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ABSTRACT
Due to excessive reduction in the gate length, dopant concentra-
tions and the oxide thickness, even the slightest of variations in
these quantities can result in significant variations in the perfor-
mance of a device. This has resulted in a need for efficient and
accurate techniques for performing Statistical Analysis of circuits.
In this paper1 we propose a methodology based on Bayesian Net-
works for computing the exact probability distribution of the delay
of a circuit. In case of large circuits where it is not possible to
compute the exact distribution, we propose methods to reduce the
problem size and get a tight lower bound on the exact distribution.

1. Introduction
As CMOS technology continues to move further into the nanome-

ter regime, even the slightest of variations in parameters such as
gate length, dopant concentrations and oxide thickness can result
in significant variations in the performance of a device. The varia-
tions cause uncertainty in the circuit performance make it difficult
to accurately estimate the yield and forces designers to over design,
resulting in suboptimal circuits [5].

The conventional methodology to model the effect of variations
is to determine the circuit performance assuming for each gate the
worst possible value of its delay. This can lead to very pessimistic
designs. For example, [14] shows that the worst case delay value
for a 16-bit adder can be 30% more than the 3σ delay value. Based
on many independent sources of evidence, there appears to be a
consensus emerging within the CAD and DA communities that the
traditional, deterministic approach to the analysis of circuit behav-
ior (both logical and temporal) will no longer be valid, and proba-
bilistic methods based on stochastic models are more appropriate.
An excellent discussion of the sources of uncertainty and the need
for stochastic models appears in [10].

Probabilistic Timing Analysis (PTA) is an approach to perform-
ing timing analysis where the delays of gates and/or interconnect
are random variables. The distributions of these individual ran-
dom variables could be obtained by Monte Carlo SPICE simula-
tion, varying some of the key device and process parameters. In
this view, the delay of a circuit is also random variable, but one
which is a very complex function of the gate and interconnect de-
lay random variables. The central problem in PTA is to determine
the probability distribution of the circuit delay.

PTA is not new and dates back to the mid 1970s, where the focus
was on computing the distribution of project completion times in
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PERT networks [7]. One of the key challenges of PTA is that it
involves maxima and sums of a large number of dependent random
variables. The first attempt to address the most general version of
the problem appears in [13]. If M is a random variable that de-
notes the arrival time at the circuit output, the solution proposed
in [13] is to construct the probability distribution of a new random
variable M∗ which is convexly larger than M. This requires solv-
ing a constrained non-linear programming problem of very high
dimensionality, and can be computationally prohibitive for modern
circuits.

The method proposed in [9] is to reduce the complexity of the
underlying problem by obtaining symbolic expressions for the de-
lays of the circuit. Another path based approach has been presented
in[12] where the authors start with a set of critical nodes based on
static timing analysis. Both the above approaches perform Monte
Carlo simulations after initial pruning and can take care of false
paths. However, the number of paths in a circuit can increase sig-
nificantly with the circuit size resulting in high complexity.

The approach taken in [3], is to propagate PDFs through the
graph, with numerical convolution and multiplication being per-
formed at each step. In the presence of reconvergent paths, random
variables are replaced by stochastically larger ones to obtain upper
bounds on the PDF. The formulation will result in slightly loose
bounds because the pin-to-pin delays of a gate for all fanins are
assumed to be independent.

One of the challenges faced with performing PTA is its compu-
tational complexity. Static timing analysis (STA) can be performed
in time and space that is proportional to the circuit size. The com-
plexity of computing the exact probability distribution of the delay
of a circuit has been stated to be exponential either in the number
of paths [15] or in the circuit size [3], [11] because of the presence
of reconvergent fanouts. Even so, exact methods are still of interest
as they can be applied to reduced circuits and lead to provably good
upper or lower bounds.

In this paper we propose a different approach for computing the
exact probability distribution of the circuit delay. The approach is
based on representing the circuit as a Bayesian Network, which es-
sentially prescribes an efficient method to factorize the joint dis-
tribution to a optimal set of factors. The factorization is made
possible by taking advantage of the structural dependencies in the
circuit. While the theoretical complexity of this approach is still
exponential, unlike other exact methods, it is exponential in the
maximum clique size of a graph derived from the circuit, and this
maximum clique size grows much slower than the circuit size. We
then present several transformations for reducing the size of the cir-
cuit and show that this leads to bounds on the PDF. We also present
a method to incorporate wire delays in the analysis without con-
siderably increasing the complexity. Note that in our formulation,
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gate delays are assumed to be independent random variables. Cor-
relations between gate delays may arise due to many factors such
as processing steps having different effects at different locations
on the chip or due to spatial correlations between process parame-
ters [3]. [15] shows that the expection of the maximum of uncor-
related normal random variables is an upper bound on correlated
normal random variables and gives an algorithm for finding the ex-
pectation of the maximum over all path delays assuming they are
uncorrelated.

The organization of rest of the paper is as follows: In section 2,
we give the problem formulation of PTA. Section 3 gives a brief
introduction to Bayesian Networks and how they are used in our
analysis. In section 4 we give various transformations we use for
reducing the size of our problem. Section 6 shows how we can
include the wire delays without increasing the number of nodes in
the circuit. Finally, the experimental results and the Conclusions
are given in Section 7 and 8 respectively.

2. Problem Formulation
A logic level netlist C is represented as a Directed Acyclic Graph

(DAG) G = (N,E) where the nodes of G correspond to the gates or
equivalently gate outputs in C and an edge represents a connection
between the corresponding gates in C. Associated with each node
in G are two random variables: Xi which represents the arrival time
of the output signal at that gate, and Di which represents the de-
lay of the gate. We assume that the gate delays are bounded and
constitute a finite set of alternatives.

Let Xi be a node in G with delay D and with inputs from nodes
labeled Xi1 ,Xi2 , . . .Xik . Then

Xi = max{Xi1 ,Xi2 , . . . ,Xik}+D (1)

We want to find the distribution of arrival time of the primary out-
puts O1,O2, ..,Om. The distribution of any signal Xi in the circuit is
given in terms of its fan ins (Xi1 ,Xi2 , . . . ,Xik ). The arrival times of
the fanins are not independent because of presence of reconvergent
fanins. Hence finding a closed form expression for P(Xi ≤ t) is not
possible. Traversing all the way back to primary inputs will result
in the arrival time at the circuit output being represented in terms
of the arrival times of all the gates in the circuit. Thus it seems that
to compute the probability distribution of the max of the outputs
will require us to first compute the joint distribution of the arrival
times of all the nodes in the circuit. The space required for such a
computation will be exponential in the circuit size. However, in the
next section we show that through the use of Bayesian Networks,
the computation of the joint distribution is not necessary.

3. Introduction to Bayesian Networks
In this section we explain how we can utilize Bayesian Networks

(BNs) to obtain the exact probability distribution of a node in a
DAG. BNs were introduced to circuit analysis by [4] to compute
the switching activity of the signals.

DEFINITION 3.1 ([8]). A Bayesian Network is a set of vari-
ables and a set of directed edges between the variables which form
a directed acyclic graph (DAG). Each variable A has a finite num-
ber of mutually exclusive states which it can take and if B1,B2, ..,Bn
are its parents then we associate a conditional probability distribu-
tion P(A/B1,B2, ..,Bn) with that node.

From the definition above, we see that our representation of the
circuit is a Bayesian Network.

DEFINITION 3.2. A graph is called complete if every pair of
vertices are joined. A clique is a maximal complete subgraph.
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Figure 1: Moralization and Triangulation of a DAG

Consider the DAG shown in Figure 1. The classical approach for
obtaining the probability distribution of the output X8 is to compute
the joint probability distribution of X1,X2, . . .X8 as P(X1,X2, . . .X8)
and then compute P(X8) as

P(X8) = ∑
X1,...X7

P(X1,X2, . . .X8)

The space complexity of this approach is O(mn) where m is the
number of distinct values taken by each variable and n is the num-
ber of variables . Moreover it is not clear how to obtain this joint
distribution. However, there exists an efficient way of computing
the probability distribution of X8 by factoring the joint distribution
and performing efficient marginalization of these factors. For ex-
ample, P(X8) can be obtained by

∑
X7,X8

P(X8/X7,X6)∑
X5

∑
X4

P(X7/X5,X4)P(X4)∑
X2

P(X2)·

∑
X1

P(X5/X2,X1)P(X1)∑
X3

P(X6/X3,X2)P(X3) (2)

From the above equation we see that we have scheduled the
marginalizations such that we don’t have to compute the joint prob-
ability distribution of more than 3 variables at any time.

The method is based on separating the nodes in the DAG into
different subsets such that the joint distribution of the nodes in a
subset can be computed and the marginal distribution of any node
can be obtained from these joint distributions. The DAG is first
converted to an undirected graph by replacing the directed edges
with undirected edges. Since the distribution of any node can be
determined given the distribution of its parents, the node and its
parents should lie in the same set. To ensure this, the graph is
moralized by connecting the parents of each node. To obtain the
ordering in which to perform the marginalizations as shown in (2),
we need to triangulate the graph and remove any chordless cycle of
length greater than 3. The moralized and triangulated graphs along
with the original DAG are shown in Figure 1.

From the triangulated graph we can obtain different cliques. The
subgraph on nodes X6,X7 and X8 in the Triangulated DAG in Fig-
ure 1 forms a clique, whereas X5,X6,X7 and X8 does not because
the edge from X5 to X8 is absent. Bayesian Networks help us to par-
tition the circuit into different cliques so that we can obtain the dis-
tribution of a node Ni by computing the joint distribution of nodes
in a clique Ci such that Ni ∈Ci. These cliques represent the sets over
which we have to compute the joint distribution. Using this trian-
gulated graph, we construct a clique tree as shown in Figure 2. An
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Table 1: Maximum clique size in benchmark circuits
Circuit Nodes Edges Max. Clique size No. of Cliques

C17 11 12 4 8
C880 443 729 53 305
C432 196 336 38 150
C499 243 408 32 183
C1355 587 1064 49 402
C1908 913 1497 67 678
C2670 1426 2075 89 1084
C3540 1719 2936 189 1195
C5315 2485 4386 139 1701
C7552 3719 6144 77 2593

edge between two cliques represents that there are common vari-
ables between the two cliques. The details of the entire procedure
are beyond the scope of this paper, however the detailed algorithms
for performing each of these steps and their proofs are given in [17,
8, 6]. The probabilities of the inputs X1 and X2 are assigned to
clique 1 whereas that of X3 is assigned to clique 2. Using Bayes
theorem, the distribution of C1 is given by

P(X1,X2,X5) = P(X5/X1,X2)P(X1)P(X2)

we assume that the input arrival times are independent of each other
or their joint distribution is given to us. Thus we can compute the
distribution of C1 we can apply the same procedure for C2. After
this, we can obtain the distribution of C3 as follows

P(X6,X5,X2) = (∑
X1

φC1)(∑
X3

φC2) = P(X6/X2)P(X5,X2) (3)

where φC1 is P(X5,X2,X1) and φC2 is P(X6,X3/X2). This shows
that the probability distribution of clique 3 can be obtained from
that of cliques 2 and 1. Following the same procedure, we can
obtain the joint distribution of the variables in clique 6 and obtain
the marginal distribution of X8 from that. The complexity of this
procedure is O(mc), where c is the size of the largest clique. Thus
Bayesian Networks can be seen as an efficient tool for computing
the distribution of any variable in the Network by dividing the net-
work into smaller subsets and by computing the joint distribution
over these subsets. As is evident from this example, the complexity
is directly related to the maximum clique size of the DAG.

The maximum clique size present in a BN is dependent on the
amount of reconvergence in the network as well as the maximum
fanin in the circuit. Since the maximum fanin in a circuit is bounded
(typically 10-15), the clique sizes will be much smaller than the
circuit size. Moreover, the clique sizes also depend on the quality
of heuristics used for the triangulation algorithm. Thus by using
a better triangulation algorithm, we can further reduce the clique
sizes. Fourth column in Table 1 shows the maximum clique sizes
for the ISCAS85 benchmark circuits thus confirming that the clique
size is a slow growing function of the circuit size.

To specify the Bayesian Network we construct the conditional
probability distributions (CPDs) P(Y/Xj,Xj+1, ..,Xk) for each of
the nodes (Y ) in the circuit as follows

P(Y/Xj,Xj+1, ..,Xk) = ∑
d

P(Y,D = d/Xj,Xj+1, ..,Xk)

= ∑
d

P(Y/Xj,Xj+1, ..,Xk,D)P(D = d)

4. Graph Transformations
The complexity of constructing the exact PDF of the circuit de-

lay can be reduced either by devising new methods to reduce the
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Figure 2: Clique tree of example circuit
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circuit size and obtain tight lower bounds on the probability dis-
tribution (PDF) of the delay. There are two main aspects of the
problem where the reduction can be performed.

1. Reduce the graph size based on transformations which will
remove/combine nodes,

2. Reduce the size of CPDs in case of nodes with large fanins.

In this section we present a set of results which can be used
for performing transformations for reducing the complexity of the
analysis. The proofs for all these transformations can be obtained
in the extended version [2].

4.1 Fanins Reduction
The size of the conditional probability distribution depends ex-

ponentially on the number of fanins of a node. Hence if a node has
k fanins where each one of them can take m distinct values, then
the size required to store this distribution is O(mk+1), an additional
dimension for the output of the node. Since in the original circuit,
we can have a gates with large fanins (C5315 has a maximum fanin
of 9), the size of the largest CPD will be O(m9) . This size is ex-
tremely large even for small m, hence we break the node as shown
in Figure 3. The delay associated with each of the new nodes is 0,
whereas the last node has delay of the original node associated with
it. Hence the complexity of storing the CPTs will be O(m3).

4.2 Reducing Switching Window Size
We are interested in computing the distribution of the arrival

times over the switching window of the output. For yield analysis
purposes, typically we are interested in the distribution close to the
Latest Arrival Time (LAT). Hence by removing some events which
result in an arrival time close to the Earliest Arrival Time (EAT) of
the outputs, we can prune out a significant number of nodes without
sacrificing accuracy. The circuit size can be reduced using this idea
by propagating a critical time (T ∗) from the output to the primary
inputs just as required time is propagated in STA. In this section we
prove that by reducing the graph using this transformation results
in obtaining a lower bound to the distribution of the circuit delay.

DEFINITION 4.1 ([18]). If X and Y are two random vari-
ables with sample spaces SX and SY , SY ⊆ SX , then Y is stochasti-
cally larger (s.l.) than X, denoted by Y ≥st X, if and only if

P(Y > t) ≥ P(X > t) ∀ t ∈ SY
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Figure 4: Probability and Residual Probabilities

Figure 4 shows that if Y is stochastically larger than X , then the
probability distribution of Y is a lower bound on the probability dis-
tribution of X . Hence if we estimate the fraction of circuits whose
delay will be greater than a critical value t (i.e. P(X > t)), we will
never underestimate this fraction if we replace X with a stochasti-
cally larger random variable Y .

In the following the term reduced DAG means the DAG obtained
by reducing the switching window size. Let Yred be an output node
in the reduced DAG and let Y be the corresponding node in the orig-
inal DAG. The following sequence of results are aimed at demon-
strating that Yred ≥st Y .

Let X ′ be a primary input in the reduced DAG and let X be the
corresponding input in the original DAG. Let l∗X be the required
time associated with X as a result of propagating a critical time
T ∗ from the primary outputs to the primary inputs. Then X ′ =
max{X , l∗X}. Since {X ′ ≤ t}≡ {X ≤ t, l∗X ≤ t}⊆ {X ≤ t}, X ′ ≥st X .
Thus all the inputs in the reduced DAG are stochastically larger
than the corresponding inputs in the original DAG.

Now consider an arbitrary node Y ′ in the reduced graph and let Y
be corresponding node in the original DAG. After performing the
Reduce Fanin transformation, either the two inputs to Y ′ originate
from the same node as shown in Figure 5, or they are independent.
In either case that Y ′ is stochastically larger than Y .

D1

D2

lx ux[ ] lY uY ][

d2min d2max][

d1min d1max ][

X Y

path 1

path 2

Figure 5: Dependencies between the fanins

LEMMA 4.1. Let X and Y be two random variables, with sam-
ple space [lX ,uX ] and [lY ,uY ] respectively, such that Y = X +max{D1,D2}
where D1 and D2 are two other random variables with sample
space [d1min,d1max] and [d2min,d2max] respectively. Also let X ′ and
Y ′ be two random variables, with sample space [l∗X ,uX ] and [l∗Y ,uY ]
respectively, such that X ′ = max{X , l∗X}, and Y ′ = X ′+max{D1,D2}
then Y ′ ≥st Y .

So far we have shown that the primary inputs of the reduced
DAG are stochastically larger than the primary inputs in the origi-
nal DAG. We have also shown that if two paths from a signal which
is s.l. than the corresponding signal in the original DAG reconverge
at some node, then the signal at the point of reconvergence will also
be stochastically larger. To complete the validity of this transfor-
mation, we need to show that the signals at second level are also
s.l. than the signals at first level in the original DAG.
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Figure 6: DAGs before and after SW Transformation

THEOREM 4.1. Let X1 and X2 be the random variables denot-
ing the arrival times of two primary inputs of a circuit. Let X ′

1
and X ′

2 represent the random variables denoting the arrival times
of the same primary inputs in the reduced DAG obtained by assign-
ing a required time T ∗ at the outputs. Also let Y be represent an
RV such that Y = max{X1,X2}+ D and Y ′ be the corresponding
arrival time in the reduced DAG, then assuming the input arrival
times to be statistically independent, Y ′ ≥st Y .

Hence the signals at level 2 (whose fanins are primary inputs) in
the reduced DAG are s.l. than the corresponding signals in the
original DAG. In a circuit, the only dependencies present are those
caused by reconvergences. Hence for any signal, either its fanins
are independent or the dependency is as described in Lemma(4.1).
Since, the signals at level 2 in the reduced DAG are s.l. than the
signals in original DAG, the signals at subsequent levels will also
be stochastically larger.

Figure 6 shows the original DAG and the reduced DAG by taking
the critical time T ∗ to be the EAT of the output. The critical time at
the input of each node is obtained by subtracting dmin of the node
from its critical time. If there is an internal node whose all fanins
are removed (e.g. Node 7 in Figure 6), the Latest Arrival Time of
that node is assigned a Probability of ’1’ to ensure that it is s.l. than
the same node in Original DAG.

4.3 Inputs Reduction
Depending on the relative alignment of the switching windows

of the two inputs to a node, we can perform further reduction in the
graph size.

THEOREM 4.2. If A and B are the fanins of a node C such that
the latest arrival time of A is ≤ than the earliest arrival time of
B, then we can remove A from the fanin of C without affecting its
probability distribution of C.

Note that [3] also uses this transformation. We can remove A
from the entire graph only if all fanouts from A which satisfy the
above condition. We can also remove all the nodes in the fanin cone
of A, if none of the nodes fanout to a node outside this cone.

4.4 Series Reduction
We also perform a much widely known form of transformation

which reduces the complexity of analysis by combining two nodes
as shown in Figure 7.

Let the delays of the two nodes be D1 and D2 respectively. The
delay of the reduced node is D = D1 + D2. Since we have as-
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sumed that there is no correlation between the gate delays, from
general probability theory [16], we know that the probability den-
sity of the sum of two independent random variables is obtained by
convolving their probability density functions.

5. Process Flow
Figure 8 shows the flowchart corresponding to the steps involved

in our analysis. We start the analysis by performing the different
transformations in the given order. After reducing the DAG, we
traverse nodes in topological order to find a node which is the point
of reconvergence. If we find such a node, we extract this node along
with its fanin cone. We compute the CPDs for all the nodes in this
subgraph and perform the BN-based analysis to compute the PDFs
of all the nodes in this subgraph.

After this analysis, we can remove all the nodes which don’t
fanout to a node outside this fanin cone. Also since we have com-
puted the PDF of the node at which the paths reconverge, we can
remove its fanin edges. This will reduce the complexity of the re-
maining subgraph. But this procedure amounts to making this node
independent of all the nodes in its fanin cone and can result in re-
ducing the quality of the bound.

Once we have analysed all the subgraphs containing reconver-
gences, we perform the analysis on the remaining DAG and obtain
the PDF of the output.

6. What about Wire Delays?
Even though a significant amount of work has gone into devel-

opment of PTA tools, the problem of including wire delays and
still performing the analysis efficiently has not been discussed in
detail. With the design process going into nanometer scale, the in-
terconnect delays have started to increase sharply primarily because
thinner wires result in higher resistance and their close proximity
results in higher capacitance. This leads to a higher RC value and
thus larger delay.

TA

TB

TCD

compound node

DAi

DBi

Interconnect Delay

Interconnect Delay

Figure 9: Compound Node for Wire Delays

A simple way to include the wire delays is to insert a node on
each of the edges of the DAG, however this procedure will increase
the DAG size by the number of edges in the DAG. This number can
be as high as twice the number of nodes, hence it will significantly
increase the size of the DAG. In this section we present an efficient
way of including wire delays, without increasing the number of
nodes in the DAG along with only a minor increase in the memory
space.

We first insert dummy nodes corresponding to the interconnect
delays on each of the edges as shown in Figure 9. Let us denote
by DAi and DBi the interconnect delays corresponding to the edges
connecting A to C and B to C respectively. Let TA, TB and TC rep-
resent the arrival times at A, B and C respectively. We assume that
the gate and interconnect delays are independent, thus delay ran-
dom variables DAi , DBi and D are independent of each other. To
keep the DAG size the same, we now combine the three nodes into
a compound node. To carry on with our analysis, we only need the
CPD corresponding to this compound node. Hence we compute the
CPD of this node as follows.

The delay at the output C is given by

TC = max{TA +DAi ,TB +DBi}+D

The probability distribution of TC conditioned on TA and TB,
P(TC = t/tA, tB) can be computed as follows

∑
d,dAi ,dBi

P(max{tA +dAi , tB +dBi} = t −d/tA, tB,d,dAi ,dBi)•

PD(d)PDAi
(dAi)PDBi

(dBi) (4)

Hence, given a particular tA, tB and tC, we can obtain the corre-
sponding value of the conditional probability of TC with respect to
TA and TB from (4). We see that the number of nodes in the DAG
remains the same but there is a slight increase in the complexity
because the number of distinct values taken by each of the signal
(m) increases.

7. Experimental Setup and Results
We performed our analysis on ISCAS85 benchmark circuits and

compared our results with 10,000 runs of Monte Carlo simulations.
The delays of the gates were mapped using a user specified library
for assigning different delay distributions depending on the gate
type and the fanins/fanouts. We ran our simulations on a Sun 280r
server having 2 Sparc III processors 900 MHz, and 4 GB RAM.

The Reduce fanin and Switching Window Reduction transforma-
tions were implemented in PERL and the resulting DAG was given
as an input to MATLAB program. The Inputs Reduction and Se-
ries Reduction transformations and the remaining procedures were
implemented in MATLAB. The BN-based analysis was done using
Bayesian Network Toolbox in MATLAB [1].

Table 2 shows the reduction in gate sizes we obtain after per-
forming Switching Window and Series Reduction transformations.
We can obtain as much as 90% reduction in the circuit sizes and the
average reduction obtained was 71%.
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Figure 10: Sim. and Predicted Arrival times for C5315

Table 2: Reduction in the problem size
Circuit Nodes Nodes Remaining after % red.

Swit. Win. Series red.
C17 11 7 7 36%
C432 196 71 29 85%
C499 243 222 158 35%
C880 443 118 51 88%
C1355 587 494 446 24%
C1908 913 179 107 88%
C2670 1426 416 236 83%
C3540 1719 252 165 90%
C5315 2485 379 251 90%
C7552 3719 660 469 87%

We took the percentage variation in the delay ((dmax−dmin)/dmean)
to range from 20 - 40%. The SW reduction was performed with the
critical time as the EAT of the output. The EAT was propagated
to the primary inputs by subtracting dmin of each gate encountered
in the path. The amount of reduction using the Switching Window
transformation depends on the percentage variation in the delay.

We could obtain the exact distribution for C17. Because of large
number of reconvergences present in other circuits we obtained
their bounds. In Table 3 we see that the worst case difference in
the simulated (MC) and predicted (BN) 3σ values is less than 3%.
The runtime of our procedure was significantly less than the Monte-
Carlo simulations.

Figure 10 shows the simulated and predicted arrival time of C5315
for residual probability of 0.3. We see that the predicted residual
probability is always greater than the simulated residual probabil-

Table 3: Comparison of TAU and Monte Carlo simulations
Circuit µ+3σ Diff.(%) Time

MC BN MC BN
C17 3.54 3.54 0 7.73 0.51
C432 18.07 18.1 0.22 239 89
C499 12.04 12.05 0.05 297 63
C880 25.36 25.40 0.155 516 90
C1355 25.63 25.71 0.38 707 496
C1908 26.18 26.25 0.276 1147 288
C2670 33.70 34.0 0.88 1625 92
C3540 44.5 45.8 2.834 2313 212
C5315 31.1 31.2 0.32 3782 150
C7552 27.3 27.4 0.365 4749 696

ity. Hence we never underestimate the fraction of circuits whose
delay is greater than a given critical time.

Since the computations have been performed in MATLAB, the
runtime of our analysis is much slower than if we had a Bayesian
Networks package implemented C/C++. Hence significant speedups
can be obtained by implementing the code in C.

8. Conclusions
We introduced a new methodology for performing PTA of cir-

cuits. We showed that the problem of finding exact probability dis-
tribution of the arrival time of a signal in the circuit is exponential
in the maximum clique size of a graph derived from the circuit.
We presented various analytical results using which we performed
different graph transformations to reduce the problem size without
having significant effect on the accuracy. We introduced a method
for incorporating wire delays in the analysis without significant in-
crease in the complexity. Our transformations can result in as much
as 90% reduction in the circuit size with the average reduction be-
ing 71%. Also the maximum difference in the computed 3σ values
and the simulated 3σ values is less than 3% which shows the accu-
racy of the approach.
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