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Abstract— We address post-silicon characterization of the unique
gate delays and their timing distributions on each manufactured IC.
Our proposed approach is based upon the new theory of compressed
sensing. The first step in performing timing measurements is to find the
sensitizable paths by traditional testing methods. Next, we show that
the timing variations are sparse in the wavelet domain. The sparsity
is exploited for estimation of the gate delays using the compressed
sensing theory. This estimation method requires significantly less number
of timing measurements compared to the case where the dependence
between the gate delays is not directly integrated within the estimation
framework. We discuss a number of applications for the new post-silicon
timing characterization method. Experimental results on benchmark
circuits show that using compressed sensing theory can characterize the
post-silicon variations with a mean accurately of 95% in the pertinent
sparse basis.

I. INTRODUCTION

Modern integrated circuits are variable and complex. Continuous
CMOS scaling has made possible integration of billions of gates into
a single multi-layer chip. Scaling to the physical device limitations
and mask imprecisions have created nondeterminism in the chip’s
characteristics. In the new regime, traditional models, design, and
test methods have a limited effectiveness.

Furthermore, with miniaturization of devices beyond 65nm, the
impact of intra-die variation and the spatial correlations are becoming
more prominent [1]. Several key areas have been impacted. For
example, the number of critical paths is increasing with variation,
rendering the traditional test methodologies based on a few critical
paths inexpressive.

In statistical static timing analysis (SSTA), instead of the single
valued delays utilized in traditional models, the delay probability
distributions and their correlations are used [2]. SSTA produces
pre-silicon models and analysis. A post-silicon timing analysis of
the chips was proposed in [3]. The method integrates the SSTA
models with data collected from a few on-chip test points (e.g., via
ring oscillators), to form the chip-specific distribution of the delays.
Post-silicon gate-level leakage characterization by using noninvasive
leakage measurements was recently proposed [4].

Our objective is to perform noninvasive post-silicon timing char-
acterization of each chip. We exploit the theory of compressed
sensing [5], [6] and the set of the sensitizable paths known from
the testing phase to perform post-silicon delay modeling using very
few measurements. We demonstrate how this method can be used
for testing the chips and for efficient estimation of post-silicon the
specific distribution of the individual chip’s timing. Compressed
sensing exploits the sparsity of the delay distribution matrix [2],
to reconstruct the timing information from a few analog timing
measurements. Our contributions are as follows:

• We introduce the first post-silicon timing characterization method
that is based on compressed sensing. Our method keeps the number of

measurements low without adding on-chip test structures or sensors.
We only rely on the external nondestructive tests.

• We create a systematic method for exploiting the sparsity of the
timing variation for post-silicon characterization.

• We present modifications to the original compressed sensing
framework that is based upon regular grid-based sampling, so it can
consider the irregularities of the placement in the spatial correlations
of gate delays.

• We exploit spatial correlation to approximate the timing variation
of the gates that are unobservable and uncontrollable because of their
placement on unsensitizable paths. The key for compressed sensing-
based gate characterization is the delay variation’s sparsity.

The remainder of the paper is as follows. Section II outlines the
preliminaries. We introduce variation estimation by delay measure-
ments in Section III. In Section IV, we use sparsity of the variation in
the wavelet domain to recover variation with a small number of delay
measurements. A number of applications of the proposed method are
outlined in Section V. Evaluation results are presented in Section VI.
We conclude in Section VII.

II. PRELIMINARIES

A. Variation Model and Delay Model

We adapt the Gaussian variation model by Liu [7] where the total
variation, ψtotal

u , in a gate gu is

ψtotal
u = ψinter

u + ψintra
u + Fuβ (1)

ψinter
u and ψintra

u represent inter-die and intra-die variation, respec-
tively. ψintra

u is a multivariate Gaussian random vector. Fuβ models
systematic variation. If (xu, yu) is the location of the gate gu on the
IC, then F = [1, xu, yu]T and β is a 3 × 1 constant vector.

Transition delay is usually modeled as a linear function of transistor
feature size variation [8], [2], [9]. For example, consider a NAND2
gate that one of its inputs is 1 and its other input, at time t = 0,
transits from 0 to 1. Because of propagation delay of the NAND2
gate, its output transits from 1 to 0 at time t = dr . When there are
variation in the transistor feature size, the rising-edge delay, denoted
by dr , varies among the NAND2 gates in the IC, modeled by [8]

dr(ψ
total
u ) = d0

r + ξψtotal
u (2)

where ξ is a constant.
Note that even if the propagation delay is modeled as a quadratic

(or higher order) polynomial [10], one can use a similar approach by
assuming new variables for higher order parameters.



B. Sensitizable Paths

A path in an IC is defined as a sequence of logic gates from an input
of the IC to one of its output pins. To determine the propagation delay
of a path, one should find an appropriate input vector to the IC. If
such an input vector exists, the path is called sensitizable; otherwise,
it is called unsensitizable. For finding the sensitizable paths we use
the path selection method introduced by Murakami et al. [11].

C. Compressed Sensing

Compressed Sensing is a recently emerging signal acquisition
method that exploits sparse signal models to reduce the signal
acquisition burden [12], [5]. Specifically, we assume that the signal
of interest is a K-sparse vector x in an N -dimensional space,
i.e., that it only has K non-zero components. Using compressed
sensing we can sample and reconstruct this vector by acquiring only
M = O(K log(N/K)) linear measurements:

p = Ax + e, (3)

where A denotes the measurement matrix of dimension M × N , p
denotes the M -dimensional measurement vector, and e denotes the
measurement noise.

Despite the dimensionality reduction and the rank deficiency of
A, one can reconstruct the sparse vector of interest, x from the
measurement vector p using the following convex optimization:

min ||x||1 + λ||p − Ax||22, (4)

in which λ is a parameter chosen according to the noise variance
and ‖x‖p = (

∑N
i=1 |xi|p)

1
p . If the measurement matrix A satisfies

certain conditions, it can be shown that the reconstruction using
Equation 4 is exact [5].

The compressed sensing model is robust even when the acquired
vector x is approximately sparse, often referred to as compressible.
A vector is compressible if it has very few (say K) coefficients with
large magnitude and the remaining coefficients are approximately 0.
Compressible vectors can be approximated very well using the best
K-term approximation, i.e., using the K most significant coefficients
and setting the remaining coefficients to 0.

In most practical applications, such as ours, a vector is not
compressible in the canonical domain. In practice, a sparsity inducing
basis W is typically necessary to expose the sparsity. The theory
accommodates this case using the basis expansion

s = Wx, (5)

in which case W is the sparsity inducing transform, and the basis
expansion vector s is sparse instead of the vector of interest x. In
this case Equation 3 becomes

p = AW−1s + e. (6)

This is the same formulation as Equations 3 and 4, with only a
change of variables. We now aim to recover a sparse representation
s from the measurements y, which are acquired with a measurement
matrix AW−1. The signal is recovered from the transformation using
Equation 5.

III. DELAY ESTIMATION BY %2-NORM MINIMIZATION

In this section, we propose a method for post-silicon gate delay
estimation by measuring the input/output path delays. First, we
measure the signal propagation delays of a number of sensitizable
paths. Then, based on the measured delays, we construct linear
equations with the scaling factors of gate delays (defined in Section

Fig. 1. A sensitizable path from input to the output.

II-A) as the unknown parameters. Finally, we estimate the gate
characteristics by solving those equations for the scaling factors. In
Section IV, we use the variation in spatial correlations to improve
the scaling factor estimation error.

The total path delay is an additive composition of the delays of its
elements. For example, in Figure 1, the delay of path P1 (bold path)
can be written as the summation of the delays in wire w1, gate g1,
wires w5 and w6, gate g3, wire w8, and so on, more formally:

dr(P1) = d(w1) + dr(g1) + d(w5) + d(w6) + df (g3)

+ d(w8) + dr(g4) + d(w10) + df (g6) + d(w12)

+ dr(g7) + d(w13), (7)

where d(wi) is the delay of the wire wi; dr(gi) and df (gi) are the
rising and falling delays of the gate gi, respectively.

For clarity of exposition, in this paper we assume interconnect
delays (wire delays) are zero. The proposed method can be easily
extended to accommodate non-zero interconnect delays. Note that
variation in the interconnects may have a different statistical repre-
sentation compared with the gates. In this case we may consider
compressed sensing methods to address the sum of two distinct
distributions in one framework [12]. Assuming zero interconnect
delays, Equation 7 reduces to:

dr(P1) = dr(g1) + df (g3) + dr(g4) + df (g6) + dr(g7). (8)

As discussed in Section II, because of process variation, the gate
delays deviate from their nominal values [8], i.e.,

dr(gi) = dnominal
r (gi) + ξr,gi lgi , (9)

where dnominal
r (gi) is the nominal delay for rising transition and lgi

is the scaling factor of the variation for the gate gi; and ξr,gi is a
constant coefficient. Similarly for the falling transition,

df (gi) = dnominal
f (gi) + ξf,gi lgi . (10)

Therefore, Equation 8 becomes

dr(P1) = dnominal
r (g1) + ξr,g1 lg1

+ dnominal
f (g3) + ξf,g3 lg3

+ dnominal
r (g4) + ξr,g4 lg4

+ dnominal
f (g6) + ξf,g6 lg6

+ dnominal
f (g7) + ξr,g7 lg7 , (11)

or

ξr,g1 lg1 + ξf,g3 lg3 + ξr,g4 lg4 + ξf,g6 lg6 + ξr,g7 lg7 = bP1

bP1 = dr(P1) − dnominal
r (g1) − dnominal

f (g3)

− dnominal
r (g4) − dnominal

f (g6) − dnominal
f (g7),

where bP1 is a constant. Thus, each sensitizable path in the circuit
leads to a linear relation among the variation elements, lgi . The falling



and rising coefficients (ξf,gi and ξr,gi ) are known and our goal is to
estimate the variation lgi .

Assume that P1, P2 . . . PM are M sensitizable paths in a general
combinational circuit C with N gates. For each path Pj , if it is
stimulated by a rising transition,

N∑

i=1

αPj (i)ξλr(Pj ,gi),gi
lgi = br

j (12)

where

αPj (i) =

{
1 if gi belongs to the path Pj ;
0 otherwise,

and

λr(Pj , i) =






f if gi has a falling transition when path Pj

is stimulated by a rising transition;
r otherwise.

Similarly for a falling transition,

N∑

i=1

αPj (i)ξλf (Pj ,gi),gi
lgi = bf

j (13)

where

λf (Pj , i) =






f if gi has a falling transition when path Pj

is stimulated by a falling transition;
r otherwise.

To write Equations 12 and 13 compactly, we define the matrix A,
the measurement vector b and the variation vector l as follows.

A =





αP1(1)ξλr(P1,g1),g1 . . . αP1(N)ξλr(P1,gN ),gN

αP2(1)ξλr(P2,g1),g1 . . . αP2(N)ξλr(P2,gN ),gN

...
...

αPM (1)ξλr(PM ,g1),g1 . . . αPM (N)ξλr(PM ,gN ),gN

αP1(1)ξλf (P1,g1),g1
. . . αP1(N)ξλf (P1,gN ),gN

αP2(1)ξλf (P2,g1),g1
. . . αP2(N)ξλf (P2,gN ),gN

...
...

αPM (1)ξλf (PM ,g1),g1
. . . αPM (N)ξλf (PM ,gN ),gN





,

b = (br
1, b

r
2, . . . b

r
M , bf

1 , bf
2 , . . . bf

M )T ,

and

l = (l1, l2 . . . lN )T .

Finally, we estimate the variation in l by solving the following least
squares problem

min ||Al − b||22. (14)

We call this method %2 minimization method.

IV. DELAY ESTIMATION USING COMPRESSED SENSING

This section incorporates sparsity in the wavelet domain as a model
for the spatial correlation of the timing variation. Thus, one can use
compressed sensing theory to measure and estimate the variation.
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Fig. 2. Left: Spatial variation in a typical IC. Right: wavelet transform of
the variation.

A. Sparse Representation of Variation

To capture the spatial correlation in the variation we use wavelet
basis expansions. Wavelet basis expansions have two significant ad-
vantages that make them suitable for the problem at hand [13]. First,
they can be computed efficiently using well-studied fast algorithms.
Second, they are known to be good in sparsely describing smooth
functions, such as in images because of the spatial correlations.

Figure 2 demonstrates the effectiveness of the wavelet transform
in representing spatial variation. The figure on the left is the 2D plot
of the variation in a typical IC, generated using the Gaussian model
in [7]. The spatial correlation is evident in the figure. The figure on
the right side represents the wavelet transform for the left hand side.
Most of the transform coefficients are zero. Only the top-left part of
the figure has a dense amount of significant non-zero elements.

B. Gates on Regular Grids

The derivations in this section assume that all the gates are
located on a regular grid. Section IV-C considers the general case
of nonuniform grids and relaxes this assumption.

For the gates that are located on a regular grid, the two-dimensional
wavelet transform of the variation denoted by s, can be expressed as
the product of the variation vector, l, with the wavelet transform
matrix W :

s = W l, (15)

where s is assumed sparse because of the spatial correlation in the
variation. We enforce the sparsity prior by regularizing Equation 14
using the %1 norm of s, as described in Section II-C:

min ||Al − b||22 + λ‖s‖1 (16)

or, equivalently,

min ||AW−1s − b||22 + λ‖s‖1, (17)

where λ is the regularization coefficient. The sparsity of the vari-
ations’ wavelet transformation s introduces a modeling prior that
improves the reconstruction and resolves ambiguity. This prior is
implemented using the regularization term λ‖s‖1, in Equations 16
and 17. We call this method the %1 regularization method.

C. Gates on Irregular Grids

In practice, gates are not placed on a regular layout grid. Thus, in
this section, we extend our method to irregular grids.

Figure 3 shows an example of an IC in which gates are placed
on an irregular grid. To address the irregular placement, we cover
the IC with a finer regular grid. Then each gate is assigned to a
point on the regular grid using Procedure 1 below. At the first step
of Procedure 1, we label all the regular grid points as unassigned.
This means that none of the regular grid points is assigned to any



Fig. 3. Gates on irregular grids.

gate. In the second step, for every gate, we find its closest regular
point that is unassigned, assign the gate to this point, and label that
point as assigned to prevent multiple selection.

Thus, after Procedure 1, each gate is assigned to its closest regular
grid that is not assigned to any other gate.

PROCEDURE 1
Mapping from irregular gates to fine regular grids
(1) Set all the regular grid points unassigned;
(2) for all gates, gi

a. p = the closest grid point to the gates that is unassigned;
b. assign gate gi to p;
c. label grid point p as assigned;

Finally, we assign auxiliary variables to all the unassigned points
in the regular grid.

V. APPLICATIONS

The proposed timing characterization method is effective, inexpen-
sive, and fast. A range of technical applications can profit from the
extracted post-silicon delay characteristics, including:

(1) Post-silicon optimization. Fast noninvasive IC characterization,
enables applying chip-specific optimizations [14], [3].

(2) Improving simulations. The post-silicon models can be integrated
within the simulation platforms to enable more accurate simulations.

(3) Improving SSTA methods. The aggregate statistics gathered from
post-silicon characterization can also be used to enhance the quality
of the pre-silicon models, such as SSTA.

(4) Manufacturing process characterization. The processes and tech-
nologies of the state-of-the-art manufacturing are considered classi-
fied information that are not typically available to the users. The new
method can make accurate post-silicon estimation for a number of
important process parameters.

(5) IC identification. Since the variation is unique and unclonable on
each IC, it can be used as the chip’s ID for security [15], [16], [17].

VI. EVALUATION RESULTS

In this section, we evaluate the performance of the proposed
variation estimation methods on the MCNC benchmarks.

Not that it is not possible to find the exact delay characteristics of
all gates. The estimation error is measured in the space of singular
values. The estimation error is the least in the direction of the singular
vector corresponding to the largest singular value and increases in
the direction of the singular vectors corresponding to decreasing
the singular values. We call the estimation subspace ne; we project
estimation error to the space of the singular vectors corresponding to
the largest singular values in the ne subspace.
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Fig. 4. Variation (delay) estimation error vs. measurement error.
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Fig. 5. Variation (delay) estimation error vs. the number of measurements.

To evaluate the performance of the proposed methods, we sim-
ulated the variation model (Section II-A) on a number of MCNC
benchmark circuits. A total of 12% random variations is assumed.
Correlated intra-die variation is 60% of the total variation [18];
20% of the total variation is uncorrelated intra-die variation and the
remaining variation is allotted to the inter-die variation.

We used the ABC tool to map the benchmark circuits to NAND2,
NAND3, NAND4, NOR2, NOR3, NOR4, and inverter gates. Then,
the gate placement is done by the Dragon placement tool. The gates
have different sizes and they are located on irregular grids.

Figure 4 shows variation estimation error for both the %2 min-
imization and the %1 regularization methods on two benchmarks,
C432, and C880. The horizontal axis is delay measurement noise
and the vertical axis is variation estimation error. In average, the %1
regularization improves the estimation error by a factor of 2 over the
%2 minimization. The estimation subspace is 52 and 89 for the C432
and the C880 circuits respectively. When the measurement noise is
small, delay measurements provide enough information to estimate
the variations accurately. As measurement noise increases, sparsity
provides a strong prior that effectively de-noises the measurements.
Thus, the performance gap between the %1 regularization and the %2
minimization increases as the measurement noise increases.

The impact of the number of measurements is demonstrated in
Figure 5. The x-axis is the number of delay measurements divided by
the number of the gates. Again, %1 regularization exhibits a factor of 2
improvement compared to %2 minimization. The estimation subspace
is the same as in Figure 4.

Table 1 summarizes the results of variation estimation on 12 bench-
mark circuits. After the benchmarks’ name in the first column, the
second, third and fourth columns are the number of gates, the number



Circuit properties 3% noise 6% noise 9% noise
name #gates #inputs #meas

σN/4
σ1

subspace !1 error !2 error !2 error !2 error !1 error !2 error
C432 206 36 309 0.035 26 3.76 6.82 4.34 12.86 5.23 17.25

52 6.57 12.58 7.75 21.22 9.5 30.846
C499 532 41 798 0.045 67 4.05 4.78 4.74 6.91 5.70 9.35

135 11.52 12.28 12.48 15.11 13.80 18.60
C880 353 60 529 0.043 44 2.65 5.45 4.27 10.61 5.99 22.49

89 5.34 11.56 7.93 21.71 10.9 36.5
C1355 517 41 775 0.038 65 2.55 4.11 4.17 7.87 5.90 11.69

131 5.22 7.10 8.21 13.19 11.41 19.47
C1908 615 33 992 0.052 78 2.56 2.77 4.05 71.61 5.68 100

156 4.78 5.25 7.57 70.94 10.58 97.21
C2670 900 233 1350 0.019 114 2.26 3.03 3.48 5.54 4.84 8.17

229 5.22 7.27 7.66 13.29 10.51 19.60
alu2 360 10 540 0.0519 45 2.54 10.69 3.74 21.30 5.17 38.78

91 4.88 25.70 7.89 51.28 11.28 78.55
alu4 733 14 1099 0.036 93 3.63 12.79 6.01 100 9.76 100

186 6.42 20.41 10.22 102.93 15.76 102.93
comp 163 32 244 0.061 20 1.16 1.78 1.71 3.11 2.34 4.51

41 2.63 4.43 3.81 8.05 5.19 11.87
cordic 102 23 153 0.099 13 3.37 5.11 5.04 9.41 6.93 13.90

26 8.38 15.93 13.10 29.89 16.91 44.17
b9 113 41 169 0.15 14 1.62 11.19 2.13 22.34 2.75 33.50

28 3.17 13.13 4.11 25.48 5.24 38.01
c8 165 28 247 0.22 20 2.32 9.43 4.12 18.72 5.85 28.03

41 5.10 14.09 9.33 27.95 13.10 41.84

TABLE I
PERFORMANCE OF !2-NORM MINIMIZATION AND !1-NORM REGULARIZATION FOR A NUMBER OF MCNC BENCHMARK CIRCUITS.

of inputs to the circuit, and the number of delay measurements
respectively. The fifth column is the ratio of the N/4-th singular
value to the first singular value in the measurement matrix (N is
number of gates.) This column shows how fast the singular values
decay; or how the measurement matrix is well conditioned. The sixth
column is the estimation subspace. The rest of the columns represent
the percent estimation error for %2 minimization and %1 regularization
for 3%, 6%, and 9% measurement noise.

VII. CONCLUSION

We have introduced a novel approach for post-silicon gate-level
timing characterization. The approach leverages the new theory of
compressed sensing to accurately estimate the gate-level delays using
only a few noninvasive measurements. To implement the approach,
we employed the set of sensitizable paths, sparse representation of the
delay variation, structural logic relations, and methods to account for
gate layouts irregularities. Experimental results demonstrated that the
post-silicon timing of the benchmark circuits could be characterized
with an average accuracy of 95% in the pertinent subspace.
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