

Introduction to FPGA Design

Getting Started with Xilinx FPGAs
Version 2.1i

Intro to FPGA Design 6-1

© 1999 Xilinx, Inc. All Rights Reserved

No part of this document may be reproduced or transmitted without the express written permission of the Director of Xilinx Customer Education

Outline

- Hierarchical Design
- Synchronous Design for Xilinx FPGAs
- Summary

Synchronous Design

- Why Synchronous Design?
- Xilinx FPGA Design Tips

© 1999 Xilinx, Inc. All Rights Reserved

Intro to FPGA Design 6-10

No part of this document may be reproduced or transmitted without the express written permission of the Director of Xilinx Customer Education.

Why Synchronous Design?

- Synchronous circuits are more reliable
 - Events are triggered by clock edges which occur at welldefined intervals
 - Outputs from one logic stage have a full clock cycle to propagate to the next stage
 - Skew between data arrival times is tolerated within the same clock period
- Asynchronous circuits are less reliable
 - A delay may need to be a specific amount (e.g. 12ns)
 - Multiple delays may need to hold a specific relationship (e.g. DATA arrives 5ns before SELECT)

Case Studies

- The design I did two years ago no longer works. What did Xilinx change in their FPGAs?
 - SRAM process improvements and geometry shrinks increase speed
 - Normal variations between wafer lots
- My design was working, but I re-routed my FPGA and now my design fails. What is happening?
 - Logic placement has changed, which affects internal routing delays
- My design passes a back-annotated timing simulation but fails in circuit. Is the timing simulation accurate?
 - Yes, the simulation is accurate
 - Timing simulation uses worst-case delays
 - Actual board-level conditions are usually better

© 1999 Xilinx, Inc. All Rights Reserved

Intro to FPGA Design 6-12

No part of this document may be reproduced or transmitted without the express written permission of the Director of Xilinx Customer Education

Design Tips

Xilinx FPGA Design

- Reduce clock skew
- Clock dividers
- Avoid glitches on clocks and asynchronous set/reset signals
- The Global Set/Reset network
- Select a state machine encoding scheme
- Access carry logic
- Build efficient counters

Clock Skew

This shift register will not work because of clock skew!

Intro to FPGA Design 6-14

All Rights Reserved

No part of this document may be reproduced or transmitted without the express written permission of the Director of Xilinx Customer Educatio.

© 1999 Xilinx, Inc

Use Global Buffers to Reduce Clock Skew

- Global buffers are connected to dedicated routing
 - This routing network is balanced to minimize skew
- All Xilinx FPGAs have global buffers
- Different types of global buffers
 - —XC4000E/L and Spartan have 4 BUFGPs and 4 BUFGSs
 - -XC4000EX/XL/XV have 8 BUFGLSs
 - Virtex has 4 BUFGs or BUFGDLLs
- You can always use a BUFG symbol and the software will choose an appropriate buffer type
 - Most synthesis tools can infer global buffers onto clock signals

XILINX°

Traditional Clock Divider

- Introduces clock skew between CLK1 and CLK2
- Uses an extra BUFG to reduce skew on CLK2

Intro to FPGA Design 6-16

No part of this document may be reproduced or transmitted without the express written permission of the Director of Xilinx Customer Education

Recommended Clock Divider

No clock skew between flip-flops

© 1999 Xilinx, Inc. All Rights Reserved

XILINX°

Avoid Clock Glitches

- Because flip-flops in today's FPGAs are very fast, they can respond to very narrow clock pulses
- Never source a clock signal from combinatorial logic
 - —Also known as "gating the clock"

Intro to FPGA Design 6-18

All Rights Reserved

No part of this document may be reproduced or transmitted without the express written permission of the Director of Xilinx Customer Education

Avoid Clock Glitches: Answer

 Complete in the circuit to create the same function, but without glitches on the clock

XILINX°

Avoid Set/Reset Glitches

Glitches on asynchronous clear or preset inputs can lead to incorrect circuit behavior

Intro to FPGA Design 6-22

All Rights Reserved

No part of this document may be reproduced or transmitted without the express written permission of the Director of Xilinx Customer Education

© 1999 Xilinx, Inc.

Avoid Set/Reset Glitches

Convert to synchronous set or reset when possible

© 1999 Xilinx, Inc. All Rights Reserved

XILINX° No part of this document may be reproduced or transmitted without the express written permission of the Director of Xilinx Customer Education.