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ABSTRACT 

Trace files record the execution behavior of programs 
for future analysis.  Unfortunately, nontrivial program 
traces tend to be very large and have to be compressed.  
While good compression schemes exist for traces that 
capture only the PCs of the executed instructions, these 
schemes can be ineffective on extended traces that include 
important additional information such as register values 
or effective addresses.  Our novel, value-prediction-based 
approach compresses extended traces up to 22.8 times 
better and about two and a half times as well on average.  
In addition to the higher compression rate, our lossless 
single-pass algorithm has a fixed memory requirement 
and compresses traces faster than other algorithms.   It 
achieves compression rates of up to 6170.  This paper 
describes the design of our compression method and illus-
trates how value predictors can be used to effectively 
compress extended program traces. 

 

1. Introduction 

Program execution traces are widely used to study 
program and processor behavior.  Unfortunately, even 
capturing only a byte of information per executed instruc-
tion generates on the order of a gigabyte of data per sec-
ond on a modern, high-end microprocessor.  Hence, stor-
ing traces of nontrivial programs poses a serious problem, 
even with today’s cheap and large hard disks.  Of course, 
the solution is to compress the traces. 

Compressing program traces that record only the pro-
gram-counter values (PCs) of the executed instructions is 
relatively easy since PCs are range limited and tend to 
repeat frequently.  Powerful algorithms to compress such 
traces already exist [19, 22, 23, 24, 38].  The goal of the 
work presented in this paper is to successfully compress 
extended traces, i.e., traces that contain additional infor-
mation such as effective addresses, values on a bus, or the 
content of registers.  Such values usually repeat less and 
span much larger ranges than PCs, making it harder to 
compress them well.  We believe extended traces are of 
particular interest nowadays as more and more research-
ers investigate dynamic activities in computer systems. 

We propose to employ techniques from the value-
prediction literature to compress the extended traces.  
Value predictors identify patterns in a sequence of values 
to forecast the likely next value (Section 2.2).  In recent 
years, a number of hardware-based value predictors have 
been developed to accurately predict the content of regis-
ters [3, 7, 8, 20, 21, 29, 30, 32, 34].  Hence, they are good 
candidates for predicting the kind of values we are con-
cerned with, that is, values that span large ranges and that 
do not necessarily repeat often.  In fact, since we are im-
plementing the predictors in software, we can use more 
predictors with larger tables than are practical in hardware 
implementations, thus boosting the prediction accuracy.  
Indeed, our algorithm compresses hard-to-compress ex-
tended traces up to 22.8 times better and 2.6 times as well 
on average as preexisting schemes. 

To illustrate the basic idea behind our algorithm, let us 
assume we have one predictor and that the extended data 
consist of 64-bit values.  Instead of writing each trace 
entry directly to a file, we first compare it with the pre-
dicted value.  If the two values are identical, we write 
only one bit, say a 1, to indicate that the predictor is cor-
rect.  If the two values differ, we write a 0 followed by the 
unpredictable 64-bit value.  This is a simple form of dif-
ferential encoding.  In either case, the predictor is updated 
with the true value and the procedure repeats for the re-
maining trace entries. 

Decompression proceeds analogously.  First, one bit is 
read from the compressed trace.  If it is a 0, the next 64 
bits are read to obtain the actual value.  If the bit is a 1, 
the value from the predictor is used.  The predictor is then 
updated to keep its state consistent with the state it was in 
during compression.  The process is iterated until the en-
tire trace has been reconstructed. 

Our actual compression algorithm is more sophisti-
cated, but the general principle is the same.  We use mul-
tiple predictors, employ schemes to compress the unpre-
dictable values, utilize dynamic Huffman coders, etc.  See 
Section 3 for more detail. 

The above example requires 65 bits to encode an un-
predictable value but only one bit for a predictable value.  
Hence, the predictor needs to correctly predict more than 
one out of every 64 entries to make the compressed trace 
smaller than the uncompressed trace.  In other words, the 



 

 

prediction accuracy needs to be at least 1.6% for this al-
gorithm to be useful. 

Of course, our goal is not only to compress traces but 
also to compress them well.  In particular, our algorithm 
should outperform preexisting algorithms such as LZ77 
[38], LZW [35], and Sequitur [19, 22, 23, 24].  Moreover, 
we were opting to design a compression utility for ex-
tended traces that meets the following criteria. 

 

♦ lossless compression 

♦ single-pass algorithm 

♦ good compression rate 

♦ fixed memory requirement 

♦ fast decompression speed 

♦ fast compression speed 
 

We need a lossless compression algorithm so that the 
original trace can be reconstructed exactly, which is nec-
essary for many experiments.  A single-pass algorithm 
ensures that the uncompressed trace never has to exist as a 
whole because the trace can be compressed while it is 
generated and stored directly in the compressed format.  
Similarly, a single-pass decompression scheme can di-
rectly drive trace-consuming tools such as simulators, 
obviating the need to first decompress the whole trace.  A 
good compression rate is obviously desirable to save as 
much disk space as possible and to keep transfer times 
and costs small when sending traces over a network.  We 
want a fixed memory requirement to guarantee that if a 
computer can compress and decompress one trace, it can 
compress and decompress all our traces, regardless of the 
trace content and length.  (Sequitur’s memory require-
ment, on the other hand, depends on the data to be com-
pressed, which caused problems when we tried to com-
press extended traces.)  Naturally, fast decompression 
speeds are desirable.  Finally, fast compression is impor-
tant in real-time and academic environments. 

Our algorithm meets the above requirements with the 
decompression speed being the only weak point.  The 
algorithm runs in a single pass in linear time over the data 
both during compression and decompression and does not 
allocate any memory while processing a trace.  The com-
pression rate and speed are good, outperforming gzip 
(with the --best option), sequitur, and lz77.  For example, 
our algorithm compresses a 4.36-gigabyte SPECcpu2000 
gcc trace of load instruction PCs and values by a factor of 
23.0 in 33 minutes.  Decompression takes 25 minutes.  
Sequitur compresses the same trace by a factor of 13.4 in 
214 minutes, but decompresses it in seven minutes.  Sec-
tion 6 presents results for more algorithms and traces. 

The C source code for our value-prediction-based 
compression utility is available to the research and teach-
ing community.  The code can be found at http://www.-
csl.cornell.edu/~burtscher/research/tracefilecompression/.  
A sample test file and a short tutorial on how to adapt the 

code to other trace formats are also included.  The code 
has been tested and compiled on UNIX systems using cc 
and gcc as well as on Windows under cygwin [10]. 

The remainder of this paper is organized as follows.  
Section 2 introduces the trace format and the value pre-
dictors we use.  Section 3 describes our compression and 
decompression algorithm.  Section 4 summarizes related 
work.  Section 5 explains the evaluation methods.  Sec-
tion 6 presents the results.  Section 7 points out directions 
for future work and Section 8 concludes the paper. 

 
2. Background 

2.1 Trace Format 

We use a generic trace format throughout this paper to 
keep the discussion simple.  Our traces consist of pairs of 
numbers.  The first number in a pair records the PC of an 
executed instruction and the second number records the 
corresponding extended data (ED).  The PCs are 32 bits 
wide and the extended data are 64 bits wide.  The uncom-
pressed trace begins with a 32-bit header that encodes an 
approximation of the range of the PCs in the trace (see 
below).  Thus, our traces have the following format (the 
subscripts indicate bit widths). 

Range32, PC_032, ED_064, PC_132, ED_164, … 

It would be straightforward to add a file magic, a 
length field, etc.  Other improvements such as storing 
only one PC per basic block are also possible but would 
unnecessarily complicate the presentation of our algo-
rithm.  We chose 64 bits for the ED entries because this is 
the native word size of the Alpha machine on which we 
performed our measurements. 

0 ≤ PC < range has to hold for all PCs in the trace, but 
not all PCs in the range have to occur.  In our traces, we 
use the number of (static) instructions in the program as 
the range and assign each instruction a virtual PC between 
zero and range-1.  With a trace-generation tool such as 
ATOM [6, 31], generating these virtual PCs is as easy as 
providing actual PCs.  Note that no pass over the data is 
required to obtain this information, as it is a statically 
known property of the binary.  All our binaries are non-
shared, i.e., they do not load dynamically linked libraries. 

 
2.2 Value Predictors 

We investigated a wide variety of value predictors and 
decided to use the following predictors, which have been 
experimentally determined to result in a good balance 
between the speed and the compression rate of our algo-
rithm on the load-value traces.  See also Section 5.3. 

Last n value predictor: The first type of predictor we 
use is the last n value predictor [2, 20, 34].  It predicts the 
most likely value among the n most recently seen values.  
To improve the compression rate, we use all n values (and 
not only the most likely value) and only update the pre-



 

 

dictor if the update value is not already among the n val-
ues in the selected predictor line.  If it is, a second copy of 
the value is not added but instead the value is moved to 
the front, which essentially makes the predictor a last n 
distinct value predictor with a least recently used (LRU) 
replacement policy.  We found n = 6 to work well.  We 
only use the last-six-value predictor for predicting the 
extended data but not for the PCs. 

Stride 2-delta predictor: Stride predictors retain the 
most recently seen value along with the difference (stride) 
between the most recent and the second most recent val-
ues [7].  Adding this difference to the most recent value 
yields the prediction.  Stride predictors can predict se-
quences that look as follows. 

A, A+B, A+2B, A+3B, A+4B, … 

Every time a new value is seen, the difference and the 
most recent value in the predictor are updated.  To im-
prove the prediction accuracy, the 2-delta method has 
been proposed [30], which uses a second stride.  The sec-
ond stride is updated only if the same stride is encoun-
tered at least twice in a row, thus providing some hystere-
sis before the predictor switches to a new stride.  We use 
stride 2-delta predictors for predicting the PCs and the 
extended data. 

Finite context method predictor: The finite context 
method predictor (FCM) [29, 30] stores the n most re-
cently seen values in a sliding window (FIFO).  n is re-
ferred to as the order of the predictor.  The predictor re-
cords the value that follows every seen sequence of n val-
ues in a hash table.  When making a prediction, a lookup 
is performed to find out if the current sequence of the n 
most recent values has already been encountered before.  
If so, the value that followed this sequence last time be-
comes the predicted value.  Most FCMs, including ours, 
do not actually check whether the sequence has already 
been seen before but simply accept the hash-table entry to 
speed up the predictor operation and to reduce the storage 
requirement [26, 27, 29].  We use several FCMs with dif-
ferent orders and the hash function proposed by Burtscher 
[1].  For the extended data, we use orders one, two, three, 
and six.  For the PCs, we only use a sixth-order FCM.  
The FCM predictors include saturating counters in the 
hash table to provide an update hysteresis.  Thus, entries 
that have provided correct predictions are only replaced 
after having been wrong at least twice in a row. 

Differential finite context method predictor: The 
differential finite context method predictor (DFCM) 
works exactly like the FCM.  The only dissimilarity is 
that it predicts and is updated with differences (strides) 
between consecutive values rather than absolute values 
[8].  The predicted stride has to be added to the most re-
cently seen value to form the final prediction. 

Again, we use several different orders of DFCMs to 
maximize the chance of at least one predictor being cor-
rect.  Moreover, we retain up to four values in each 

DFCM hash-table entry.  As with the last six value 
predictor, we make sure that the four values are distinct 
and use an LRU replacement policy.  Section 3.1 explains 
the reasons for these choices.  Since our DFCM predictors 
can hold multiple values, we found that no update hys-
teresis is needed. 

The DFCM predictors are the workhorses of our algo-
rithm.  We use orders four and six with two values per 
hash-table entry and order five with four values per entry 
for predicting the PCs.  For the extended data, we use 
orders one, two, and six with four values, order three with 
two values, and order four with one value per table entry. 

Global/local last value predictor: This is a new type 
of value predictor that we have developed for a different 
project.  We use it for compressing the extended data 
only.  It works like a last-value predictor, with the excep-
tion that each table entry contains two additional fields: 
an index and a counter.  The index designates which entry 
of the last-value table contains the prediction.  The 
counter assigns a confidence to the index.  If the confi-
dence is low and the indexed value incorrect, the index is 
incremented (modulo the table size) so that a different 
entry will be checked next time.  This way, the predictor 
is able to correlate any instruction with any other instruc-
tion but without the need for multiple comparisons per 
prediction or update (i.e., without associativity). 

 
3. Algorithm 

3.1 Compression 
32 32 64

range pc ed . . .

. . .

ed1 . . . edn

compare . . . compare
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m-bit
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predictornpredictor1

 
Figure 1: Initial compression algorithm. 

 
Our first attempt at a value-predictor-based compres-

sion algorithm compressed only the extended data and 
worked as follows.  The PC of the current PC/ED pair is 
fed to a set of value predictors that produces n (not neces-
sarily distinct) predictions.  Each prediction is compared 
to the ED from the trace.  If a match is found, the corre-
sponding predictor number is written to the compressed 



 

 

file using a fixed m-bit encoding.  If no predictor is cor-
rect, an m-bit dummy predictor number is written fol-
lowed by the unpredictable 64-bit value.  Then the predic-
tors are updated (light arrows).  The algorithm repeats for 
the remaining PC/ED pairs in the trace.  Figure 1 illus-
trates the process for the first PC/ED pair in the trace. 

Unfortunately, this algorithm does not work well be-
cause the PCs are not compressed and because m is too 
large.  Since we use 27 predictors plus a dummy predic-
tor, five bits are needed to encode a predictor number 
(i.e., m=5).  Furthermore, unpredictable entries are not 
compressed.  Overall, the algorithm cannot exceed a 
compression rate of 2.6 because even in the best case, a 
96-bit PC/ED pair (32-bit PC plus 64-bit extended data) is 
compressed to 37 bits (32-bit PC plus 5-bit predictor 
number). 
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Figure 2: Vpc compression algorithm. 

 

Our vpc algorithm corrects the above-mentioned 
shortcomings.  First, it compresses the PCs like the ED 
using a (separate) set of predictors.  Moreover, it encodes 
the predictor numbers using a dynamic Huffman encoder 
[17, 33] to minimize the number of bits required to ex-
press a predictor number.  If more than one predictor is 
correct, we pick the one that has the shortest code associ-
ated with it, i.e., the one with the highest usage frequency.  
Finally, our algorithm compresses the unpredictable val-
ues in the following manner.  In case of PCs, only 
log2(range) bits are written after the Huffman code for 
the dummy predictor.  All dropped bits are zero and can 
therefore be trivially reconstructed during decompression.  
In case of extended data, the dummy-predictor code is 
followed by the encoded number for the predictor whose 
prediction is closest to the actual value in terms of abso-
lute difference.  We then write the difference between the 
predicted value and the actual value in encoded sign-
magnitude format to save bits.  Figure 2 illustrates the 

operation of vpc’s compression algorithm on the first 
PC/ED pair. 

We implemented several additional enhancements to 
increase the compression rate.  First, we use an improved 
hash function for the FCM and DFCM predictors, which 
has been shown to utilize the hash table more effectively 
[1] and thus increases the number of correct predictions.  
Second, we added saturating up/down counters to the 
hash-table entries in the FCMs to provide an update hys-
teresis (see Section 2.2).  Third, we retain only distinct 
values in all multi-value predictors to maximize the num-
ber of different predictions and therefore the chances of at 
least one of them being correct.  Fourth, we keep the val-
ues in all multi-value predictors in least recently used 
order to skew the usage frequency of the predictor com-
ponents.  This works because of value locality [7, 21], i.e., 
because the most recently seen value has a higher chance 
of resulting in a correct prediction in the near future than 
an older value.  Skewing the usage frequencies increases 
the compression rate because it allows the dynamic 
Huffman encoder to assign shorter codes to the frequently 
used components and to use them more often.  Fifth, we 
initialize the dynamic Huffman encoder with biased, non-
zero frequencies for all predictors.  Doing so assigns valid 
codes to all predictors from the start.  Hence, we never 
have to dynamically extend the symbol set, which would 
complicate and slow down the algorithm.  Moreover, we 
bias the more sophisticated predictors more heavily than 
the simpler predictors.  If we did not do this, the more 
sophisticated predictors would initially be assigned long 
codes because they take longer to warm up.  As a conse-
quence, the simpler predictors would be chosen whenever 
possible and the more sophisticated predictors would only 
get to predict the values that the simple predictors cannot.  
Thus, the more sophisticated predictors could not catch up 
to the simpler predictors, resulting in suboptimal codes 
because all predictors would end up being used relatively 
often.  Biasing the frequencies in the beginning ensures 
that the most powerful predictors are used whenever they 
are correct and the remaining predictors are only utilized 
occasionally, resulting in shorter Huffman codes and bet-
ter compression rates. 

 
3.2 Decompression 

To decompress the trace, the compression steps are 
simply reversed.  Since regular files have a granularity of 
bytes but our algorithm requires a bit granularity, it is not 
always possible to determine the end of the compressed 
trace from the file length, which is why an additional 
header field is needed.  We use a 64-bit count to identify 
the end of the trace, which also allows us to check if the 
file has been corrupted.  Figure 3 illustrates the decom-
pression process. 
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Figure 3: Vpc decompression algorithm. 

 

4. Related Work 

Most early trace compression techniques are lossy be-
cause they employ filtering or sampling methods.  The 
few lossless approaches concentrate mostly on address 
traces.  Larus proposed Abstract Execution [18], where a 
small amount of runtime data drives the re-execution of 
the program slices that generate the program’s addresses.  
Pleszkun designed a two-pass trace compression algo-
rithm that encodes the dynamic basic block successors 
using a compact representation [25].  Other lossless trace 
compression algorithms include Mache [28], PDATS 
[14], PDI [15], and LD&R [5].  Mache, PDATS, and PDI 
work by exploiting spatiality (address differences) and 
sequentiality (repeat counts) of the trace.  These algo-
rithms use a second compression with an LZ77 [38] or 
LZW [35] algorithm to boost the overall compression 
rate.  LD&R (Loop-Detection and Reduction) detects 
loops in the address traces and extracts those references 
that are constant or change by a constant value between 
loop iterations before encoding the remainder of the refer-
ences.  While our approach incorporates some of the same 
ideas (it also exploits sequentiality and spatiality and 
benefits from a second compression step), the above-
mentioned algorithms do not reach our algorithm’s com-
pression rate because our algorithm can exploit a number 
of different patterns in addition to strided sequences and 
repetitions. 

 

4.1 Compression Algorithms 

This section describes the compression schemes with 
which we compare our approach in Section 6.  The first 
two are general-purpose algorithms that can be used to 
compress any kind of file.  The last two are special-
purpose algorithms that are tailored to specifically exploit 
our trace format. 

compress: The UNIX command compress imple-
ments the dictionary-based LZW algorithm [35].  The 

dictionary starts out with 512 entries and doubles in size 
whenever it gets full.  Once the maximum of 65,536 en-
tries is reached, the algorithm continues to use the exist-
ing dictionary but does not update it anymore.  If the 
compression rate falls below a predefined threshold, the 
old dictionary is abandoned and a new one is started, al-
lowing the algorithm to adapt to the next “block” in the 
file.  Compress operates at a byte granularity.  Its memory 
usage is insignificant compared to the other algorithms. 

gzip: Gzip is another general-purpose compression 
utility found on most UNIX systems [11].  It also operates 
at a byte granularity and implements a variant of the LZ77 
algorithm [38].  It looks for duplicated sequences of bytes 
(strings) within a 32kB sliding window.  The length of the 
string is limited to 256 bytes, which corresponds to the 
lookahead-buffer size.  Gzip uses two Huffman trees, one 
to compress the distances in the sliding window and an-
other to compress the lengths of the strings as well as the 
individual bytes that were not part of any matched se-
quence.  The algorithm finds duplicated strings using a 
chained hash table where each entry records three con-
secutive bytes.  In case of a collision, the hash chain is 
searched beginning with the most recently inserted string.  
A command-line argument determines the maximum 
length of the hash chains and whether lazy evaluation is to 
be used (we use --best).  With lazy evaluation, the algo-
rithm does not immediately use the matched sequence for 
the currently processed byte but first compares it to the 
matched sequence of the next input byte before selecting 
the longer of the two matches.  According to ps, the algo-
rithm requires approximately 2MB of memory when 
compressing our traces. 

lz77: Since gzip yields substantially better compres-
sion rates on our traces than compress (see Section 6.1.2), 
we modified gzip’s underlying LZ77 algorithm to handle 
the PC and ED streams separately (split-stream approach) 
and to exploit our trace format.  The resulting special-
purpose algorithm works on the granularity of trace en-
tries.  It uses a 32,768-entry sliding window and a 256-
entry lookahead buffer for each stream.  String duplica-
tions are found using a 65,536-entry hash table.  The 
hash-table entries are truncated if more than 32,768 
strings with same start symbol are encountered.  The 
memory usage of this algorithm is approximately 12MB.  
Note that our implementation of this algorithm is not op-
timized for speed and could be made significantly faster.  
We include it only to see how well a gzip-like algorithm 
can compress on our traces when it is made aware of the 
trace format. 

sequitur: The sequitur algorithm identifies hierarchi-
cal structures in the input sequence and converts them 
into a context-free grammar [22, 23, 24].  The algorithm 
applies two constraints while constructing the grammar: 
each digram in the grammar must be unique and every 
rule must be used more than once.  The biggest drawback 



 

 

of sequitur is its memory usage, which is linear in the size 
of the grammar.  We modified Larus’ implementation of 
sequitur [19] in two ways.  First, we construct two sepa-
rate grammars in parallel, one for the PCs and the other 
for the extended data (split streams).  Second, we start 
new grammars once the combined size of the two gram-
mars reaches 800MB to limit the algorithm’s memory 
usage.  The actual memory usage ranges from 20MB to 
around 1GB depending on the trace.  Sequitur is one of 
the best trace compression algorithms in the current litera-
ture. 

 
5. Evaluation Methods 

5.1 System 

Unless otherwise noted, all our measurements were 
performed on a 64-bit Alpha system with two 750MHz 
21264A CPUs [16].  Only one of the processors was used 
at a time, allowing the other CPU to handle daemons and 
other tasks to improve the timing accuracy.  Both proces-
sors have separate, on-chip, 2-way set-associative, 64kB 
L1 caches, a unified, direct-mapped 8MB L2 cache, and 
share 1.5GB of main memory.  The SCSI Ultra2/LVD 
hard drive has a capacity of 18GB (with about 10GB free) 
and spins at 10,000rpm.  The operating system is Tru64 
UNIX V5.1. 

 
5.2 Traces 

We used the eleven integer and four floating-point C 
programs from the SPECcpu2000 benchmark suite [13] to 
generate the traces for this study.  All programs were 
compiled with a high optimization level using the bundled 
C compiler and are run to completion with the SPEC-
provided test inputs. 

We generated three types of traces from these pro-
grams to evaluate our compression utility.  We picked 
traces for which we are aware of ongoing research that 
could benefit from the traced information. 

The first type captures the PC and load value of every 
executed load instruction (that is not a prefetch, a NOP, or 
a load immediate).  The second type of trace contains the 
PC and target of all indirect branch instructions.  The 
third type of trace stores the PC and effective address of 
each executed store instruction.  Note that our algorithm 
has only been optimized for the PC/load-value traces but 
not for the other two types of traces. 

Table 1 shows the uncompressed size (in megabytes) 
of the three traces for each program as well as which 
traces we excluded.  We excluded all traces with a size 
above ten gigabytes or below ten megabytes.  The former 
are excluded because they exceed the capacity of our hard 
drive and the latter because we consider them too short to 
be of interest since they can be compressed and decom-
pressed in a matter of seconds. 

Table 1: Size of the studied traces. 

gzip 7,881.4 too small 3,102.5
vpr 6,384.6 too small 1,857.6
gcc 4,361.7 80.0 2,151.6
mcf 456.6 too small 405.5
crafty too large 105.4 3,119.0
parser 9,002.0 too small 4,023.4
perlbmk 1,026.0 32.9 527.6
gap 2,988.6 135.7 1,238.9
vortex too large 26.8 too large
bzip2 too large too small too large
twolf 684.8 too small 190.0
mesa 5,972.7 259.6 3,655.4
art 4,466.0 too small 1,730.4
equake 3,701.0 32.2 1,264.4
ammp too large 21.1 3,813.0
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5.3 Predictor Configurations 

This section lists the sizes and parameters of the pre-
dictors our algorithm uses.  They are the result of experi-
mentation with the load-value traces to balance the speed 
and compression rate as well as the fact that we wanted to 
share tables between the predictors.  We used these con-
figurations to obtain the results presented in Section 6. 

Since no index is available for the PC predictors, all 
PC predictors are global predictors.  Accordingly, their 
first levels are very small.  The stride 2-delta predictor 
requires only 24 bytes of storage: eight bytes for the last 
value plus sixteen bytes for the two stride fields.  The 
sixth-order FCM predictor requires six two-byte fields to 
store six hash values in the first level.  The second level 
requires 4.5MB to hold 524,288 lines of nine bytes each 
(eight bytes for the value and one byte for the saturating 
counter).  The DFCM predictors share a first-level table, 
which requires six two-byte fields for retaining the hash 
values.  The most recent value is obtained from the stride 
predictor.  The fourth-order DFCM has two second-level 
tables of one megabyte each (131,072 lines), the fifth-
order DFCM has four tables of two megabytes each 
(262,144 lines), and the sixth-order DFCM has two tables 
of four megabytes each (524,288 lines).  Since we do not 
use saturating counters in the DFCMs, each second-level 
entry requires eight bytes to hold a 64-bit value.  Overall, 
22.5 megabytes are allocated for the ten PC predictors. 

The predictors for the extended data use the PC as an 
index, which allows them to store information on a per 
instruction basis.  Their first-level tables are correspond-
ingly larger.  The last six value predictor uses six tables of 
128kB (16,384 lines).  The stride 2-delta predictor re-
quires 256kB of table space for the strides (16,384 lines).  
The last-value table is shared with the last six value pre-
dictor.  The FCM predictors share six first-level, 32kB 



 

 

tables, each holding 16,384 two-byte hash values.  Simi-
larly, the DFCMs share a set of six 32kB first-level tables.  
The second-level table sizes are as follows.  The first-
order FCM uses a 144kB table (16,384 lines holding an 
eight-byte value plus a one-byte counter), the second-
order FCM uses a 288kB table (32,768 lines), the third-
order FCM has a 576kB table (65,536 lines), and the six-
order FCM requires 4.5MB (524,288 lines).  The first-
order DFCM has four tables of 128kB (16,384 lines hold-
ing an eight-byte value), the second-order DFCM uses 
four 256kB tables (32,768 lines), the third-order DFCM 
requires two 512kB tables (65,536 lines), the fourth-order 
DFCM has one 1MB table (131,072 lines), and the sixth-
order DFCM needs four 4MB tables (524,288 lines).  Fi-
nally, the global/local last value predictor uses 128kB of 
storage (16,384 lines containing a four-byte index and a 
four-byte counter).  Together, the 27 value predictors use 
26.5MB of table space. 

Overall, 49 megabytes are allocated to the predictor 
tables in our compression algorithm.  Including the code, 
libraries, padding, etc., our compression utility requires 
88MB of memory to run as reported by the UNIX com-
mand ps. 

 
6. Results 

The following sections describe the results.  Section 
6.1 focuses on the load-value traces, Section 6.2 on the 
indirect-branch-target traces, and Section 6.3 on the store-
effective-address traces. 

 
6.1 Load-Value Traces 

6.1.1 Predictability 
The effectiveness of our compression algorithm 

hinges on the predictability of the trace entries.  To reach 
good compression rates, the prediction accuracy has to be 
in the nineties.  This is much higher than what value pre-
dictors normally deliver.  The predictors in the literature 
are geared towards hardware implementations and there-
fore tend to be small and less accurate.  More importantly, 
they are allowed to predict only one value at a time.  Fur-
thermore, if multiple predictors are used (hybrid), a selec-
tor has to choose one of them, which introduces additional 
inaccuracies [3].  Our algorithm does not have these re-
strictions.  First, it is easy to make the predictor tables 
large in software (Section 5.3).  Second, our selection 
process is perfect since we know ahead of time what 
value we are looking for and therefore which predictor to 
choose.  Consequently, we can make effective use of a 
large number of predictors, which is why we are able to 
achieve the high prediction accuracies required for good 
compression.  Figure 4 shows the predictability of the PCs 
and load values in the eleven load-value traces. 
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Figure 4: Predictability of the load-value trace entries. 

 
As the figure illustrates, the set of predictors we use 

can indeed predict most of the trace entries correctly, es-
pecially the PCs, which we expected to be more predict-
able (and compressible) than the load values.  Even in the 
worst case (gcc), 98.2% of the PCs are predicted correctly 
by at least one of the ten PC predictors, with an average 
of 99.3%.  On average, 91.2% of the load values are pre-
dictable.  In the worst case (gzip), 77.6% of the load val-
ues can be predicted by at least one of the 27 extended-
data predictors. 

While these numbers are encouraging, they are at best 
an approximation of the resulting compression rate, which 
is our true metric.  The compression rate depends not only 
on how many of the trace entries are predictable but also 
on which predictor can predict them and when a predic-
tion is made since the length of the Huffman codes is dif-
ferent for different predictors and changes over time. 

 
6.1.2 Compression Rate 

Figure 5 shows the compression rates of the four 
compression algorithms discussed in Section 4.1 as well 
as vpc, our value-prediction-based approach, on the load-
value traces.  Vpc2 is discussed below. 

 

0

10

20

30

40

50

60

70

gz
ip vp

r
gc

c
m

cf

pa
rs

er

pe
rlb

m
k

ga
p

tw
olf

m
es

a ar
t 

eq
ua

ke

ge
o_

m
ea

n

load-value trace

co
m

pr
es

si
on

 r
at

e 
(f

ac
to

r)

compress
gzip
lz77
sequitur
vpc
vpc2

168  1980

 
Figure 5: Compression rates on the load-value traces. 



 

 

For nine of the eleven traces, vpc reaches higher com-
pression rates that the four non-vpc schemes.  Sequitur 
and lz77 outperform vpc slightly on twolf and signifi-
cantly on mesa. 

The reason for vpc’s relatively poor performance on 
mesa is that it cannot compress traces by more than a fac-
tor of 48.  This is because at least one bit is needed to 
encode a PC and one bit to encode an extended data entry.  
Since an uncompressed PC/ED pair requires 32+64=96 
bits, the maximum compression rate is 96/2=48.  The fact 
that vpc almost reaches this compression rate on mesa 
(factor 46.5) is reassuring.  It shows that the dynamic 
Huffman encoder works well and almost always requires 
only one bit to encode a predictor number.  Note that this 
implies that the same PC and ED predictors are used most 
of the time because only one PC and one ED predictor 
can have a one-bit code at a time.  Since PC and ED pre-
dictor codes alternate in our compressed traces (Section 
3.1), the vpc-compressed mesa trace should therefore con-
tain long bit strings of zeros, ones, or alternating zeros 
and ones, depending on whether both predictors are as-
signed a code of 0, both predictors are assigned a code of 
1, or one predictor’s code is 0 and the other one’s code is 
1.  This, of course, means that the compressed trace is 
itself highly compressible.  To exploit this fact, we further 
compressed the vpc-compressed traces with gzip.  We call 
this scheme vpc2. 

As Figure 5 shows, vpc2 works very well and im-
proves upon vpc in all cases.  It compresses mesa by a 
factor of 1980.6, which is 11.8 times as much as sequitur.  
There is only one trace (twolf) on which sequitur slightly 
outperforms vpc2.  Vpc2’s geometric mean compression 
rate is almost twice that of sequitur and more than twice 
that of the other three non-vpc schemes.  Note that all 
schemes (including gzip itself) benefit from an additional 
gzip compression step albeit not nearly as much as vpc. 

 

6.1.3 Compression/Decompression Speed 

A good compression rate is highly desirable but at the 
same time useless if it can only be attained at an extraor-
dinary cost in compression and particularly in decompres-
sion time. 

Figure 6 shows the average (geometric mean) time in 
minutes it takes to compress, transfer, and decompress the 
load-value traces when they are sent over an Internet con-
nection with a throughput of 330 kilobytes per second, as 
we measured between Cornell University and the Univer-
sity of Colorado at Boulder. 

Our algorithm is the second fastest at compressing the 
traces in almost all cases and also on average.  Only com-
press is faster, but its compression rate is by far the low-
est.  Vpc takes on average 18.8 minutes and vpc2 21.7 
minutes to compress one of the traces.  The same task 
takes compress 6.8, gzip 51, sequitur 158, and lz77 259 

minutes.  This is surprising because the slower algorithms 
do not reach vpc’s and vpc2’s compression rates. 
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Figure 6: Average time to compress, send, and de-

compress a load-value trace. 
 
Unfortunately, vpc2 is the second slowest algorithm at 

decompressing the traces.  It takes vpc 13.3, vpc2 13.5, 
compress 3.6, gzip 1.3, sequitur 3.7, and lz77 162.8 min-
utes on average to decompress the load-value traces.  
However, our algorithms easily make up for the longer 
decompression time by the fast compression and transfer 
speed.  Since vpc2 has the highest compression rate, it 
also incurs the shortest transfer time.  On average, it de-
livers (i.e., compresses, transfers, and decompresses) the 
traces 41% faster than compress and 3.8 times as fast as 
no compression. 

Interestingly, compress is the second best choice due 
to its fast compression and decompression speed and de-
spite its low compression rate.  Using sequitur or lz77 is 
slower than using no compression at all. 

Note how little time the gzip step adds to vpc2’s com-
pression and in particular decompression time.  The latter 
is not surprising as gzip has the fastest decompression 
speed.  The extra compression time is not very high, ei-
ther, because gzip starts out with an already compressed 
trace, i.e., a much shorter trace. 

Clearly, transferring traces over a network benefits 
from compression.  However, a more likely scenario is to 
drive a trace consumption tool (e.g., a simulator) from a 
locally stored, compressed trace.  In such a case, only the 
decompression speed matters.  Figure 7 shows the de-
compression times of the six algorithms on the load-value 
traces.  Since the times vary greatly, the y-axis is loga-
rithmic. 

Except for lz77, which is not optimized for speed, vpc 
and vpc2 are slower at decompressing the traces than the 
other schemes (see Section 7 for possible remedies).  Due 
to the symmetric nature of our algorithm, compression 
and decompression take roughly the same amount of time.  
On average, sequitur is 3.6 times faster at decompressing 
the traces.  Note, however, that in spite of its relatively 



 

 

slow decompression speed, our algorithm still recreates 
the original traces at 3.5 megabytes per second. 
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Figure 7: Decompression time on the load-value 

traces. 

 

6.2 Indirect-Branch-Target Traces 

Since we optimized several aspects of our algorithm 
(in particular the type and configuration of the predictors) 
to work well with the load-value traces, we also wanted to 
test our algorithm on traces for which it has not been op-
timized. 

One type of trace we chose for this experiment con-
sists of the PCs and targets of indirect branches.  The 
compression rates on these traces are shown in Figure 8. 
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Figure 8: Compression rate on the indirect-branch-

target traces. 

 
Since branch targets are themselves PCs, the indirect-

branch-target traces effectively comprise only PCs.  This 
is why they are so much more compressible than the load-
value traces, as is evident from the high compression rates 
shown in Figure 8.  While no algorithm we investigated 
was able to compress the load-value traces by more than a 
factor of 35, sequitur and vpc2 compress the indirect-

branch-target traces by more than a factor of 150 on aver-
age.  Vpc2 compresses mesa by factor of 6170. 

Vpc achieves an average compression rate of 38 on 
these traces.  The reason for its poor performance is the 
aforementioned maximum compression rate of 48, which 
it almost reaches on equake (47.3).  On half of the traces, 
vpc exceeds a compression rate of forty. 

On the majority of the indirect-branch-target traces, at 
least one of the other schemes outperforms vpc2, although 
never by more than 69%. 

The indirect-branch-target traces are the only traces 
we studied in which the extended data were more predict-
able than the PCs.  Even in the worst case, 99.6% of all 
the branch targets are predictable (vortex) compared to 
98.4% for the PCs (gcc). 

 
6.3 Store-Effective-Address Traces 

The other kind of trace our compression scheme has 
not been optimized for tracks the PCs and the effective 
addresses of store instructions.  The corresponding com-
pression rates are depicted in Figure 9. 
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Figure 9: Compression rate on the store-effective-

address traces. 
 
Like the load-value traces and unlike the indirect-

branch-target traces, the average attainable compression 
rates for the store-effective-address traces are below a 
factor of fifty for all approaches. 

Sequitur outperforms vpc2 on vpr, crafty, and twolf, 
and lz77 outperforms vpc on twolf.  In all other cases, 
vpc2 delivers the best compression rate, often by a large 
margin.  It compresses ammp 22.8 times as much as the 
second best approach (gzip). 

Vpc2’s geometric mean compression rate is 2.6 times 
higher than that of the second best algorithm (sequitur).  
Note that vpc2 compresses all store-effective-address 
traces by at least a factor of 19.1 while the remaining 
schemes only reach minimum factors of 2.9 (compress) to 
6.5 (gzip). 

 



 

 

7. Future Work 

While our compression algorithm delivers the highest 
compression rates and very fast compression, it is rather 
slow at decompression.  To improve the relatively slow 
decompression speed, we intend to fuse the prediction and 
update code.  In the current implementation, all the pre-
dictors are accessed once to make a prediction and then 
again to perform the updates.  Since most of the time is 
spent computing the indices into the various tables, con-
solidating the prediction and update code should signifi-
cantly speed up the compression and in particular the de-
compression as only half as many indices will have to be 
computed.  Moreover, we are planning to integrate the 
gzip step into vpc2, which should further speed up the 
algorithm because no intermediate file will have to be 
created. 

We intend to study traces from other programs as well 
as traces containing different information to further evalu-
ate and improve our compression utility.  We will also 
investigate additional compression schemes, both generic 
ones and ones that we adapt to take advantage of our trace 
format.  For example, bzip2 [9] is of interest because of 
its high compression rates and lzop [12] because of its 
speed. 

Our algorithm is modular and extensible, making it 
easy to add or remove predictor components.  This way, 
we should be able to trade off compression speed for 
compression rate and vice versa.  Also, when new predic-
tors become available, we will incorporate them to see if 
they improve the compression rate further. 

It is unclear whether our compressed traces reveal any 
interesting information about the original trace.  This is a 
key strength of sequitur, which exposes hot program paths 
in the compressed format [19].  We will investigate 
whether, for example, the type of predictor used to com-
press a given PC/ED trace entry provides useful informa-
tion. 

Zhang and Gupta improved the compression rate of 
sequitur by splitting traces up by functions, i.e., they gen-
erate a subtrace for each function in the program (called a 
path trace) and then compress the subtraces individually 
[37].  We believe the same approach can be used to fur-
ther improve the compression rate of our scheme. 

Our current trace format requires decompressions to 
always start at the beginning of a trace, even if only a 
section from the middle of the trace is needed.  We will 
investigate whether an approach like Zhang and Gupta’s 
path traces would allow us to more quickly access infor-
mation in the trace. 

Another interesting idea whose applicability to our 
algorithm we would like to investigate is Chilimbi’s hot 
data streams [4].  He uses sequitur to produce series of 
traces with increasing compactness but lower precision.  
We will study the usefulness of our traces when certain 

trace entries, e.g., all the last-value predictable ones, are 
omitted. 

We are planning to replace the dynamic Huffman 
coder with an arithmetic coder [36], which should yield 
better compression rates because it can represent predictor 
codes with less than one bit on average. 

Another possible extension of this work is to study the 
usefulness of special instructions to support compression 
and decompression in hardware. 

Finally, we believe a hybrid scheme that uses one al-
gorithm to compress the PCs and a different algorithm to 
compress the extended data would likely result in the best 
overall compression rates.  In particular, it seems like 
sequitur should be used to compress the PCs and our algo-
rithm for the extended data.  We will investigate such a 
hybrid approach. 

 

8. Conclusions 

This paper presents a novel compression algorithm for 
program traces that contain extended data such as register 
values or effective addresses.  Our approach uses a set of 
value predictors to compress the trace entries and delivers 
substantially improved compression rates, especially on 
traces where it matters the most, i.e., on traces that other 
algorithms cannot compress well.  For example, our 
scheme compresses SPECcpu2000 traces of store-
instruction PCs and effective addresses up to 22.8 times 
(2.6 times on average) as much as gzip, compress, lz77, 
and sequitur, even though we modified lz77 and sequitur 
to take advantage of our trace format.  Moreover, the low-
est compression rate of our algorithm on these traces is 
19.1 while the other schemes reach rates of only 2.9 to 
6.5.  These results make our scheme ideal for trace data-
bases and on-line trace collections. 

In addition to the good compression rates, our ap-
proach features a single-pass linear-time algorithm, a 
fixed memory requirement, and fast compression.  It is 
modular and extensible, making it easy to add and remove 
predictor components, allowing users to adapt the scheme 
to exploit additional patterns.  The source code of our 
compression utility and a brief tutorial are available at 
http://www.csl.cornell.edu/~burtscher/research/tracefile-
compression/. 
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