INSTITUTO SUPERIOR TÉCNICO

Arquitectura de Computadores

Ano Lectivo de 2008/2009

2º Semestre

2º Teste

9 de Junho de 2009

Duração: 1h30+0h30

- O teste é sem consulta, apenas tem disponível o anexo que lhe deverá ter sido entregue com o teste. Por favor, não escreva nesse anexo e devolva-o no final do teste.
- Resolva o teste no próprio enunciado, o espaço reservado para cada pergunta é suficiente para a sua resposta. Tenha em atenção que cada grupo deve ficar em folhas separadas. Utilize as costas das folhas para rascunho.
- Identifique todas as folhas que entregar, folhas não identificadas não serão cotadas!
- Responda ao teste com calma. Se não sabe responder a uma pergunta, passe à seguinte e volte a ela no fim.

I. (2 + 2 + 2,5 = 6,5 val.)

As perguntas deste grupo referem-se todas ao processador P3 e são independentes entre si.

1. Indique quais as micro-operações realizadas pela micro-instrução 76037799h.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0		4 5	13	22	IAK		F	М				CALU	J		MA	МВ	M2	MRB		R	:B		WM	WR	M	ID	Ą		R.A	VD.	
1	1	11.5	SR	SR	LS	M	1CON	ID	СС	LI	LF					(CONS	T/NA						WK	101	ıD	M/		K	ъ	

Operações realizadas (em RTL):	

NOTAS:

- a resposta é para ser dada na tabela à esquerda; utilize apenas as posições que considere necessárias
- a tabela em cima pode ser usada como rascunho
- 2. Considere que se pretende que as seguintes micro-operações se realizem num único ciclo de relógio:

$$\texttt{!c?CAR} {\leftarrow} \texttt{100h, SBR} {\leftarrow} \texttt{CAR+1, SD} {\leftarrow} \texttt{0F00h, RE} {\leftarrow} \texttt{SD}$$

Indique na tabela seguinte a codificação de uma micro-instrução que faz com que isso aconteça ou justifique que tal não é possível.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0		M 5	72	SR2	IAK		F	M			(CALU	ſ		MA	МВ	M2	MRB		R	В		WM	WR	М	ID.	ξD.		R.A	VD.	
1	,	V15	SR	SI	LS	N	1CON	ID	СС	LI	LF					(CONS	T/NA						WK	141	ID.	W/W		Kr	1D	

NOTA: Preencher com 0, 1 ou X para os sinais indiferentes.

Número:	Nome:	1/7
---------	-------	-----

3. Pretende-se implementar no processador P3 a instrução *checksum*: CHSUM op1, op2. Esta instrução efectua a operação ou-exclusivo (XOR) sobre todas as palavras de 16 bits de um dado vector com op2 elementos, armazenado em memória a partir do endereço dado por op1. Caso o número de elementos do vector (op2) seja positivo, a instrução deverá devolver, em op1, o valor complementar do *checksum* calculado. Caso contrário deverá devolver a constante FFFFh. Em qualquer dos casos, deverá ainda actualizar as flags Z e N, de acordo com o valor retornado em op1.

Ilustra-se abaixo uma implementação desta função na linguagem C, bem como uma possível invocação da rotina pretendida, na linguagem assembly:

Preencha a tabela com o micro-programa correspondente à fase de execução da instrução CHSUM. Deverá utilizar exclusivamente as micro-instruções disponibilizadas na tabela abaixo. Apenas deverá indicar na folha de resposta o número de cada uma das micro-instruções utilizadas.

CHSUM0:	
CHSUM1:	R8<-R0
CHSUM2:	
CHSUM3:	c?CAR<-CHSUM11
CHSUM4:	
CHSUM5:	z?CAR<-CHSUM11
CHSUM6:	
CHSUM7:	
CHSUM8:	RD<-RD+1
CHSUM9:	
CHSUM10:	!z?CAR<-CHSUM6
CHSUM11:	
CHSUM12:	CAR<-WB, RD<-R8

NOTA: Nas posições livres indique o <u>número</u> da micro-instrução (de acordo com a lista abaixo).

Nž	Micro-Instrução
1	CAR<-IF0
2	CAR<-IF1
3	CAR<-F1
4	CAR<-F2
5	SBR<-CAR+1, CAR<-F1
6	SBR<-CAR+1, CAR<-F2
7	SBR<-CAR+1, CAR<-WB
8	CAR<-IH0
9	CAR<-WB
10	CAR<-CAR+1
11	R8<-R8 ⊕ R9
12	R8<-R8 + R9
13	R8<-R8 ∨ R9
14	R8<-R8 ∧ R9
15	R9<-R8 ⊕ R9
16	R9<-R8 + R9
17	R9<-R8 ∨ R9
18	R9<-R8 ∧ R9

Nž	Micro-Instrução
19	R8<-M[R9]
20	R8<-M[EA]
21	R8<-M[SD]
22	R8<-M[RD]
23	R9<-M[R8]
24	R9<-M[EA]
25	R9<-M[SD]
26	R9<-M[RD]
27	R8<- /R8
28	R8<- /R9
29	R9<- /R8
30	R9<- /R9
31	R8<- /R8, Flags Z,N
32	R8<- /R9, Flags Z,N
33	R9<- /R8, Flags Z,N
34	R9<- /R9, Flags Z,N
35	shl RD
36	shr RD

Nž	Micro-Instrução
37	shl SD
38	shr SD
39	shl SD, Flags C, Z
40	shl RD, Flags C, Z
41	RD<-shr RD
42	RD<-shl RD
43	SD<-shr SD
44	SD<-shl SD
45	RD<-R0
46	RD<-RD+1
47	RD<-RD-1
48	RD<-RD+1, Flags Z
49	RD<-RD-1, Flags Z
50	SD<-SD+R0
51	SD<-SD+1
52	SD<-SD-1
53	SD<-SD+1, Flags Z
54	SD<-SD-1, Flags Z

2/7

II.
$$(2,5_{1,5+0,3+0,7} + 4_{0,5+1,5+1+1} + 2_{0,4+0,4+0,4+0,4+0,4} = 8,5 \text{ val.})$$

- 1. Considere um sistema com um processador que possui 16 linhas de endereço de A15 (maior peso) a A0 (menor peso). Neste sistema existem 3 circuitos de memória:
 - ROM M1 Possui 16k palavras e ocupa a gama de endereços mais baixos.
 - ROM M2 Possui 8k palavras e ocupa a gama de endereços imediatamente a seguir à ocupada pela memória M1.
 - RAM M3 Possui 8k palavras e ocupa a gama de endereços com início em 8000h.
 - a) Indique quais as funções de descodificação destas memórias, MS *Memory Select* (circule a letra correcta em cada).

	ROM M1
A:	$MS1 = \overline{A15}.\overline{A14}$
B:	MS1 = A15.A14
C:	$MS1 = \overline{A0}.\overline{A1}$
D:	$MS1 = \overline{A15}.\overline{A14}.\overline{A13}$
E:	$MS1 = \overline{A0}.\overline{A1}.\overline{A2}$
F:	Nenhuma destas

	ROM M2
A:	$MS2 = A15.\overline{A14}.A13$
B:	$MS2 = \overline{A15}.A14.\overline{A13}$
C:	$MS2 = \overline{A0}.A1.\overline{A2}$
D:	$MS2 = \overline{A15}.\overline{A14}$
E:	$MS2 = \overline{A0}.A1$
F:	Nenhuma destas

	RAM M3
A:	$MS3 = \overline{A15}.A14.A13$
B:	$MS3 = A15.\overline{A14}.\overline{A13}$
C:	$MS3 = A0.\overline{A1}.\overline{A2}$
D:	MS3 = A15.A14
E:	MS3 = A0.A1
F:	Nenhuma destas

3/7

- b) Indique a dimensão do espaço de endereçamento não ocupado pelas memórias:
- c) Considere um sistema desenvolvido com base no P3 que usa interrupções e que necessita de 7k palavras de memória para código e 3k palavras de memória para dados. Para realizar o sistema dispõe de memórias ROM de 4k palavras e memórias RAM de 16k palavras. Indique:
 - O menor número de memórias ROM que necessita usar:
 - O menor número de memórias RAM que necessita usar:
 - A partir de que endereço colocaria a(s) memória(s) de código:
 - A partir de que endereço colocaria a(s) memória(s) de dados:

Número:______Nome:_____

		n capacida	de de 2k p	de endereçame oalavras e bloce ok com write-al	os de 4 pal	•	
que a largura	em número de	bits dos c	ampos de	etiqueta, índice	e e desloca	mento da ca	iche.
queta:		Índice:		[Deslocame	nto:	
isidere que se	executa o segu	iinte progr	ama.				
ZE EQU	1000h						
SK EQU	000Fh						
ORIG	8000h						
TAB	SIZE						
TAB	SIZE						
ORIG	0000h						
MOV	R1, R0						
op: MOV	R2, M[]	R1+A]					
AND	R2, MA	SK					
ADD	M[R1+B], R2					
INC	R1						
CMP	R1, SI	ZE					
BR.N	Z Loop						
•		-		a para dados e <i>rate</i>) na cache	•	ecuta o pro	grama
0% B: 33%	C: 50% I	D: 75% I	E: 83%	F: Nenhuma de	stas		
que um valor	de SIZE que p	ermitiria n	nelhorar e	A e B na taxa c	esso.		e dado
100h B: 80	0h C: 2000h	D: 4000		ZE não afecta	F: Nenh	ıma destas	
				esta taxa]
		esso à cach	_	e cache. O tem ns. Se a taxa de			_
é de 100ns e o	_						
é de 100ns e o	_	leitura.					
sidere	00ns = 0	_	_	_	_		Ons e o tempo de acesso à cache é de 20ns. Se a taxa de sucesso for de 75% i dio para um acesso de leitura.

3. Considere um sistema de memória virtual paginada. O espaço de endereçamento virtual é constituído por 16 páginas, cada uma com 32 palavras. O espaço de endereçamento físico é constituído por 8 páginas.
a) Indique o número de bits do campo de deslocamento de um endereço virtual:
b) Indique o espaço de endereçamento virtual:
c) Pretende-se aceder ao endereço virtual 13Ch. Indique, em hexadecimal, o índice da tabela de páginas que será consultado:
d) Indique o número de bits guardados em cada entrada da tabela de páginas: (sem contabilizar os bits de controlo)
e) No acesso ao endereço virtual 13Ch foi lido da tabela de páginas o valor 3.
Indique, em hexadecimal, o endereço físico que será acedido:

Nome:____

Número:_____

5/7

111. $(1+1+1,5+1,5=5 \text{ val.})$
1. Numa transmissão de informação através de comunicação série assíncrona, primeiro é enviado o bit menos significativo de um valor de 8 bits, é usado 1 <i>stop</i> bit e paridade par. No receptor foi lida a seguinte sequência:
1111101111111111111100000000010101011111
Indique, em hexadecimal, os valores recebidos e verifique se houve algum erro na transmissão. Justifique a sua resposta.
2. Numa transmissão série síncrona orientada ao bit, pretende-se transmitir a sequência
111110111101111111111111111111111111111
Indique a sequência de bits a enviar (ignore a parte do cabeçalho e verificação de erros e assuma a
flag habitual 01111110). (nota: utilize só as posições da tabela que considere necessárias)

Número:______ Nome:_____

6/7

3. Num sistema com DMA,	indique a vantagem principal da existência de uma cache no sistema.
4. Tendo apenas em conta o escrita mais desejável para a	ponto de vista do controlador DMA, indique justificando qual a política de cache do sistema
eserria mais desejaver para a	cache do sistema.
Número:	Nome: