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Abstract— Variabili ty in digital integrated circuits makes tim-
ing verification an extremely challenging task. In this paper, a
canonical first order delay model is proposed that takes into
account both correlated and independent randomness.A novel
linear-time block-based statistical timin g algorith m is employed
to propagate timing quantit ies lik e arri val times and requir ed
arri val times through the timing graph in this canonical form.
At the end of the statistical timing, the sensitivity of all timing
quantiti es to each of the sourcesof variation is available. Exces-
sive sensitivit ies can then be targeted by manual or automatic
optimization methods to impr ove the robustness of the design.
This paper also reports the first incremental statistical timer
in the literatur e which is suitable for use in the inner loop of
physical synthesis or other optimization programs. The thi rd
novel contribution of this paper is the computation of local
and global criti cality probabiliti es. For a very small cost in
CPU time, the probability of each edge or node of the timing
graph being cri tical is computed. Numerical results are presented
on industr ial ASIC chips with over two mil lion logic gates,
and statistical timin g results are compared to exhaustive corner
analysis on a chip design whose hardware showed early-mode
timin g violations.

Index Terms— Statistical static timing, variabili ty, incremental
timin g, criticality probability .

I . INTRODUCTION

T HE timing characteristicsof gatesandwiresthat make up
a digital integratedcircuit show many typesof variability.

Therecanbe variability due to manufacturing, due to environ-
mental factors such as

�����
and temperature, and due to device

fatigue phenomena such as electromigration, hot electron
effectsand NBTI (Negative BiasTemperature Instabil ity). The
variabil ity makesit extremely difficult to verify the timing of a
design before committing it to manufacturing. Nominally sub-
critical paths or timing points may become critical in some
regions of the spaceof variations due to excessive sensitivity
to one or more sourcesof variation.The goal of robust design,
to first order, is to minimize such sensitivities.
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Traditional static timing methodology is corner-basedor
case-based, e.g., best-case,worst-case and nominal. Unfor-
tunately, such a methodology may require an exponential
number of timing runs as the number of independent and
significant sourcesof variation increase.Further, asdescribed
in [1], the analysis may be both pessimistic and risky at the
sametime. At corners that are timed, worst-case assumptions
are madewhich arepessimistic,whereas,sinceit is intractable
to analyze all possible corners,themissingcornersmaylead to
failuresdetectedafter the manufacturing of thechip. Statistical
timing analysis is a solution to these problems.

Statistical timing algorithms fall into two broad classes.
The first is path-based algorithms wherein a selectedset
of paths is submitted to the statistical timer for detailed
analysis. This set of methods can be thought of as “depth-
first” traversal of the timing graph. In [2], the maximum of a
set of path delays is computed, but correlations betweenthe
path delays are ignored. In [3], some theoretical results are
derived on bounds on the maximum of a set of path delays
under certain restrictions. In [4], theseassumptions are relaxed
and correlations both due to dependence on global sourcesof
variation and due to reconvergent fanout (or path sharing) are
taken into account.

Path-basedstatistical timing is accurate and has the ability
to realistically capture correlations, but suffers from other
weaknesses.First, it is not clear how to select paths for the
detailed analysis sinceone of the paths that is omitted may
be critical in some part of the process space.Second, path-
basedstatistical timing often doesnot provide the diagnostics
necessaryto improve the robustness of the design. Third, path-
basedtiming does not lend itself to incremental processing
whereby the calling program makes a change to the circuit
and the timer answersthe timing query incrementally and ef-
ficiently [5]. Finally, path-basedalgorithmsaregood at taking
into account global correlations,but do not handle independent
randomnessin individualdelays.Dopingeffectsandgateoxide
imperfections are usually modeled as uncorrelated random
phenomena.In fact,few if any statistical timing attempts in the
literature include support for both correlated and independent
randomness.

The statistical timer described in this paper belongs to
the second class of statistical timers, namely block-based
statistical timers. This set of methods traversesthe timing
graph in a levelized“breadth-first” manner. In [6], probability
distributions are assumed to be trains of discrete impulses
which are propagated through the timing graph. However,

0278–0070/04$20.00 c
�

2004IEEE



This article has been accepted for inclusion in a future issue.

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. ??, NO. ?, MONTH YYYY

correlations both due to global dependencies on the sources
of variation and due to path-sharing are ignored, as is the
casewith [7]. In this same general framework, [8] describes
how correlations due to reconvergent fanout canbe taken into
account, but not dependenceon global sources of variation.
In [9], an approximate block-based statistical timing analysis
algorithm is describedto reducepessimism in worst-casestatic
timing analysis. The concept of parameterized delay models
is proposed. Recently, [10], [11] focus on handling spatial
correlationsdue to intra-die variability. While thetimer in this
paper sharessome key similaritieswith previous efforts (such
astheuseof ageneral canonicaldelaymodel), thesealsosuffer
from some weaknesses.First, they do not provide diagnostics
that can be usedby a human designer or synthesis program
to make the circuit more robust.Second, there is no report of
any incremental statistical timing approach in the literature.
Third, with the exception of [11], they do not provide for
a general enough timing model to accommodate correlation
due to dependence on common global sources of variation,
independent randomnessand correlation due to path sharing
or reconvergentfanout.Thispaperdescribesastatistical timing
algorithm that possesses the following strengths.

1) A canonical first-order delay model is employed for
all timing quantities. The model allows for both global
correlations and independent randomness(spatially cor-
related sources of variability are currently handled by
meansof derating factors, and their statisticaltreatment
will be a subject of future work). Thus timing results
suchasarrival timesand slacks arealso available in this
canonical form, therebyproviding first-ordersensitivities
to eachof the sources of variation. Thesediagnostics
canbe usedto locateexcessive sensitivity to sources of
variationand to target robustcircuit designs by reducing
these sensitivities.

2) The statistical timing algorithm is approximate,but has
linear complexity in the size of the circuit and the
number of global sources of variation. The speed of
the algorithm and its block-basednature allow the tool
to time very large circuits and incrementally respond
to timing queries after changes to a circuit are made.
To the best of the authors’ knowledge, this is the first
incremental statisticaltimer in the li terature or industry.

3) The algorithm computes,with a very small CPU over-
head,local and global criticality probabiliti es which are
useful diagnostics in improving the performance and
robustness of a design.

I I . CANONICAL DELAY MODEL

All gateandwire delays, arrival times,required arrival times,
slacksand slews (rise/fall times)are expressed in the standard
or canonical first-order form below:

���	� 

���� � ������� ��� 
�� ��������� (1)

where � � is the mean or nominal value, ��� � ���! #"��%$&�(')')'*��+
represent thevariation of + global sources of variation � � �,�� "-�,$.�/')'/'*�0+ from their nominal values, � � ���1 2"��%$&�(')')'*��+ are

thesensitivities to eachof theglobal sourcesof variation, �3� �
is the variationof an independent random variable � � from its
meanvalue and � 
-� � is the sensitivity of the timing quantity
to � � . By scalingthe sensitivity coefficients, we can assume
that � � and � � are unit normal or Gaussian distributions46587 �(":9 . Not all timing quantities depend on all global sources
of variation; in fact [10], [11] suggestmethods of modeling
ACLV (Across-ChipLinewidth Variation) by having delays
of gatesand wires in physically dif ferent regions of the chip
depend on different setsof random variables. In chips with
voltage islands, the delay of an individual gate will depend
only on the variability of the power supply of the island in
which it is physically located.

I I I . THE CONCEPT OF TIGHTNESS PROBABILITY

Given any two random variables � and ; , the tightness
probability <>= of � is the probabil ity that it is larger than
(or dominates) ; . Given + random variables, the tightness
probabili ty of eachis the probability that it is larger than all
the others.Tightness probability is called binding probability
in [12], [4]. The tightnessprobability of ; , <@? is

5 "!A < = 9 .
Below we show how to compute the B1CED of two timing
quantities in canonical form and how to determine their
tightness probabilities. Given two timing quantities
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their $�ST$ covariance matrix can be written as U*VXW 5 F � K 9Y 
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where

�
is the covariancematrix of the sourcesof variation.

Assuming that the � � are independent random variables for
the purposes of illustration,

�
is the unity matrix, and thus

U*VXW 5 F � K 9Y 
�� ��^�N� � Z � 
�M��� � � L �
�M��� � � L � 
�� ����� L Z �  _
Z` a _ ` _cba _ ` _ b _

Z
b d (5)

By comparing terms in (5) above, _ ` , _ b and the correla-
tion coefficient a canbecomputedin linear time.Now weseek
to determine the distribution of BeCHD 5 F � K 9 and the tightness
probabili ties of

F
and

K
. We appeal to [13], [14] for analytic

expressions to solve this problem. Define

f 5hg 9ji "k $�lnm Dpo 5 A
g Z
$ 9 (6)

q�5hr 9ji stpu
f 5hg 9,v g (7)
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�zy Z
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Fig. 1. Part of a timing graph.

Then, the probability that
F

is larger than
K

is

< `  u
t�u

"
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_ `

q � t
R����� A a � t

����:�
"�A a Z v g

 q ��� A�L �w d (9)

The meanand varianceof BeCHD 5 F � K 9 can alsobe analytically
expressed as

� \ B1C:D 5 F � K 9 ]  � � < ` � L � 5 "�A < ` 9 � w f ��� t R0�� �
W �/� \ B�CED 5 F � K 9 ]  5 _

Z` �G� Z� 9 < ` � 5 _
Z
b � L

Z� 9 5 "�A < ` 9 �5 ���	� L � 9 w f ��� t R��� A�� � \ B1CED 5 F � K 9 ]��
Z
d (10)

Thus, the tightnessprobabilities, expectedvalue andvariance
of B�CED 5 F � K 9 can be computed analytically and efficiently.
Similar formulas can be developed for B��I 5 F � K 9 . The CPU
time of this operation increasesonly linearly with the number
of sourcesof variation.

Tightness probabil ities have an interpretation in the space
of the sourcesof variation. If one random variable hasa 0.3
tightnessprobabili ty, then in 30% of the weighted volume of
theprocessspaceit is larger thanthe other variable, and in the
other 70%, theother variable is larger. Theweighting factor is
the joint probability density function (JPDF)of the underlying
sourcesof variation.

IV. BLOCK-BASED STATISTICAL TIMING: THE KEY IDEA

To apply theseideasto static timing, we need probabilistic
equivalentsof the “max,” “min,” “add” and “subtract” opera-
tions. The difficult part of block-basedstatistical timing is to
re-express the result of a B���I or B�CHD operationin canonical
form for further correlatedpropagation in the timing graph.
The concept of tightnessprobabil ity helps us in this difficult
step. The intuition behind this step is explained below in
reference to a snippet of the timing graph shown in Fig. 1,
assuming late mode computations for illustration purposes.

Let �  U ��� 
�M��� U �P���Q� � U 
�� �O����� be the late-mode
arrival time at node � , �  �v ��� 
�M��� v-�8����� � v 
�� �,�3� �
be the late-mode arrival time at node � , and the late-mode
delays of the two edges of the timing graph be vH���� �� � �
�M��� � � �1� � � � 
-� � ����� and v����� 2� � � 
�M�N� � � ��� � �� 
�� � ����  . We would like to compute the late-mode arrival

time at timing point ¡
 B�CED \ � U � � 
�M��� U � ��� � � U 
-� � �3� �� � � � 
���� � � ��� � � � 
�� � �3��� � �� v � � 
�M��� v � �1� � � v 
�� � ��� �� � � � 
���� � � ��� � � � 
�� � �3�   �*] B�CED \ � 5 U � � � � 9 � 
�M��� 5 U � � � � 98��� �� U Z 
�� � � � Z 
�� � ��� � � �

� 5 v � � � � 9 � 
�M��� 5 v � � � � 9P��� �
� v Z 
-� � � � Z
�� � �3��R �)]

 B�CED \ � � � � 
�^��� � � ��� � ��� 
�� � �3� � � �� L �	� 
���� L%�8����� � L 
�� ���3��R ��] �

(11)

where the coefficients of
F

and
K

(the two quantities whose
B�CHD we seekto compute) are computed from the equations
above.Thus independentrandomnessis treatedin anRSS(root
of the sumof the squares)fashion, which reducesthe spread
of delay of a long path consistingof many stages.

Using the formulas of the previous section, we seek to
expressthe max of the two potential arrival times (

F
and

K
)

back into canonical form for further correlated propagation
through the timing graph. From (10), we know the mean
and variance of ¡ . In traditional static timing, ¡ would take
the value of the larger of

F
and

K
, and for all downstream

purposes, the characteristics of the dominant potential arrival
time that determined the arrival time ¡ are preserved, and
the other potential arrival time is ignored. This is like having
a tightnessprobability of 100% and 0%. In the probabil istic
domain, thecharacteristicsof ¡ aredeterminedfrom

F
and

K
in the proportion of their tightnessprobabilities. Thus if the
probabili ties were 0.75 and 0.25, the sensitivities of

F
andK

would be linearly combined in a ¢¤£ " ratio to obtain the
sensitivities of ¡ . Mathematically,

¥ �  < ` � � � 5 "�A < ` 9,L � �0�� �"��O$.�/'*'/'*�,+¦� (12)

where < ` is the tightnessprobability of
F

.
The mean of the distribution of BeCHD 5 F � K 9 is preserved

when converting it to canonical form. The only remaining
quantity to be computed is the independently random part
of the result. This is done by matching the variance of the
canonical form to the variance computed analytically from
(10). Thus the first two momentsof the real distribution are
always matched in the canonical form.

Interestingly, the coefficients computed in this manner pre-
serve the correct covarianceto the global sourcesof variation
asderived in [13] and are similar to the coefficients computed
in [10]. According to the theorem from [13], the covariance
betweenG = max(A, B) and any random variable Y can be
expressed in termsof covariancebetween

F
and ; and

K
and

; , as

�§VXW 5 ¡ � ; 9Y �§VXW 5 F � ; 9 < F � �§VXW 5OK � ; 9 5 "�A < F 9 (13)

Choose ;  �¨X� � , one of the global sourcesof variation. By
observing that ��VXW 5 F �,�1� � 9� � � and �§V�W 5,K �O��� � 9� 2L�� ,
we obtain

�§VXW 5 ¡ �%��� � 9Y � � < F � L � 5 "�A < F 9 (14)
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Fig. 2. Sample circuit.

Now, by applying the assumption that G is normally dis-
tributed, we get ¥ �  � � < F � L � 5 "1A < F 9 confirming the
previous intuition. It should be noted that the covariance to
the independent sources of variation ����� and ����R is not
preserved in our method.

The B�C:D of two Gaussians is not a Gaussian, but we
re-express it in the canonical Gaussianform and incur an
accuracy penalty for doing so. However, this step allows us
to keep alive and propagate correlations due to dependence
on the global sourcesof variation, which is absolutely key to
performing timing in a realistic fashion. Monte Carlo results
will be shown in the results section to assessthe accuracy of
this method.

Whenmorethan two edges of the graph convergeat a node,
the B�CED or Be�I operation is conducted one pair at a time,
justaswith deterministic quantities.The tightnessprobabilities
are treated as conditional probabilities and post-processedto
compute the final tightness probability of eacharc incident on
the node whose arrival time is being computed. For example,
suppose there are 3 arcs © , ª and � incident at a node.
Supposethetightness probabilitieswhen B�CED ing © and ª are
0.6 and 0.4, respectively. The B�CED of these two quantitiesis
then B1C:D ’ed with � , and supposethe tightness probabilities
are 0.8 and 0.2 respectively. Then the final tightness prob-
abil ities are <@«  7

d
¬ S 7

d
  7

d
® 

, <�¯  7
d
® S 7

d
  7

d ¢
$ and <@°  7

d
$ . As more equally critical signals are

B1C:D ’ed,accuracy degradesslightly sincetheasymmetry in the
resulting probability distribution increases, making it harder to
approximate in canonical form.

Slews (rise/fall times) are propagated in much the same
manner. If the poli cy is to propagate the worst slew, then a
separate tightness probability is computed for the slews and
applied to represent the bigger slew in canonical form. If
the policy is to propagate the latest arriving slew, then the
samearrival tightnessprobabilit iesare applied to combine the
incoming slews to obtain the output slew.

In this manner, by replacing the“plus,” “minus,” “ BeCED ” and
“ B��I ” operations with probabilistic equivalents, and by re-
expressing the result in a canonical form after each operation,
regular static timing canbe carried out by a standard forward
and backward propagation through the timing graph [15].
Early and late mode, separaterise and fall delays,sequential
circuits and timing tests are therefore easily accommodated
just as in traditional timing analysis.

Fig. 3. Timing graphof the samplecircuit.

V. CRITICALITY COMPUTATION

The methods presentedin the previous sectionenable statis-
tical timing analysis, during which the concept of tightness
probabili ty is leveraged to propagate arrival and required
arrival times in a parametric canonical form. In this section,
the use of tightness probabilities in computing criticality
probabili ties [16] is presented.One of the important outcomes
of deterministic timing is the ability to find the most critical
path. In the statistical domain, the concept of the mostcritical
path is probabilistic. The criticality probability of a path is the
probabili ty that the path is critical; the criticality probability
of an edge is the probabil ity that the edge lies along a critical
path;andthecriticality probabil ity of a node is the probability
that a criti cal path passes through that node. Computing
these probabilities will obviously have important benefits in
enumerating critical paths, enabling robust optimization and
generating test vectors for at-speedtest.

The method of computing criticality probabili ties in this
section assumes independencebetween the various tightness
probabili ties in a timing graph. While we believe this is a rea-
sonable assumption in practice, it is nonethelessa theoretical
limitation of the approach.

A. Forward propagation

The ideas behind criticality computations are described by
meansof an example. Consider the combinational circuit of
Fig. 2. In this example, separaterising andfalling delaysand
slew effects are ignored for simplicity, but the ideas can be
extended in a straightforward manner. Likewise, sequential
circuits poseno special problem. The example assumeslate-
mode timing, but early-mode follows the samereasoning.

The timing graph of the circuit is shown in Fig. 3. During
the forward propagation phaseof timing analysis, each edge
of the timing graph is annotated with an arrival tightness
probability (ATP), which is the probability that the edge
determinesthearrival time of its output node.TheATPsin this
example have beenchosen arbitraril y, andareshown at thetail
of eachedge of the timing graph. Once the primary outputs
are reached, a virtual output edge is added from eachprimary
output to a sink node, shown asedgesG andH in Fig. 3. Each
such edgeis consideredto haveadelay equal to thenegativeof
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Fig. 4. Backwardtraversal of the timing graph.

Fig. 5. Source nodeof the timing graph.

theassertedrequired arrival time at thecorresponding primary
output. In the presenceof timing tests(suchas setup, hold or
clock pulse width tests),a virtual edge is added to the sink
node whose delay is the negative of the computed statistical
required arrival time. Then the standard forward propagation
procedure is continued to compute the “arrival time” of the
sink of the graph, and the ATPs of the virtual output edges.
In this case,for illustration purposes, the ATP of eachof the
virtual output edgesis 0.5.

Property 1: The sum of the ATPs of all edgesincident
on any node of the timing graph is 1.0.

Property 2: The critica lity of a path is the product of
the ATPs of all edgesalong the path. For path 2B5E6GS to
be critical, for example, edge B has to determine the arrival
time of node 5 (probability=0.5), edge E has to determine
the arrival time of node 6 (probability=0.6) and edge G has
to determine the arrival time of node S (probability=0.5), for
a total probability of 0.15, assuming independence between
these events.

Property 3: The sum of the critica lity of all paths in a
timing graph is 1.0.

B. Backward propagation

Fig. 4 shows the criticality calculations during the backward
propagation phase of timing analysis. During the backward
propagation, we will compute the global criticali ty of each
edge and each node of the timing graph, and the required
arrival tightnessprobabil ity (RATP)of eachedgeof thetiming

graph, which is the probability that the edge determines the
required arrival time of its source node.

Property 4: The sink node has a node crit icality prob-
abilit y of 1.0. This property is obvious since all paths must
passthrough thesink node.The sumof theATPsof the virtual
output edgesis therefore also1.0.

Starting with the sink node S, the backward propagation
first considers edges G and H. They eachhave a 0.5 edge
criti cality since they eachdetermine the arrival time of S with
0.5 probability . The criticality of nodes 6 and 7 are likewise
0.5 each.

Property 5: The critica lity of an edgeis the product of
its ATP and the criticality probability of its sink node.
Clearly, an edge is globally critical only to the extent the sink
node is critical and it determines the arrival time of that sink
node.

Property 6: The criticalit y of a node in the timing
graph is the sum of the critica lity of all edges leaving that
node. Using theabove two properties, the criticalitiesof edges
and nodes are easily computed during a levelized backward
traversal of the timing graph, and are shown in Fig. 4. The
criti cality computations can piggy-back on top of the usual
required arrival time calculations. Note that the criticality of
edge A, for example, is the product of the criticality of node
6 (0.5) and the ATP of edge A (0.4). The criticality of node
5, for example, is the sumof the edge criticalities of edgesE
and F.

Corollary 6.1: The critica lity of any node in the timing
graph is the sum of the path crit icalities of all paths in
its fanout cone. For example, node 5 has two paths in its
fanout cone, path 5E6GS with a path criticality of 0.3 and
path 5F7HS with a path criticality of 0.5, totaling to a node
criti cality of 0.8 for node 5.

Property 7: The sum of the node crit icalities of all
the primary outputs is 1.0. For general sequential circuits,
this property would apply to all slack-determining end-points
(primary output and timing test points).

As the backward propagation progresses, required arrival
tightness probabilities (RATPs) are computed and annotated
on to the timing graph. These probabil ities areshown closeto
the source node of each edge in Fig. 5.

Property 8: (Dual of Property 1) The sum of the RATPs
of all edgesoriginating at any node of the timing graph
is 1.0. At a node such as 5 where there are multiple fanout
edges, the RATPs will be in the proportion of the edge
criti cality probabilities of the downstream edges. When the
primary inputs are reached during backward traversal,a new
node of the timing graphcalledthe source node is postulated,
with virtual input edges from the source node to each of
the primary inputs, shown as edges I, J, K and L in Fig. 5.
Each virtual input edge is considered to have a delayequal to
the arrival time of the corresponding primary input, and the
required arrival time of the source node is computed. During
this computation, the RATPs of the virtual edges are also
determined.

Property 9: The ATPs of eachof the vir tual input edges
is 1.0.

Property 10: (Dual of property 4) The critic ality of the
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source node is 1.0. This property is obvious sinceevery path
passesthrough the source node.

Property 11: (Dual of property 7) The sum of the node
crit icalities of all the primary inputs is 1.0.

Property 12: (Dual of property 9) The sum of the edge
crit icalities of the virtua l input edgesis 1.0 as is the sum
of their RATPs.

Property 13: (Dual of property 2) The crit icality of any
path is the product of the RATP of all edges of the path.
Thus the criticality of pathSoJ2B5E6GS is

7
d
® S�"

d
7 S ¢�±  S"

d
7  7

d
"�² .

Property 14: The crit icality of an edgeis the sum of the
crit icality of all paths thr ough that edge.

Property 15: The product of the ATPs along any path
of the graph is equal to the product of the RATPs.

Property 16: The sum of the edge crit icalities of any
cutset of the timing graph that separates the source fr om
the sink node is 1.0. In otherwords,any cut through the graph
that leaves the source node on one side and the sink node on
the other will cut edges whosecriticality probabilities sumto
1.0. This must be the casesinceevery critical path will have
to passthrough exactly one edge of the cutset.

It is important to note that the edge and node criticalities
canbecomputed on a global basis,or on a per-end-point basis,
where an end point is a slack-determining node of the graph
(a primary output or either end of a timing test segment).The
application will dictate which type of computation is more
efficient and suitable.

C. Path enumeration

Enumeration of paths in order of criticality probability is
useful in a number of different contexts, such as produc-
ing reports, providing diagnostics to the user or a synthesis
program, listing paths for test purposes, listing paths for
CPPR(Common PathPessimismRemoval) purposes[17], and
enumeratingpaths for analysis by a path-based statistical timer
[4]. One straightforward manner of enumerating paths is by
meansof a breadth-first visiting of thenodesof anaugmented
graphasshown in Fig. 5, while following the unvisited node
with the highest criticality probability at each juncture. A
running total of the criticality probability of the listed paths
is maintained,and the pathenumeration stops when the set of
critical pathshasbeencovered with a certainconfidence.

During the path enumeration, the following properties are
useful.

Property 17: The ATP of an edgeis an upper bound on
the crit icality of any path that passes thr ough that edge.

Property 18: The RATP of an edgeis an upper bound
on the critic ality of any path that passesthrough that edge.

Property 19: The criticality probabilit y of an edge is
an upper bound on the critica lity of any path that passes
thr ough that edge.

Property 20: The crit icality probabil ity of a node is an
upper bound on the crit icality of any path that passes
thr ough that node.

³-´Xµ�¶·�¸ ´P¹´Xº�µ»-¶¹-¼X½
³H´Xµ0¶�·�¸ ´P¹´XºO¾Y¿�À8Á-½�ÂMÃ

Ä ¸ ÅX½�¸ ¹%ÆXÁX·

Fig. 6. Incremental timing analysis.

VI. INCREMENTAL STATISTICAL TIMING

Optimization or physical synthesis programs often call an
incremental timer millions of times in their inner loop. To
suit this purpose,a statistical timer needsto incrementallyand
efficiently answer timing queriesafter oneor more changes to
the circuit hasbeen made.

Consider the situation shown in Fig. 6. Assume a single
change has been made to the circuit at the location shown.
The change could be the addition of a buffer, the resizing
of a gate, the removal of a latch, and so on. Assumethat
the calling program queries the timer for the arrival time at
the “Location of AT query” point. Clearly, only the arrival
times in the yellow cone of logic change (on black-and-white
hardcopies,the lightest grey region). Further, only arrival time
changes in the fan-in cone of the query point can have an
effect on the query. The intersection of theseregions of logic
is shown in green (or the darker grey region). Theoretically,
by purely topological reasoning, the portion of the circuit that
must be re-timed to answer this query can be limited to the
intersectionof thesetwo conesof logic. This kind of limiting
is called level-limiting and is accomplished by storing AT,
RAT and AT-RAT levels for each gate [5]. In practice, all
arrival times in the fan-out cone of the change point and to
the left of the query point (i.e., up to the vertical dashed line
shown in Fig. 6) are updated. The leveli zation and limiting
procedures are identical for the statistical timing situation,
and the implementation can easily ride on top of an existing
deterministic incremental capability.

In additional to level-limiting, theamount of re-computation
can be further reduced by dominance-limiting. Consider the
NAND gate shown in Fig. 6. One input of the NAND gate
is from the “changed” cone of logic and the other from an
unchanged region. If the arrival time at the output of the
NAND gate is unchanged because it was determined both
before and after the change by the sideinput, then the fanout
cone of the NAND gate (shown in dark black in Fig. 6)
can potentially be skipped in answering the query. This type
of limiting is called dominance-limiting. In our statistical
timer, the notion of “change” is treatedprobabilistically by
examining the tightnessprobabilities. If the ATP of the side
input is sufficiently close to 1.0 both before and after the
change, thenthe arrival time of the output of the NAND gate
neednot berecomputed,and its fanout cone canpotentially be
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skipped until some other input of that fanout cone is known
to have materially changed. Similar concepts are applicable
during backward propagation of required arrival times.

Of course,thereareseveral complications thatmust befaced
in a realapplication such aslatches,multiple clock phasesand
phasechanges,and the dynamic adaptationof data structures
to such changes. Thesedetails are omitted due to lack of
space, but our implementation takes into account all of these
considerations.

VI I . IMPLEMENTATION

The above ideashave beenimplemented in a prototype called
EinsStat. EinsStat is implementedon top of thestatic timing
analysisprogram EinsTimer in C++ with Tcl scripting under
Nutshell. Multiple clock phases, phaserenaming, rule tests
(such assetupandhold tests), automatic tests(suchasclock
gating, clock pulse width and clock inactive tests), loop cut
checks, same-mode constraints (comparing late vs. late or
early vs. early, instead of the usual late/early comparison),
arbitrary timing assertions and timing adjusts anywhere in
the timing graph, and clock overrides are supported as in
EinsTimer. Thetimerworkspermanently in incremental mode
[18], even if a complete timing report is requested.

Each timing assertion, gate delay, wire delay and timing
testguard time must be modeled in canonical form, i.e., with
a mean part, a dependence on global sources of variation
and an independent random portion. Backward compatibili ty
with deterministic timing is preserved by setting the mean
valueof an adjust or assertionto the deterministic value, and
the randomness to zero or to a user-specified proportional
variabil ity. The EinsStat implementation allows each gate
and eachwire to have its own customized variability model,
provided the model can be expressed in the canonical form.
Furthermore, the EinsStat implementation utilizes general
purpose three-tier sensitivity modeling approach, whereby
delay dependences to underlying sources of variation can
be obtained either by 1) analytic means (i.e., appealing to
either technology modelsor anunderlying simulator), 2) finite-
differencing of corner-baseddelays,or 3) using user-specified
global assertions (e.g., EinsStat supports Tcl commands to
expressa situation in which, for example, “all normal Vt gates
have a 1% independent randomness and a 4% correlatedvari-
abil ity, and similarly all low Vt gateshave a 2% independent
randomnessand 5% correlatedvariabili ty , and furthermore,
thetwo setsof variationsmistrackwith respect to eachother”).
To enableefficient memory use,eachsource of variation may
be categorized as either “sparse” (maintained in a linked-
list data structure, avoiding the needto explicitl y store zero
sensitivity values) or “dense” (in a compact array structure,
using fixed variable indices,explicitly storing zerosensitivity
values). As an example, lower levels of metal which are
usedfrequently throughout a designare preferably represented
densely, while less-frequently usedhigher levels of metal are
better off being treatedin a sparse manner.

EinsStat supports a multitude of processvariables,includ-
ing individual metal layers, NFET/PFET mistracking, mis-
tracking between different Vt device families, and product-
reliability factors. For initial testing purposes, three global

sources of variation were studied. The first is gate vs. wire
delays.Eachof thesesetsof delayscanhave an independent
and correlatedvariability, and a mistrack coefficient. In the
case of gatevs. wire delays,mistrack implies that when gates
get faster, wires get slower, and vice versa, and in general
expresses correlations between the two sets of delays. The
second supported global source of variation is rise vs. fall
delaysof gates(to model N/P mistrackdue to manufacturing
variations or fatigue effects). Again, eachof these can have
a random and correlated part and a mistrack coefficient.
The third supported source of variation is meant similarly to
study mistrack betweennormal Vt and low Vt gates. In the
benchmark results presented in the next section, sensitivities
to these three global sources of variation were provided in a
blanket fashion asa percentage of the nominal delay.

VII I . NUMERICAL RESULTS

EinsStat was first run on industrial ASIC chips of various
sizeswith zero random variabil ity and no global sources of
variation. Thearrival time,requiredarrival timeandslackwere
compared betweenEinsTimer and EinsStat at every node
of the circuit, for every clock phase,both rising and falling,
and for both early mode and late mode. This was a good
test to detectcertain kinds of software bugs in the EinsStat
implementation, sincethe two setsof resultsmustbe identical
in the absenceof any variability.

A set of industrial ASIC designs was timed with 3 global
sources of variation as well as independent randomnessbuilt
into every edge of the timing graph. Thebenchmark resultsare
shown in Table I, in which the chipsarecodenamedA, B, etc.,
to preserve confidentiality. The column “Propagate segments”
represents the number of edges in the timing graph with
uniquesource-sink pairsof nodes.The“Load” column lists the
CPU time to load the netlist, timing rules and assertions. The
“EinsTimer” column is theCPUtimeof thedeterministic base
timer, while the“EinsStat” column shows theCPU time taken
when the statistical timer runs alongside (and in addition to)
the deterministic timer. All CPU times were measured on an
IBM Risc/System6000 model 43P-S85on a single processor.
All timing runs included forward propagation of early and
late arrival times, and reverse propagation of early and late
required arrival times. Similarly, the memory consumption
to load each design, assertions and delay models (Base),
run deterministic timing (EinsTimer) and statistical timing
alongside (and in addition to) deterministic timing (EinsStat)
are shown in subsequent columns of Table I. The CPU and
memory overhead of statistical timing are very reasonable,
considering the wealth of additional data being generated. In
the small testcase A, memory consumption wasdominatedby
the delaymodels,sothe overheaddueto statistical timing was
dwarfed. In test caseE, the larger overheadwasdue to nodes
in the timing graph having extremely high incidencedue to
SoC timing macromodels.

The statistical experiments were performed both with and
without criticality computations,and the CPU time andmem-
ory overhead were observed to be nearly identical (within
1%), lending credence to the efficiency of the criticality
computations.
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TABLE I

CPU AND MEMORY RESULTS.

Name Gates Clock Propagate CPU time (secs.) Memory (MB)
domains segments Load EinsTimer EinsTimer Base EinsTimer EinsTimer

+ EinsStat + EinsStat
A 3,042 2 17,579 5.1 2.8 3.8 111 53 60
B 183,186 79 959,709 140.5 121.3 187.6 423 177 723
C 1,085,034 182 5,799,545 5131.5 809.9 1233.1 3200 600 4300
D 1,213,361 18 6,969,860 783.5 1079.3 1485.7 2990 1160 4380
E 2,095,176 51 13,460,759 1494.9 1316.9 2724.3 4590 3320 11330

Test chip “A” (3,042 logic gates)was used to demonstrate
the importanceof global correlations. The critical pathin this
chip is a long combinational path passing through about 60
stagesof logic, with a nominal delay of 23.06 ns including
wire delay. With 5% correlated variability (i.e., assuming all
delaysmove in concert with respect to a source of variability)
on every gate and wire delay, the longestpath delay is 23.01
ns with a _ of 0.9 ns. With 5% independent variability (i.e.,
assuming eachcircuit delaymay vary independently) on every
gateandwire delay, the longestpathdelayis 23.62 ns with a _
of 0.13 ns.Clearly, with more independent randomness,there
is more cancellationof variability along a long path, yielding
a tighter distribution but with a more pessimistic mean. The
correlated caseproducesa more optimistic mean path delay,
but with a much bigger spread. EinsStat allows the modeling
of theseextreme situations andanything in-between.

The primary goal of EinsStat is to produce timing results
in a parameterized form, and therefore to give the designer
information regarding the robustnessof the design. However,
EinsStat producesthese timing resultsas random variables,
and the correctnessof the meanand spreadof theserandom
variables can be verified by Monte Carlo analysis. To render
the analysis tractable,EinsStat makes a number of assump-
tions thatprevent it from obtaining theexact result.Inaccuracy
creepsin every time theprobability distribution resulting from
a B1CED or B���I operation is re-expressedin canonical form.
Specifically, the B1C:D or B1��I of two Gaussiansis not Gaussian,
but EinsStat forcesit back into a Gaussianform. The extent
of theseinaccuraciesis revealedby Monte Carlo analysis.

In order to validate the timing resultsobtainedfrom Eins-
Stat, a comparisonof EinsStat with Monte Carlo simulation
on 4 small to medium-sized benchmarks wasperformed. For
each case, one representative slack, that of the nominally
critical endpoint, wasselectedfor comparisonpurposes.Fig. 7
through Fig. 10 show the slackdistribution of both EinsStat
and Monte Carlo analysis for the 4 testcases.It can be seen
from these figures that EinsStat predicts the mean value,
spreadand tails with reasonableaccuracy.

The run-time comparison of the EinsStat runs with that
of Monte Carlo analysis appearsin Table II. The runs were
performedon the same computer. From TableII , it canbe seen
that EinsStat is significantly faster than both sequential and
parallel (utili zing up to 45 processors) Monte Carlo analysis.

Early on in the verification process it became obvious that
the runtimes required for serial Monte Carlo would quickly
become prohibitive. Therefore, significant development effort
was invested to create a high performance Monte Carlo
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TABLE II

MONTE CARLO VS. EinsStat COMPARISON.

Test case Gates EinsStat CPU Monte Carlo
Samples Sequential CPU Parallel CPU

dd:hh:mm:ss dd:hh:mm:ss
1 18 1 sec. 100000 5:57 N/A
2 3042 2 sec. 100000 2:01:15:10 2:46:55
3 11937 7 sec. 10000 0:20:33:40 51:05
4 70216 59 sec. 10000 N/A 4:36:12
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Fig. 11. EinsStat result on industrial ASIC design for early modeslacks.

capabil ity. This tool usesa client/server approachto perform
parallel timing runs on different host machines,controlled by
a central MonteCarloprocess, with all datatransferoccurring
via TCP. While this effort made Monte Carlo verification a
viableoption on the larger designs,note that runtimesarestill
several magnitudesof order larger than those of EinsStat (see
Column 6 of Table II).

A repowering experiment on chip “A” wasusedto evaluate
incremental operation of EinsStat. For each of 493 gates
with negative slack, the gatepower level (size) was modified,
and EinsStat was queried for the new slack on eachpin of
the modified gate. Incremental EinsStat was 6 times faster
thannon-incrementalEinsStat with identical results.For large
designs and for different types of changes and queries, we
expect the run time improvement obtained by incremental
processing to be quite dramatic.

An EinsStat analysis of an industrial ASIC designwhose
hardware was known to have hold violations was performed
to consider the effects of back-end-of-the-line variability on
circuit performance. This designutilized 7 wiring planes,each
of which wasmodeledby an independent random variable to
represent metal variability . The results of this analysis were
comparedto a traditional exhaustive corner-basedstudy (i.e.,
to determine the combination of fast/slow metal layer assign-
mentsthat producesthe worst possibleslack). As indicatedin
Fig. 11, a statisticaltreatmentof parameter variation resultsin
a 3_ early mode slack of A�" ¬ $ ps representing a pessimism
reduction of

¬ ¢ ps over thetraditional exhaustive corner-based
analysis.
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IX. FUTURE WORK AND CONCLUSIONS

This paper presentsa novel incremental statistical timing
algorithm which propagatesfirst-order sensitivities to global
sources of variation through a timing graph. Each edge of
the timing graph is modeledby a canonical delay model that
permitsglobal dependenceaswell asindependentrandomness.
The timing resultsarepresented in a parametricform, which
canhelp a designer or optimization program target robustness
in the design. A novel theoretical framework for computing
local and global criticality probabil ities is presented, thus
providing detailedtiming diagnosticsat a very small cost in
run time.

The following avenues of future work suggest themselves.
The assumption of lineardependenceof delay on eachsource
of variation is valid only for small variations from nominal
behavior. Extending the theory to handle general nonlinear
models and asymmetric distributions would be a big step
forward. Second, the impact of variabilit y of input slews
and output loads on the delay of timing graph edges can
be chain-ruled into the canonical delay model as suggested
by [9]. Third, the criticality computations in this paper as-
sume independencebetweenthe criticali ty probabilitiesof any
two paths, an assumption, but not quite correct. Extending
the theory to remove dependence on this assumption is a
challenging task that we hope to addressin the future. And
finally, extending EinsStat to account for spatially correlated
variabil ity is another challenging task we hope to addressin
future work.
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