INSTITUTO SUPERIOR TÉCNICO

Arquitectura de Computadores

Ano Lectivo de 2008/2009

2º Semestre

1º Teste

20 de Abril de 2009

Duração: 1h30+0h30

- O teste é sem consulta, apenas tem disponível o anexo que lhe deverá ter sido entregue com o teste. Por favor, não escreva nesse anexo e devolva-o no final do teste.
- Resolva o teste no próprio enunciado, o espaço reservado para cada pergunta é suficiente para a sua resposta. Tenha em atenção que cada grupo deve ficar em folhas separadas. Utilize as costas das folhas para rascunho.
- Identifique todas as folhas que entregar, folhas não identificadas não serão cotadas!
- Responda ao teste com calma. Se não sabe responder a uma pergunta, passe à seguinte e volte a ela no fim.

I. (1 + 1 + 1 + 2 = 5 val.)

Considere os seguintes valores para os registos do processador P3:

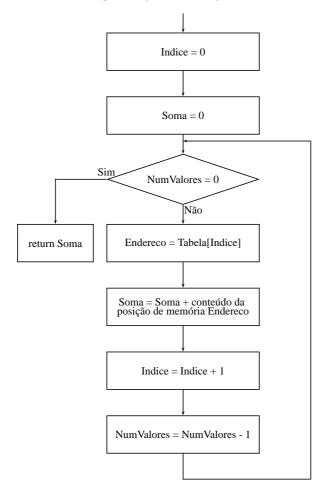
R1	R2	R3	R4	R5	R6	R7	PC	SP	RE
10D2h	5282h	1534h	3021h	F289h	2B50h	BCB9h	3CF0h	E546h	001Ch

Para as perguntas 1, 2 e 3, indique quais são os novos valores, em hexadecimal, de todos (**e apenas**) os registos que são escritos na execução de cada instrução. Use ? para indicar que não tem informação suficiente para determinar o novo valor de um registo.

As perguntas são independentes, isto é, assuma como **valores iniciais** para cada pergunta os indicados na tabela acima.

1. XOR R7,R1

	,								
R1	R2	R3	R4	R5	R6	R7	PC	SP	RE
2. POI	2. POP M[R5]								
R1	R2	R3	R4	R5	R6	R7	PC	SP	RE
3. BR.NO -1									
R1	R2	R3	R4	R5	R6	R7	PC	SP	RE


- 4. Na execução da instrução DIV R0, M[R2+4Ah], indique na tabela seguinte qual é a sequência de acessos à memória, especificando o valor do barramento de endereços, do barramento de dados e tipo de acesso (leitura/escrita).
 - Nota 1: a tabela tem 5 posições, utilize apenas as que achar necessárias.
 - Nota 2: utilize os valores iniciais dos registos indicados na tabela no cimo desta página.
 - Nota 3: use ? para indicar que não tem informação suficiente para determinar um dado valor.

	Endereço	Dados	Leitura/Escrita
1			
2			
3			
4			
5			

Númoros	Nome:	1/6
Número:	NOIDE.	1/0

II. (3 + 1,5 = 4,5 val.)

Considere uma rotina descrita pelo seguinte fluxograma:

1. Escreva esta rotina em Assembly do P3. Assuma que os parâmetros de entrada e de saída são passados pela pilha, colocados na seguinte ordem: saída; Tabela; NumValores.

2. Descreva a alto nível, e de forma sucinta, a função realizada por esta rotina.

Número:______ Nome:_____

2/6

III. (1,5+1+1,5+1,5=5,5 val.)

Considere o seguinte excerto de um programa para o processador P3 que implementa um relógio digital, com indicação das horas e minutos (ex: 22:54).

```
BASETIME
             EQU
TIMER_UNITS EQU
                  FFF6h
TIMER_CTRL EQU
                  FFF7h
             ORIG 0000h
Watch:
             MOV
                  R1, BASETIME
             MOV
                  M[TIMER_UNITS], R1
             MOV
                  R1, 1h
                  M[TIMER_CTRL], R1
             MOV
                  R7, Update
M[SP+1], R7
             MOV
             XCH
             PUSH R7
PUSH R1
Update:
             PUSH R2
             INC
                  M[Minutes]
                  R1, M[Minutes]
R2, 60
             VOM
             MOV
             DIV
                  R1, R2
                  M[Minutes], R2
             MOV
             ADD
                  M[Hours], R1
             MOV
                  R1, 24
             CMP
                  M[Hours], R1
             BR.N ExitUpdate
                  M[Hours], R0
             MOV
ExitUpdate: POP
                  R2
             POP
                  R1
             RET
             CALL WriteHours
Loop:
             CALL WriteMinutes
             BR
                  Loop
```

1. Indique, justificando, a funcionalidade deste programa. Em particular, explique em que circunstâncias é que a rotina Update é executada.

2. Indique o valor com que deve ser inicializada a constante BASETIME. Justifique a sua resposta.

	eunstâncias, um con ocorrer.	portamento anómalo. Identifique uma situação em que tal anom	nalia poss
		início da execução, verificou-se que o programa apresenta, em	
•	23.		
P	02		

IV. (1+1+3=5 val.)

1.	$\label{eq:continuous} Em\ linguagem\ C,\ a\ declaração\ de\ uma\ matriz\ \'e\ dada\ por\ \verb short $	int	A[8][5];.
	A declaração equivalente em Assembly do P3 será:		

Determine o endereço de memória onde se encontra o elemento da matriz A[4][3].

2. Utilizando uma sequência de, no máximo, 2 instruções Assembly do P3, indique 3 formas diferentes de colocar o valor 0 no registo PC. O valor de todos os bits de estado e de todos os outros registos deve ficar igual. A mesma instrução não pode ser repetida em nenhuma das alternativas, e só pode usar saltos condicionais no máximo numa das alternativas.

Número:______ Nome:_____

5/6

	afirmações são verdade lores; o valor mínimo da	_	ergunta certa +0,6 val.; cada
 a) Dentro de uma rot são equivalentes. 	iina de tratamento a uma	interrupção, as instruç	ões STC e OR M[SP+2],4
	Verdadeiro	Falso	Depende
b) Após a execução	da seguinte sequência de DSI POP SUB	e instruções no P3, o bi R1 R1, M[SP]	it de estado Z fica a 0.
	Verdadeiro	Falso	Depende
c) É possível represe	entar de forma exacta no Verdadeiro	P3, usando vírgula fix Falso	a, o valor 18,75. Depende
d) A instrução BR. 2	Z 0 é em tudo equivalen Verdadeiro	te à instrução NOP. Falso	Depende
e) No processador I op1, op2, é 5F	_	para uma nova instru Falso	nção de 2 operandos, XPTO Depende