
A Tool for Mapping a C Description into a
Hardware Configuration using VHDL at

RTL

Anton Velinov Chichkov
Alcatel Microelectronics

Westerring 15, B-9700 Oudenaarde Belgium
Tel: +32 55 33 27 72 Fax: +32 55 33 22 64

E-mail: anton.chichkov@mie.alcatel.be

Carlos Beltrán Almeida
INESC/IST

R. Alves Redol 9, 1000 LISBOA-Portugal
Tel.: +351 1 3100240 Fax: +351 1 3145843

E-mail: cfb@inesc.pt

Summary
This paper introduces a software package
developed to assist the hardware/software co-
design of digital systems. The main purpose of this
work is the transformation of a high-level
specification using C programming language into
RTL VHDL. In the last years several translators from
C and C++ to VHDL have been developed but all of
them are using a subset or a superset of C in order
to include timing structures into the language. The
present method performs the translation of a
program written in standard C language into two
files, a VHDL file at Register Transfer Level and a C
program that, together, will perform the same
function as the input program but with a significant
performance boost. A special attention is devoted to
the system synthesis module where the VHDL file at
Register Transfer Level is generated. Two FPGA
implementation examples are presented, leading to
sequential and combinational circuits, derived from
the analysis of the data and control structures of C
functions used to validate the hardware/software
co-design methodology.

1 Introduction

Computationally intensive applications typically
spend most of their running time within small parts of
the executable code whereas the rest of the program
is executed in a short time period. In many of these
applications substantial improvements can be
achieved by adapting the configuration of the
processor to these frequently accessed parts of
code. These computing systems, called Custom
Computing Machines, are composed by a
processing platform expanded with FPGA based
segments which can be reconfigured in order to
customise the architecture to some specific tasks.
The compilation of a program for such a platform
becomes an hardware/software co-design problem.
The goal of the work, where this paper describes
only one last step of the design flow, was the
development of a configuration compiler [1][2]. The
input of this software tool is a program, specified
through a high level programming language, and the

outputs are a hardware description and a software
program that, together, will perform the same
function as the input program but with increased
performance.

C source

C Program VHDL

Parallelising algorithm

CDG generation DDG generation

CFG generation

PDT generation

Dependence analysis

Parallelism extraction

SW execution time
estimation

SW environment model HW environment model

HW execution time
estimation

System partitioning

Interconnection
generation

VHDL code synthesisC code synthesis

GCC Compiler

Profile RTX

GCC front end

Partitioning algorithm

System
synthesis

System modeling

Figure 1 - Configuration compiler architecture.

The complete methodology, shown in figure 1,
consists of the following main parts: a front-end
GNU C compiler [3], a parallelising compiler [4], a
hardware/software partitioning algorithm [5] and an
implementation tool. This paper is focused to the
generation of one FPGA configuration that
implements the functionality of the system.

A brief description of the entire co-design flow is
provided for better understanding of the importance
of the last phase, the system synthesis, treated in
this paper.

Specification of the system
The ANSI C programming language is used as input
specification language. During the compilation of the
C program corresponding to the initial specification,
the intermediate three-address code (RTX) is
generated. This code is used during the modelling
and the analysis of the system. In order to capture
the behaviour of the system the flow graph model is
used. In fact, the flow graph model has enough
power to describe sequential and parallel structures,
corresponding to the classical SW and HW
descriptions. All further analysis and
transformations are performed over this graph model
and not on the initial specification.

Partitioning
Partitioning is accomplished in two steps: extraction
of the implicit parallelism and final partitioning.

• Implicit parallelism extraction
The extraction of the implicit parallelism is performed
for two main reasons. First, the partition obtained
considering the parallelism results in a system with a
small overhead caused by the interface. Second, the
resulting parallel model is better suited for the HW
implementation. The parallelising compiler explores
the acyclic code regions of the source program in
order to find useful parallelism [4]

• Final partitioning
The final partitioning is achieved using an iterative
algorithm. A cost function was developed for
evaluation of the resulting partitions. The decision to
move a branch to hardware is based on the value of
the cost function, which is calculated using
estimations of the branch performances
corresponding to the hardware and to the software
implementations. Estimation methodologies were
developed and incorporated in the
hardware/software partitioning algorithm [5].

System implementation
Finally, the implementation of the blocks resulting
from the partitioning in hardware and software is
accomplished. The software implementation requires
some additional functions providing the interface
between the partitions. This step will be treated in
detail in this paper.

2 System implementation

The main purpose of this work is the transformation
of a high-level specification using C programming
language into RTL VHDL.

In the last years, several translators from C and C++
to VHDL have been developed but all of them are
using a subset or a superset of C in order to include
timing structures into the language. In the case of
using a subset the assignment of resources and the
timing definition is left to the designer. In the present
work standard C language was used. Some small
limitations were imposed concerning to the hardware
implementation of the typically software oriented
structures of the language, for example, the interface
with the user.

The choice of specification language
The choice of the input language was determined by
the applications targeted of this work: acceleration of
intensive calculation programs using Custom
Computing Machines (CCM). For CCM the input
language should be an existing programming
language. C was chosen not only because of its
flexibility but also because this language is widely
accepted by the scientific community and used for
the implementation of intensive calculation
algorithms.

The choice of implementation language
The choice of VHDL RTL as implementation
language was mainly determined by the availability
of mature commercial tools. The possible use of the
behavioural VHDL was not considered due to the
early stage of development associated to the
synthesis tools for this language.

The implementation method
The lack of timing information in the initial
specification defines the implementation of one
branch of a C program into hardware as a high-level
synthesis problem. This transformation includes
three main steps: the resource assignment, the
translation from intermediate GCC code to VHDL and
the timing definition. The resource assignment
consists in the definition of the exact places for the
storage components (registers). The timing definition
is the assignment of an appropriate clock period to
the system. The realisation of these two tasks
requires the analysis of the control and data
dependencies, the analysis of the variables lifetimes
and the performance estimation. The analysis of the
control and data dependencies provides the
information for the data path implementation and the
controller structure. The analysis of the variable
lifetimes determines the resource assignment,
whereas the performance estimation defines the
clock cycle for the system.

The front-end of the GCC compiler was used, as part
of the developed configuration compiler, in order to:

• ensure the lexical and syntactical correctness of
the source

• parse the entire input file when invoked,
generating the intermediate three-address code

• take advantage of the compiler optimising
algorithms

Some of the optimisations done during the
compilation pay attention to if conditions, jumps,
loops, common sub-expression elimination, data
flow analysis and scheduling. The result of these
actions is a three-address code: one operation and
two operands. The translation software presented in
this paper uses this representation as input.
Specially developed parsers analyse the input and
build the control flow and the data dependence
graphs of the function. After the construction of
those graphs, the analysis of the variable lifetimes is
performed. The control dependence and data control
dependence graphs are the input for the
implementation tool that translates the graph
structure to the RTL VHDL or back to the C program
language.

2.1 Variables lifetime and dependence analysis

The variable lifetime and dependence analysis in the
entire input program is a prohibitively time
consuming operation. The approach adopted in this
work consists in the analysis of the program function
by function.

The first step of the analysis, after the GCC
intermediate code generation, is the identification of
the program functions and the division of the initial
specification into separated files corresponding to
each function.

Control flow analysis
The statements implementing the control flow in C
programming language are if, case, goto, for, while,
do, continue and break . In the intermediate code
these statements are represented by jump
commands. There are two types of jumps: conditional
(if then else) and unconditional (go). These
statements divide a program into basic blocks [6] and
establish the control dependencies between them.
There are two ways of representing the control
dependencies: through the Control Flow Graph
(CFG) showing all possible control paths between
the basic blocks of the function and by means of the
Control Dependence Graph (CDG) describing all the
control dependencies between the basic blocks of
the function. For the imp lementation of the system
only the CFG is needed. However, in this work the
CDG was also considered by the parallelising
algorithm [4].

Generation of the CFG
The generation of the CFG is achieved by parsing
the input, searching for jump statements and their
target labels. An example of CFG is shown in figure
2-a). A generic graph tool, DOTTY [7], is used for
interactive edition and manipulation of graphs like
those presented in figure 2.

Data dependency analysis
Another information needed for the final
implementation of the system concerns the data
dependencies between the basic blocks. The data
dependence analysis is performed in two steps:
analysis of the variables lifetimes and generation of
the Data Dependence Graph (DDG). The GCC
compiler, used as a front-end of this package,
performs a partial data dependence analysis and
assigns the registers being alive in the beginning of
each basic block. Using the information provided by
GCC and CFG, the variables are analysed to define
their scope and their sources, i.e., the basic blocks
setting the values of the variables. In the second
step, the tool generating the DDG performs the
bottom-up recursive analysis of the CFG searching
for the sources of the data used by the block under
analysis. The program outputs are presented in the
Figure 2-b).

The parsers were implemented using LEX and YACC
and they run on a SUN SPARC4 UNIX environment.

7

6

2

9

8

Start

End

0

1

10

5

4

3

0

7

6

5

4

3

2

1

10

9

8

Start

End

 a) b)

Figure 2- a) Control flow graph.

b) Data dependence graph.

2.2 Graph to RTL VHDL translation

The implementation of a graph into RTL VHDL can
be done through sequential or combinational circuit
blocks, depending on the branch architecture. The
difference between the combinational and the
sequential implementations consists in the explicit
order of execution enforced by the control structure
in the sequential implementation. The combinational
implementation requires fewer resources and has

better performance so, whenever it is possible, the
combinational implementation is used.

Combinational implementation
Non-hierarchical graphs, i.e., graphs corresponding
to branches of one program without calling sub
routines, without internal variables (registers) or
deprived of internal loops, can be implemented using
only combinational blocks. Thus, a combinational
circuit implementation corresponds to graphs using
only input/output, data or control signals stored in
registers. Therefore, the graph body is implemented
as a combinational data path and will produce the
correct output after a finite period of time.
Multiplexers using the model shown in figure 3
accomplish the implementation of the conditional
vertices. The final translation is straightforward,
once the multiplexers are included in the data path,
mapping the three-address expressions of the
intermediate code into correspondent VHDL
expression.

However, it is necessary to emphasise that the
final circuit implementation will always be a
sequential one since the connection of these
combinational branches with the higher levels of the
program hierarchy is done using registers.

enable_0

enable_n

enable_1

Data_2

Data

enable_2

Basic block
implementation

glue logic

Data_1

Figure 3 - Combinational basic block.

Sequential implementation
There are two possible architectures for a sequential
circuit implementation: using a separated data path
and control module or using a mixed implementation.
In this work, the mixed implementation was selected.
The operations are ordered by the scheduling
mechanism of the GCC. The corresponding
implementation is achieved through the inclusion of
control structures in each vertex of the graph. These
structures allow the execution of the vertex in a pre-
defined time slot.

Control structures definition and implementation
The implementation of the control structure is based
on the division of the functionality of the vertex into
control and data statements. The vertex architecture
may present all possible combinations of vertexes:

those that implement only control operations, only
data operations or both. It is impossible to implement
separated architectures for the control and data only
by inspection of the basic blocks (vertex) because
the data and control tracks are using the same
statements. In the used graph model different edge
types represent the control flow and the data flow.
The CFG and DDG clearly distinguish the data edges
from control edges. Using this definition the
implementation of the edges and vertices is carried
on.

Edge implementation
The data edges are implemented through registers
and the control edges are implemented like a
semaphore system controlling the input load of the
data registers. All fork and join vertexes in the graph
are disjoined [8]. When more then one control signal
is directed to the same vertex it should be connected
to the load signal through an OR gate. The initially
used C compiler assumes the existence of only one
processor and, consequently, defines the disjoint
characteristic of the graph. The conjoined vertexes
are only possible in parallel architectures.

Vertices implementation

a) Vertex body implementation
The vertex body is implemented by mapping the
three-address expressions of the intermediate code
into correspondent VHDL expression. The same
parser used for the combinational implementation
also implements the body of the basic blocks
(vertices).

b) Vertex control structure implementation
In addition to the enable signals produced by the
previous vertexes, some extra control signals were
used in the sequential basic block presented in figure
4: clock , reset, done_out, done_in. Usually the
signal done_out is connected to done_in, disabling
the block after finishing its execution. In this case,
only the reset signal can enable the block again.

Block execution sequence
The hardware implementation of the vertexes has
three states: ready, busy and done. One vertex goes
from the ready to the busy state when one of its
enable inputs is active. It will stay busy until the last
statement of the body of the vertex is executed. After
that, the vertex goes to the state done, where it will
stay until the reset signal is obtained. In order to
allow a pipeline execution, the reset signal does not
affect the data registers.

Done_in

Clock

enable_0

enable_n

Done_out

enable_1

Data Data

enable_2

Basic block
implementation

Reset

glue logic

Figure 4 - Sequential basic block.

Branch implementation
The branch is implemented by putting the blocks,
sequential or combinational, in the correct order and
connecting their data and control structures.

Branch execution sequence
The branch implementation shown in the example of
figure 5, have two states: ready and busy. In this
case, the architecture goes from ready to busy when
the enable signal is received. The system will stay
busy until the execution of the last vertex or until
reset signal is available.

3 Examples and results

Several examples were used to illustrate different
aspects of the proposed methodology. In this paper,
two C programs were used to verify the efficiency of
the synthesis module.

• The first one called Hierarchical Clustering is a
partitioning algorithm developed at INESC that
divides a large circuit into sub-circuits with a
given complexity.

• The second program, called Tmndecode, is a
decoder and player for H.263 bit-streams
developed by Telenor R&D. This last program
displays images of a decoded sequence of 8, 16,
and 24(32) bits colour palette for both, X11 and
Microsoft Win32 windows systems. The
program Tmndecode contains sixteen C files,
which were all analysed in order to select the
most appropriated functions to accelerate the
execution of the program via its hardware
implementation. The branches of the function
Reconstruct were the candidates for a FPGA
implementation.

Tables 1 and 2 list some of the implemented
functions in the XC4005 component. The hardware
execution time is obtained from XILINX
XDelay/timing analyser. The delay time represents
the worst case clock to output pad delay for the
sequential implementation (table 1) and the worst
case input pad to output pad delay for the
combinational implementation (table 2). The CLB
count is obtained from XILINX XACT tool. The

software time refers to the execution on a SUN
SPARC 4.

Data Data

Clock

Enable

Reset

Done
Graph implementation

done

done

enable

Basic
block

Basic
block

Basic
block

Figure 5 - Sequential implementation of a branch

Table 1 - Sequential implementation
Tmndecode

Function #CLBs HW
execution
time

SW
execution
time

Reconstruct 48 294 ns
14 HW
clock
cycles

2360 ns
59 SW clock
cycles

Hierarchical clustering
Function #CLBs HW execution

time
SW execution
time

V_max1 78 140 ns
4 HW clock
cycles

920 ns
28 SW clock
cycles

Table 2- Combinational implementation

Tmndecode

Function #CLBs HW execution
time

SW
execution
time

Reconstruct

(part)

26 45.6 ns 2360 ns

Hierarchical clustering

Function #CLBs HW execution
time

SW
execution
time

V_max1
(part)

11 35.5 ns 920 ns

4 Conclusions

A computer aided hardware/software co-design tool
that transforms C code deprived of timing
information, into VHDL at Register Transfer Level
was introduced. In the developed methodology that
transformation is achieved through the assignment
of resources, the translation of the three-address
code generated by GCC to VHDL and the definition
of the system clock. The examples demonstrated an
acceleration of hundreds to thousands times of the
hardware implemented function compared with the
original software function. However, due to
limitations on the size of the re-configurable
platforms to accommodate a complete program, in
general, the overall acceleration will not exceed one
order of magnitude.

The continuos increase of gate count in FPGA
devices, verified in the last years, will certainly
remove, in a near future, all the actual limitations
found to implement a complete program in an
hardware platform.

5 References

[1] P. Athanas and H. Silverman, “Processor
Reconfiguration Through Instruction-Set
Metamorphosis: Architecture and Compiler”,
Computer, vol 28, no. 3, pp. 11-18, March 1993.

[2] P. Athanas, “An Adaptive Machine
Architecture and Compiler for Dynamic Processor
Reconfiguration“, Technical Report LEMS-101
Division of Engineering, Brown University, February
1992.

[3] Free Software Foundation, ”Using and
Porting GNU CC”, Cambridge, MA, 1992.

[4] Anton Chichkov, C. Beltrán Almeida,
"Identification and Optimisation of Parallelism in
Hardware/Software Partitioning", International
Workshop on Logic and Architecture Synthesis,
Grenoble, France, December 1996.

[5] Anton Chichkov, Carlos Beltrán Almeida,
“An Hardware/Software Partitioning Algorithm for
Custom Computing Machines”, Proceedings of
FPL97, London, September 1997.

[6] Alfred V. Aho, Ravi Sethi and Jefferey D.
Ullman, "Compilers: Principles, Techniques and
Tools", Addison Wesley, 1986.

[7] Elftherios Koutfios, Stephen C. North,
"Editing Graphs with DOTTY", User’s Manual,
version 94b, 1994.

[8] Rajesh Kumar Gupta, "Co-Synthesis of
Hardware and Software for Digital Embedded

Systems", Ph.D. dissertation, Stanford University,
December 10, 1993.

