel Silveira,

“Study of Multiprocessor Architectures for a Hardware Accelerator”,

Esprit 1058 Report, January 1987

[5] - Lúıs Miguel Silveira,

“Multiprocessor Implementation of an event-driven Circuit Simulator: Evaluation of

Design Options”,

Esprit 1058 Report, July 1987

[6] - Alliant Computer Systems Corporation,

“Alliant FX Family”

25

[7] - Alliant Computer Systems Corporation,

“Concentrix C Handbook”,

Part Number 302-00004-B, August 1986

[8] - José M. Guimarães,

“MOS Transistor Models in CINNAMON”,

Esprit 1058 Report, June 1987

26

