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Summary 
This paper introduces a software package 
developed to assist the hardware/software co-
design of digital systems. The main purpose of this 
work is the transformation of a high-level 
specification using C programming language into 
RTL VHDL. In the last years several translators from 
C and C++ to VHDL have been developed but all of 
them are using a subset or a superset of C in order 
to include timing structures into the language. The 
present method performs the translation of a 
program written in standard C language into two 
files, a VHDL file at Register Transfer Level and a C 
program that, together, will perform the same 
function as the input program but with a significant 
performance boost. A special attention is devoted to 
the system synthesis module where the VHDL file at 
Register Transfer Level is generated. Two FPGA 
implementation examples are presented, leading to 
sequential and combinational circuits, derived from 
the analysis of the data and control structures of C 
functions used to validate the hardware/software 
co-design methodology. 
 

1 Introduction 

Computationally intensive applications typically 
spend most of their running time within small parts of 
the executable code whereas the rest of the program 
is executed in a short time period. In many of these 
applications substantial improvements can be 
achieved by adapting the configuration of the 
processor to these frequently accessed parts of 
code. These computing systems, called Custom 
Computing Machines, are composed by a 
processing platform expanded with FPGA based 
segments which can be reconfigured in order to 
customise the architecture to some specific tasks. 
The compilation of a program for such a platform 
becomes an hardware/software co-design problem. 
The goal of the work, where this paper describes 
only one last step of the design flow, was the 
development of a configuration compiler [1][2]. The 
input of this software tool is a program, specified 
through a high level programming language, and the 

outputs are a hardware description and a software 
program that, together, will perform the same 
function as the input program but with increased 
performance. 
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Figure 1 - Configuration compiler architecture. 



The complete methodology, shown in figure 1, 
consists of the following main parts: a front-end 
GNU C compiler [3], a parallelising compiler [4], a 
hardware/software partitioning algorithm [5] and an 
implementation tool. This paper is focused to the 
generation of one FPGA configuration that 
implements the functionality of the system. 

A brief description of the entire co-design flow is 
provided for better understanding of the importance 
of the last phase, the system synthesis, treated in 
this paper. 

Specification of the system 
The ANSI C programming language is used as input 
specification language. During the compilation of the 
C program corresponding to the initial specification, 
the intermediate three-address code (RTX) is 
generated. This code is used during the modelling 
and the analysis of the system. In order to capture 
the behaviour of the system the flow graph model is 
used. In fact, the flow graph model has enough 
power to describe sequential and parallel structures, 
corresponding to the classical SW and HW 
descriptions. All further analysis and 
transformations are performed over this graph model 
and not on the initial specification. 

Partitioning 
Partitioning is accomplished in two steps: extraction 
of the implicit parallelism and final partitioning.  

• Implicit parallelism extraction 
The extraction of the implicit parallelism is performed 
for two main reasons. First, the partition obtained 
considering the parallelism results in a system with a 
small overhead caused by the interface. Second, the 
resulting parallel model is better suited for the HW 
implementation. The parallelising compiler explores 
the acyclic code regions of the source program in 
order to find useful parallelism [4] 

• Final partitioning 
The final partitioning is achieved using an iterative 
algorithm. A cost function was developed for 
evaluation of the resulting partitions. The decision to 
move a branch to hardware is based on the value of 
the cost function, which is calculated using 
estimations of the branch performances 
corresponding to the hardware and to the software 
implementations. Estimation methodologies were 
developed and incorporated in the 
hardware/software partitioning algorithm [5]. 

System implementation 
Finally, the implementation of the blocks resulting 
from the partitioning in hardware and software is 
accomplished. The software implementation requires 
some additional functions providing the interface 
between the partitions. This step will be treated in 
detail in this paper. 

 

2 System implementation 

The main purpose of this work is the transformation 
of a high-level specification using C programming 
language into RTL VHDL. 

In the last years, several translators from C and C++ 
to VHDL have been developed but all of them are 
using a subset or a superset of C in order to include 
timing structures into the language. In the case of 
using a subset the assignment of resources and the 
timing definition is left to the designer. In the present 
work standard C language was used. Some small 
limitations were imposed concerning to the hardware 
implementation of the typically software oriented 
structures of the language, for example, the interface 
with the user. 

The choice of specification language 
The choice of the input language was determined by 
the applications targeted of this work: acceleration of 
intensive calculation programs using Custom 
Computing Machines (CCM). For CCM the input 
language should be an existing programming 
language. C was chosen not only because of its 
flexibility but also because this language is widely 
accepted by the scientific community and used for 
the implementation of intensive calculation 
algorithms. 

The choice of implementation language 
The choice of VHDL RTL as implementation 
language was mainly determined by the availability 
of mature commercial tools. The possible use of the 
behavioural VHDL was not considered due to the 
early stage of development associated to the 
synthesis tools for this language. 

The implementation method 
The lack of timing information in the initial 
specification defines the implementation of one 
branch of a C program into hardware as a high-level 
synthesis problem. This transformation includes 
three main steps: the resource assignment, the 
translation from intermediate GCC code to VHDL and 
the timing definition. The resource assignment 
consists in the definition of the exact places for the 
storage components (registers). The timing definition 
is the assignment of an appropriate clock period to 
the system. The realisation of these two tasks 
requires the analysis of the control and data 
dependencies, the analysis of the variables lifetimes 
and the performance estimation. The analysis of the 
control and data dependencies provides the 
information for the data path implementation and the 
controller structure. The analysis of the variable 
lifetimes determines the resource assignment, 
whereas the performance estimation defines the 
clock cycle for the system. 

The front-end of the GCC compiler was used, as part 
of the developed configuration compiler, in order to: 



• ensure the lexical and syntactical correctness of 
the source 

• parse the entire input file when invoked, 
generating the intermediate three-address code 

• take advantage of the compiler optimising 
algorithms  

Some of the optimisations done during the 
compilation pay attention to if conditions, jumps, 
loops, common sub-expression elimination, data 
flow analysis and scheduling. The result of these 
actions is a three-address code: one operation and 
two operands. The translation software presented in 
this paper uses this representation as input. 
Specially developed parsers analyse the input and 
build the control flow and the data dependence 
graphs of the function. After the construction of 
those graphs, the analysis of the variable lifetimes is 
performed. The control dependence and data control 
dependence graphs are the input for the 
implementation tool that translates the graph 
structure to the RTL VHDL or back to the C program 
language. 

 

2.1 Variables lifetime and dependence analysis 

The variable lifetime and dependence analysis in the 
entire input program is a prohibitively time 
consuming operation. The approach adopted in this  
work consists in the analysis of the program function 
by function. 

The first step of the analysis, after the GCC 
intermediate code generation, is the identification of 
the program functions and the division of the initial 
specification into separated files corresponding to 
each function.  

Control flow analysis 
The statements implementing the control flow in C 
programming language are if, case, goto, for, while, 
do, continue and break . In the intermediate code 
these statements are represented by jump 
commands. There are two types of jumps: conditional 
(if then else) and unconditional (go). These 
statements divide a program into basic blocks [6] and 
establish the control dependencies between them. 
There are two ways of representing the control 
dependencies: through the Control Flow Graph 
(CFG) showing all possible control paths between 
the basic blocks of the function and by means of the 
Control Dependence Graph (CDG) describing all the 
control dependencies between the basic blocks of 
the function. For the imp lementation of the system 
only the CFG is needed. However, in this work the 
CDG was also considered by the parallelising 
algorithm [4]. 

Generation of the CFG 
The generation of the CFG is achieved by parsing 
the input, searching for jump statements and their 
target labels. An example of CFG is shown in figure 
2-a). A generic graph tool, DOTTY [7], is used for 
interactive edition and manipulation of graphs like 
those presented in figure 2. 

Data dependency analysis 
Another information needed for the final 
implementation of the system concerns the data 
dependencies between the basic blocks. The data 
dependence analysis is performed in two steps: 
analysis of the variables lifetimes and generation of 
the Data Dependence Graph (DDG). The GCC 
compiler, used as a front-end of this package, 
performs a partial data dependence analysis and 
assigns the registers being alive in the beginning of 
each basic block. Using the information provided by 
GCC and CFG, the variables are analysed to define 
their scope and their sources, i.e., the basic blocks 
setting the values of the variables. In the second 
step, the tool generating the DDG performs the 
bottom-up recursive analysis of the CFG searching 
for the sources of the data used by the block under 
analysis. The program outputs are presented in the 
Figure 2-b). 

The parsers were implemented using LEX and YACC 
and they run on a SUN SPARC4 UNIX environment. 
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Figure 2- a) Control flow graph. 

b) Data dependence graph. 

2.2 Graph to RTL VHDL translation 

The implementation of a graph into RTL VHDL can 
be done through sequential or combinational circuit 
blocks, depending on the branch architecture. The 
difference between the combinational and the 
sequential implementations consists in the explicit 
order of execution enforced by the control structure 
in the sequential implementation. The combinational 
implementation requires fewer resources and has 



better performance so, whenever it is possible, the 
combinational implementation is used. 

Combinational implementation 
Non-hierarchical graphs, i.e., graphs corresponding 
to branches of one program without calling sub 
routines, without internal variables (registers) or 
deprived of internal loops, can be implemented using 
only combinational blocks. Thus, a combinational 
circuit implementation corresponds to graphs using 
only input/output, data or control signals stored in 
registers. Therefore, the graph body is implemented 
as a combinational data path and will produce the 
correct output after a finite period of time. 
Multiplexers using the model shown in figure 3 
accomplish the implementation of the conditional 
vertices. The final translation is straightforward, 
once the multiplexers are included in the data path, 
mapping the three-address expressions of the 
intermediate code into correspondent VHDL 
expression. 

However, it is necessary to emphasise that the 
final circuit implementation will always be a 
sequential one since the connection of these 
combinational branches with the higher levels of the 
program hierarchy is done using registers. 
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Figure 3 - Combinational basic block. 
 

 

Sequential implementation 
There are two possible architectures for a sequential 
circuit implementation: using a separated data path 
and control module or using a mixed implementation. 
In this work, the mixed implementation was selected. 
The operations are ordered by the scheduling 
mechanism of the GCC. The corresponding 
implementation is achieved through the inclusion of 
control structures in each vertex of the graph. These 
structures allow the execution of the vertex in a pre-
defined time slot. 

Control structures definition and implementation 
The implementation of the control structure is based 
on the division of the functionality of the vertex into 
control and data statements. The vertex architecture 
may present all possible combinations of vertexes: 

those that implement only control operations, only 
data operations or both. It is impossible to implement 
separated architectures for the control and data only 
by inspection of the basic blocks (vertex) because 
the data and control tracks are using the same 
statements. In the used graph model different edge 
types represent the control flow and the data flow. 
The CFG and DDG clearly distinguish the data edges 
from control edges. Using this definition the 
implementation of the edges and vertices is carried 
on. 

Edge implementation 
The data edges are implemented through registers 
and the control edges are implemented like a 
semaphore system controlling the input load of the 
data registers. All fork and join vertexes in the graph 
are disjoined [8]. When more then one control signal 
is directed to the same vertex it should be connected 
to the load signal through an OR gate. The initially 
used C compiler assumes the existence of only one 
processor and, consequently, defines the disjoint 
characteristic of the graph. The conjoined vertexes 
are only possible in parallel architectures. 

Vertices implementation 

a) Vertex body implementation 
The vertex body is implemented by mapping the 
three-address expressions of the intermediate code 
into correspondent VHDL expression. The same 
parser used for the combinational implementation 
also implements the body of the basic blocks 
(vertices). 

b) Vertex control structure implementation 
In addition to the enable signals produced by the 
previous vertexes, some extra control signals were 
used in the sequential basic block presented in figure 
4: clock , reset, done_out, done_in. Usually the 
signal done_out is connected to done_in, disabling 
the block after finishing its execution. In this case, 
only the reset signal can enable the block again. 

Block execution sequence  
The hardware implementation of the vertexes has 
three states: ready, busy and done. One vertex goes 
from the ready to the busy state when one of its 
enable inputs is active. It will stay busy until the last 
statement of the body of the vertex is executed. After 
that, the vertex goes to the state done, where it will 
stay until the reset signal is obtained. In order to 
allow a pipeline execution, the reset signal does not 
affect the data registers. 
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Figure 4 - Sequential basic block. 

Branch implementation 
The branch is implemented by putting the blocks, 
sequential or combinational, in the correct order and 
connecting their data and control structures. 

Branch execution sequence  
The branch implementation shown in the example of 
figure 5, have two states: ready and busy. In this 
case, the architecture goes from ready to busy when 
the enable signal is received. The system will stay 
busy until the execution of the last vertex or until 
reset signal is available. 

3 Examples and results  

Several examples were used to illustrate different 
aspects of the proposed methodology. In this paper, 
two C programs were used to verify the efficiency of 
the synthesis module.  

• The first one called Hierarchical Clustering is a 
partitioning algorithm developed at INESC that 
divides a large circuit into sub-circuits with a 
given complexity. 

• The second program, called Tmndecode, is a 
decoder and player for H.263 bit-streams 
developed by Telenor R&D. This last program 
displays images of a decoded sequence of 8, 16, 
and 24(32) bits colour palette for both, X11 and 
Microsoft Win32 windows systems. The 
program Tmndecode contains sixteen C files, 
which were all analysed in order to select the 
most appropriated functions to accelerate the 
execution of the program via its hardware 
implementation. The branches of the function 
Reconstruct were the candidates for a FPGA 
implementation. 

Tables 1 and 2 list some of the implemented 
functions in the XC4005 component. The hardware 
execution time is obtained from XILINX 
XDelay/timing analyser. The delay time represents 
the worst case clock to output pad delay for the 
sequential implementation (table 1) and the worst 
case input pad to output pad delay for the 
combinational implementation (table 2). The CLB 
count is obtained from XILINX XACT tool. The 

software time refers to the execution on a SUN 
SPARC 4.  
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Figure 5 - Sequential implementation of a branch 

 
 

Table 1 - Sequential implementation 
Tmndecode 

Function #CLBs HW 
execution 
time 

SW 
execution 
time 

Reconstruct 48  294 ns 
14 HW 
clock 
cycles 

2360 ns 
59 SW clock 
cycles 

Hierarchical clustering 
Function #CLBs HW execution 

time 
SW execution 
time 

V_max1 78  140 ns 
4 HW clock 
cycles 

920 ns 
28 SW clock 
cycles 

 
 

Table 2- Combinational implementation 

Tmndecode 

Function #CLBs HW execution 
time 

SW 
execution 
time 

Reconstruct 

(part) 

26 45.6 ns 2360 ns 

Hierarchical clustering 

Function #CLBs HW execution 
time 

SW 
execution 
time 

V_max1 
(part) 

11 35.5 ns 920 ns 

 



4 Conclusions 

A computer aided hardware/software co-design tool 
that transforms C code deprived of timing 
information, into VHDL at Register Transfer Level 
was introduced. In the developed methodology that 
transformation is achieved through the assignment 
of resources, the translation of the three-address 
code generated by GCC to VHDL and the definition 
of the system clock. The examples demonstrated an 
acceleration of hundreds to thousands times of the 
hardware implemented function compared with the 
original software function. However, due to 
limitations on the size of the re-configurable 
platforms to accommodate a complete program, in 
general, the overall acceleration will not exceed one 
order of magnitude. 

The continuos increase of gate count in FPGA 
devices, verified in the last years, will certainly 
remove, in a near future, all the actual limitations 
found to implement a complete program in an 
hardware platform. 
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