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ABSTRACT 

Recently general purpose computing on graphic processing units 
(GPUs) is rising as an exciting new trend in high-performance 
computing. Thus it is appealing to study the potential of GPU for 
Electronic Design Automation (EDA) applications. However, 
EDA generally involves irregular data structures such as sparse 
matrix and graph operations, which pose significant challenges for 
efficient GPU implementations. In this paper, we propose high-
performance GPU implementations for two important irregular 
EDA computing patterns, Sparse-Matrix Vector Product (SMVP) 
and graph traversal. On a wide range of EDA problem instances, 
our SMVP implementations outperform all published work and 
achieve a speedup of one order of magnitude over the CPU 
baseline. Upon such a basis, both timing analysis and linear 
system solution can be considerably accelerated. We also 
introduce a SMVP based formulation for Breadth-First Search and 
observe considerable speedup on GPU implementations. Our 
results suggest that the power of GPU computing can be 
successfully unleashed through designing GPU-friendly 
algorithms and/or re-organizing computing structures of current 
algorithms. 

Categories and Subject Descriptors 

J.6 [Computer-Aided Engineering]: Computer-Aided Design 
(CAD). D.1.3 [Concurrent Programming]: Parallel 
Programming. 

General Terms 

Algorithms, Design, Languages. 

Keywords 

GPU, CUDA, EDA, sparse matrix, sparse-matrix vector product, 
static timing analysis, graph algorithms, breadth-first search, 
conjugate gradient, placement, data parallel computing. 

1. INTRODUCTION 
Due to the relative saturation of single-CPU performance, multi-
core processors are inevitably becoming the dominant computing 
resources for EDA applications. Recently, general purpose 
computing on graphic processing units (GPGPU) has become a 

very important trend of high performance computing [1]. Unlike 
multi-core CPUs that generally exploit task level parallelism, 
graphic processing units (GPUs) utilize a data parallel 
programming model. Upon receiving a workload, a GPU would 
launch tens of thousands of fine-grain threads concurrently, with 
each thread executing the same program but on a different data 
set. Modern GPUs could deliver a very high computing 
throughput. For example, NVidia’s flagship GPU, GT280, could 
reach a peak floating-point throughput higher than the latest CPU 
by a factor of 30. On workloads with appropriate computing and 
memory access patterns, GPU could even attain a speedup of over 
100X. Meanwhile, GPU programming has been made much more 
accessible to non-graphic programmers with the introduction of 
NVidia’s Compute Unified Device Architecture (CUDA) 
technology [2].  

Like many other software communities, Electronic Design 
Automation (EDA) also needs an overhaul of parallelization so as 
to keep pace with the ever increasing VLSI complexity. It is thus 
appealing to unleash the computing power of GPU for EDA 
applications. There are already a few papers [e.g. 3-5] presenting 
encouraging results on utilizing GPU to solve specific EDA 
problems. However, a comprehensive evaluation on the potential 
of GPUs for EDA computing is still needed, because EDA 
applications mainly depend on irregular data structures that are 
less amenable to GPUs.  

The irregular data access patterns are determined by the very 
nature of VLSI circuits. In a typical gate level netlist, while most 
gates would only connect to a small but non-fixed number of 
neighboring cells, certain gates could have hundred of fan-outs. 
Hence, the resultant data structures encoding the netlist have to be 
irregular. One example is the connection matrix required by the 
quadratic placement and force-driven placement [e.g. 6 and 7]. 
Based on our experiments on ISPD2006 benchmark circuits [8], 
such matrices are extremely sparse, where most rows only have 3 
to 5 non-zeros and a very small number of rows having hundreds 
or thousands of non-zeros. 

Major irregular EDA computing patterns include sparse matrix 
manipulations and graph algorithms. In fact, the authors of [9] 
identified major EDA applications and surveyed the underlying 
computing patterns. Out of the 17 major EDA applications 
investigated in [9], 15 applications are built on top of graph 
algorithms and 4 applications involved sparse matrix 
computations. In addition, the 17 applications do not include 
device physics and process simulations, which also involve large 
scale sparse matrices for finite element computations.  

Although it has long been known that sparse matrix operation and 
graph algorithms possess sufficient data level parallelism [10], it’s 
extremely challenging to efficiently implement them on GPUs. 
The reason is largely due to GPU’s design philosophy, which is to 
devote most die area on computing resources but little on caches. 
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For irregular applications where the memory access patterns are 
unpredictable, GPUs would have difficulty to hide memory 
latency and maintain good load balance. For example, the 
computation of sparse-matrix vector product (SMVP) has also 
been widely considered as one tough problem for GPUs and only 
marginal speedup can be accomplished until recently. Bell and 
Garland introduced a very novel solution [11] on NVidia GPUs to 
address the data irregularity. A throughput of ~10 GFLOPS can be 
achieved on problems from different engineering domains. 
However, our experiments using the code released with [11] 
indicate that the speedup is still limited on EDA problem 
instances. As the second example, the GPU implementations for 
the Breadth-First Search (BFS) problem proposed in [12] could 
only achieve a good speedup on randomly created graphs where 
the number of edges on a node is well bounded. For graphs 
extracted from real-world applications, the GPU implementations 
in [12] do not have much advantage over their CPU equivalents. 

As a first step toward a systematic parallelization of EDA 
applications, we explore efficient GPU solutions for irregular 
EDA applications. Of course, the two topics of sparse matrix and 
graph traversal still cover too broad a scope. So in this work we 
focus on SMVP and BFS, which are typical problems from the 
above two categories. We developed efficient SMVP 
implementations using NVidia’s CUDA technology. We also 
identified key combinations of techniques to adapt to problems 
with varying internal structures. On a wide range of EDA problem 
instances, we could achieve a speedup up to 50X, which 
outperforms all published work. We then confirmed that our 
SMVP kernels could expedite 2 fundamental EDA applications, 
namely static timing analysis and conjugate gradient based linear 
system solution, by one order of magnitude. Next we extended our 
work to graph traversal problems by proposing a SMVP based 
formulation for the breadth-first search problem, which is more 
aligned to GPU’s data parallel model. Our work proved that 
through properly re-organizing computing structures and/or re-
designing algorithms we can efficiently exploit GPU’s power for 
irregular EDA applications. 

The rest of this paper is organized as follows. In section 2, we 
review the hardware architecture of NVidia GPUs and the 
corresponding data parallel programming model. In section 3, we 
introduce our CUDA implementation for the SMVP problem and 
then present the experimental results. Next we discuss how to 
directly apply the SMVP kernels to solve two EDA applications, 
static timing analysis and circuit placement. Section 5 covers 
graph traversal problems based on the SMVP procedure. Finally 
we conclude the paper and outline future research directions. 

2. OVERVIEW OF CUDA PLATFORM 
In this work, we use NVidia’s CUDA platform to develop GPU 
implementations. Here we briefly introduce the important details 
of CUDA hardware and software. 

2.1 Hardware Architecture 
The architecture of NVidia’s latest flagship GPU chip, GT200, is 
illustrated in Figure 1. The main computing resource consists of 
240 streaming processors (SPs), evenly distributed into 10 
streaming multiprocessors (SM). A single SP has its own 
execution hardware, but no instruction fetch and decoding 
capabilities, which wold be taken care of by the SM. A SM would 
fetch instructions and schedule them on its 8 internal SPs. Two 
special functional units (SFU) and a double precision unit are also 

installed inside each SM. The SFUs have dedicated logic for 
mathematical functions, while the double precision unit is a new 
feature only belonging to G200 series GPUs. The GPU chip is 
actually an array of SMs working concurrently. Given proper 
computing and data accessing patterns, the peak floating point 
throughput of GT200 series can reach 700~800GFLOPS. 

During GPU computing, data would be stored inside the so-called 
global memory, i.e. video memory, integrated on the graphic card. 
Although the memory bus could deliver a high bandwidth, the 
latency of accessing the global memory is still in the range of 
400~800 cycles (GPU core clock). Today’s GPUs are enhanced 
with a memory coalescing mechanism such that accesses to 
adjacent memory addresses by neighboring processing elements 
could be combined into a single operation. Such a blocked 
accessing mechanism significantly boost effective memory 
bandwidth by taking advantage of the parallel architectures of 
memories. Every SM is equipped with a 16KB shared memory, 
which could provide up to 16 4-byte words of data in one clock 
cycle. It is completely software-controlled cache so that 
frequently used data can be placed close to the computing 
resource without suffering many times of global memory latency. 
Programmers could also use the shared memory to make memory 
access coalesced. Later we will show this technique is essential to 
improve the efficiency of handling irregular data structures. 

2.2 CUDA Programming Model 
CUDA is a platform technology developed by NVidia for data 
parallel computing. A CUDA program is composed of codes 
running on both CPU and GPU. The GPU code would be 
concurrently executed by GPU as coordinated by CPU. The 
function called by CPU but executed on GPU is called a kernel. 
One CUDA program could have multiple kernels. 

According to the CUDA model, a GPGPU application could 
launch up to tens of thousands of threads, with each running the 
same program on different data sets. A thread is the minimum unit 
of parallel execution and the internal code runs sequentially. A 
number of threads are organized into thread blocks in a 1-D, 2-D, 
or 3-D manner. The arrangement should match the problem 
structure so as to simplify programming. The threads inside a 
block could exchange data through the shared memory and 

 

Figure 1. NVidia GPU architecture  
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synchronize with one another. A kernel is composed of a grid of 
thread blocks arranged as a 1-D or 2-D array.  

During GPU computing, thread blocks are assigned to SMs. Here 
one thread block could be allocated to one and only one SM, but 
one SM could accept several thread blocks. A SM groups every 
32 threads into a warp. The threads in a warp have the same 
instruction execution schedule. Since a SM has 8 SPs, 1 warp of 
32 threads finishes an instruction in every four clock cycles. 

3. SPARSE MATRIX VECTOR PRODUCT 
3.1 Introduction 
A matrix is sparse when only a small percentage of its elements 
have a non-zero value. One example is the adjacency matrix for a 
VLSI netlist used by many EDA applications. As illustrated in 
Figure 2, the matrix entry (i, j) represents the connection from cell 
i to cell j. An entry is a non-zero only when there's a net 
connecting cells i and j. Obviously, a cell usually has only a few 
connected cells in a whole netlist and thus the matrix tend to be 
very sparse.  

One of most commonly used storage format is Compressed Sparse 
Row (CSR) format [13]. Interested readers please refer to [13] for 
other formats. In CSR format, 3 vectors are required to represent a 
sparse matrix. Vector col records the column index of each non-
zero, while vector elem stores the non-zero values. The third 
vector, rowptr, keeps track the location of each row’s 1st nonzero 
in vector elem.  

We investigated a series of sparse matrix based EDA applications 
including circuit simulation, circuit placement and finite element 
based layout stress analysis. Our observation is that sparse matrix 
vector product (SMVP) procedure is often the bottleneck. For 
instance, our conjugate-gradient [14] solver for linear systems 

spends more than 90% of CPU time in SMVP computing. 
Accordingly, we believe that SMVP problem is one of the key 
irregular patterns that need to be evaluated on GPU. 

3.2 Efficient CUDA Implementations for 
SMVP 

3.2.1 Introduction and Prior Work 
The C code for SMVP is listed in Figure 3. Every round of the 
outer loop generates one element of the product vector. The inner 
loop traverses all non-zero elements in one row. Using the CSR 
format, a given non-zero with index j will be multiplied by the 
vector element with index col[j].  

Starting with the code listed in Figure 3, a straightforward 
implementation of SMVP with CUDA would create multiple 
threads with each computing of a single row. References [11] and 
[15] provide details for such an approach. The performance, 
however, turns out to be unsatisfying. A careful analysis reveals 
two major reasons leading to significant inefficiency. First, the 
memory access cannot be coalesced because one thread 
(computing one element for the product vector) needs to load 
varying number of data words from memory. Secondly, the load 
balance is poor since there could be hundreds of nonzero elements 
in some rows, while most other rows have only a few. Therefore, 
the GPU run time is dominated by those less sparse rows. In fact, 
the above problems make SMVP problem extremely challenging. 
And there exist tough matrix instances where the straightforward 
GPU implementation can be slower than its CPU equivalent [14]. 

In [11], Bell and Garland proposed a very novel solution to the 
CSR based SMVP problem. This work uses a warp, i.e. 32 threads 
scheduled and executed as a batch, to process one row. The 
advantages are two-fold: 1) Memory accesses can be coalesced 
because the 32 continuous threads in one warp work together to 
fetch the non-zeros on one row; and 2) For those rows with many 
non-zeros (>32), the workloads can be distributed to multiple 
streaming processors and thus the load balance can be improved. 
This approach is extremely efficient for those matrices with long 
strips of non-zeros and a throughput of over 10 GFLOPS can be 
achieved. Nevertheless, the implementation is less efficient for 
problem instances arising from EDA applications, where most 
rows have only several non-zeros. 

3.2.2 Our New Approach 
By carefully analyzing the code listed in Figure 3, we realized that 
the SMVP problem actually consists of two phases with different 
available parallelism. In the first phase, every non-zero matrix 
element must be multiplied by a corresponding vector element. 
From this point of view, the multiplication operations are fully 
regular. In the second phase, we calculate the sum of the products 
on each row. Here the number of summations per row is 
determined by the distributions of non-zeros and thus cannot be 
regular for general cases. The two phases can be organized as two 
succeeding GPU kernels. 

The first kernel, designated as the product kernel, can be 
implemented in a straightforward manner by assigning one 
multiplication to each thread. The CUDA kernel code is listed in 
Figure 4(a), where the products of each pair of matrix and vector 
elements are stored in array middle[]. Potentially all such 
multiplications can be computed in parallel on an ideal GPU with 

 
Figure 2. Sparse matrix and compressed row storage format 
(a) A simple netlist, (b) Directed graph corresponding to (a), 

(c) Adjacency matrix corresponding to (b), (d) CSR data 
structures for the matrix in (c) 

void smvp_serial(unsigned int *rowptr, unsigned int *col,  
float *elem, const unsigned int num_rows, float *v, float *p) 

{
for(unsigned int row=0; row<num_rows; ++row) { 

unsigned int row_begin = rowptr[row];  
unsigned int row_end = rowptr[row+1]; 
float sum = 0.0; 
for(unsigned int j= row_begin; j< row_end; ++j)

sum += elem[j] * v[col[j]]; 
p[row] = sum; 

}
}

Figure 3. Computing sparse matrix vector product 

a b c d e f 
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virtually unlimited number of threads. And note that the 
computation loads are also perfectly balanced.  

Here the difficulty lies in the fetching of vector elements from the 
global memory. As shown in Figure 4(a), the load operation, i.e. 
v[col[elemid]], cannot be coalesced generally because the value 
of col[elemid] can be arbitrary. Accordingly, we perform an 
expansion operation to vector v as illustrated in Figure 4(b). The 
expanded vector, v_expanded, has the same length as elem[] with 
v_expanded[elemid] = v[col[elemid]]. Figure 4(c) listed the 
improved implementation with completely coalesced memory 
access. The expansion operation can be efficiently implemented in 
CUDA and our experiments indicated that it takes less than 20% 
of the execution of the product kernel. In addition, many 
applications allow the expanded vector to be reused for many 
times. The expansion of course incurs a memory overhead, but the 
order of space complexity would not change and EDA instances 
are usually very sparse. Experiment results showed that the 
product kernel could be accelerated by one order of magnitude 
using expanded vectors. 

The second kernel, which is called the summation kernel, is 
responsible of summing the products in one row together and then 
output it to the product vector. The major bottleneck is again the 
un-coalesced memory access due to the irregular distribution of 
non-zeros. 

As mentioned in Section 2, a 16KB shared memory is installed 
into each streaming multiprocessor. In the case of SMVP, each 
product create by our first kernel is only used once in the 
summation process and so there’s no need for data sharing among 
different threads. However, the shared memory can be used to 
make the memory access coalesced. The idea is illustrated in 
Figure 5(a), where GMEM stands for global memory and SMEM 
represents shared memory. We can use threads in one block to 
load the products created by the product kernel into shared 

memory in a coalesced manner. The summation process could 
then use data in the shared memory.  

Of course, due to the limit of shared memory size, not all data can 
be cached. Since we have 768 threads running on one streaming 
multiprocessor, every thread could load 5 or 6 floating point 
numbers (4 bytes each) into the 16KB shared memory. We 
developed a CPU based shared memory simulator to evaluate the 
effectiveness of the above technique. The results proved that the 
“hit ratio” (probability of required data in the shared memory) 
could be higher than 90% for a wide range of matrix instances 
when the average number of non-zeros per row is less than 6. 
When there’re 10 non-zeros on a row on average, the hit ratio is 
still higher than 45%. 

The summation kernel is listed in Figure 5. On line 9, we derive 
the index of the elements required by the 1st thread in the current 
thread block. The index is then aligned to be a multiple of 16, 
which is required by the coalescing rules. The code on lines from 
12 to 17 coordinates threads in one block work together to load 
data into shared memory. The remaining code performs the 
summation. Before an adding operation, the code on line 26 
checks if the data is already cached in the shared memory. If it’s 
not cached, a global memory access is still needed.  

__global__ void product_kernel(const unsigned int *col, const float *elem, 
const unsigned int num_nz, const float *v, float *middle){ 

unsigned int elemid = blockIdx.x * blockDim.x + threadIdx.x; 
if( elemid < num_nz) 

middle[elemid] = elem[elemid] * v[col[elemid]]; 
} 

(a) Straightforward implementation 

 

(b) Example of vector expansion 

_global__ void expanded_product_kernel(const float *elem, const unsigned int 
num_nz, const float *v_expanded, float *middle){ 

unsigned int elemid = blockIdx.x * blockDim.x + threadIdx.x; 
if( elemid < num_nz) 

middle[ elemid] = elem[ elemid] * v_expanded[ elemid]; 
} 

(c) Implementation with expanded vector 

Figure 4. Product kernel
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(a) Coalescing through shared memory 

 
__global__ void summation_kernel( const unsigned int *rowptr,  

float *middle, const unsigned int num_row, const unsigned int num_nz, 
const unsigned int num_loads_per_thread, float *p) 

{ 
__shared__ float cache[SHARED_MEM_PER_BLOCK]; 
__shared__ unsigned int num_nz_before; 
unsigned int thread_begin = blockIdx.x * blockDim.x; 
if(threadIdx.x == 0) 

num_nz_before = rowptr[thread_begin]/16*16; 
__syncthreads(); 
unsigned int elemid, cache_idx; 
for( int i = 0; i < num_loads_per_thread; i++){ 

cache_idx = i * NUM_THREAD_PER_BLOCK + threadIdx.x; 
elemid = num_nz_before + cache_idx;
if( cache_idx < SHARED_MEM_PER_BLOCK && elemid < num_nz) 

cache[cache_idx] = middle[elemid]; 
}
__syncthreads(); 
  
unsigned int row = thread_begin + threadIdx.x; 
if ( row < num_row){

float sum = 0.0; 
unsigned int row_begin = rowptr[row]; 
unsigned int row_end = rowptr[row + 1]; 
for ( unsigned int i = row_begin; i < row_end; i++){ 

 if( i >= num_nz_before && (cache_idx = i –  
num_nz_before) < SHARED_MEM_PER_BLOCK) 
sum += cache[ cache_idx];  

 else 
sum += middle[ i]; 

} 
p[row] = sum; 

}
} 

(b) Source code of summation kernel  
Figure 5. Summation kernel 

Original 
vector 

Expanded 
vector
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In the rest of the paper, the combination of the above two kernels 
is designated as the product + summation kernels. When the 
average number of non-zeros per row is larger than 10, the 
summation kernel becomes less efficient. Under such a 
circumstance, we switch to another summation kernel, designated 
as the warped summation kernel, using a technique inspired by 
[12]. The idea is to use a warp of 32 threads to perform the 
summation process. Since the multiplication process is already 
conducted in parallel, the combination of the product kernel and 
the warped summation kernel is more efficient. We name such a 
combination as the product + warped summation kernels. 

3.3 Results 
We tested our SMVP kernels on a wide range of sparse matrices 
(not necessarily from EDA applications) to verify the 
effectiveness of our techniques. All experiments are performed on 
a Linux PC with a 3.33-GHz, Core 2 Duo processor, an NVidia 
GTX280 graphic card and 4-GB RAM. All programs are 
implemented with CUDA release 2.1 [16]. The CPU 
implementation of SMVP procedure was carefully optimized and 
the CPU time is slightly faster than Matlab [17] (for a matrix with 
14M non-zeros, our CPU implementation spends 72ms on average, 
while Matlab needs 81ms). 

Table 1. Characteristics of matrix set 1 

Inst. # rows 
# 

columns 
# non-
zeros 

avg. # non-
zeros per 

row 
description 

ns3Da 20414 20414 1679599 82.3 
3D Navier Stokes 

equation 

raefsky3 21200 21200 1488768 70.2 Turbulence problem 

venkat01 62424 62424 1717792 27.5 2D Euler solver 

b18_100K. 100000 333740 14327592 143.3 Static timing analysis 

Yangliu 235620 235620 17563926 74.5 
Finite element based 
layout stress analysis 

Table 2. Characteristics of matrix set 2 

Inst. # rows 
# 

columns 
# non-
zeros 

avg. # 
non-zeros 
per row 

description 

Lin 256000 256000 1766400 6.9 
Large sparse Eigenvalue 

problem 

t2em 921632 921632 4590832 5.0 
Electromagnetic 

problems 

ecology1 1000000 1000000 4996000 5.0 
Circuit theory applied to 

animal/gene flow 

cont11 1468599 1961394 5382999 3.7 Linear programming 

sls 1748122 62729 6804304 3.9 
Large least-squares 

problem 

G3_circuit 1585478 1585478 7660826 4.8 AMD circuit simulation 

thermal2 1228045 1228045 8580313 7.0 
FEM, steady state 
thermal problem 

kkt_power 2063494 2063494 12771361 6.2 
Optimal power flow, 

nonlinear optimization  

Freescale1 3428755 3428755 17052626 5.0 
Freescale circuit 

simulation 

We reported GLFOPS of GPU implementations as well as their 
speedup against their CPU equivalents. To make a comprehensive 
comparison, we also include the results created by Bell and 
Garland’s kernel, designated as B&G kernel. The source code 

downloaded from NVidia’s CUDA forum [18] uses texture 
memory to store the vector to be multiplied because texture 
memory is cached. However, the texture memory is read-only and 
thus cannot be applied to the cases where the vector to be 
multiplied needs to be iteratively updated. So in our experiments 
we removed the texture access code in B&G, but it should be 
noted that both B&G and our kernels could enjoy another 30% 
performance improvement with the texture memory.  

When computing throughput, we do not include the data transfer 
time between CPU and GPU because generally the data will be re-
used for many times. For example, the same matrix could be 
multiplied by around 1000 times in the case of finite element 
based layout stress analysis, while a linear system solver would 
iterative over the same matrix for over 80 times. Similarly, we do 
not include the vector expansion time since the expansion kernel 
usually finishes within 20% of the execution time of the product 
kernel. In addition, the summation/warped summation kernel 
dominates the execution time in all the experiments and the 
product kernel only consumes 5-20% of the total time. 

We used two sets of test cases with radically different numbers of 
non-zeros per row. The characteristics of these matrices are listed 
in Tables 1 and 2, both ordered by the number of non-zeros. The 
5th column reports the average number of non-zeros in each row. 
The matrices in the first set have relatively more non-zeros on 
each row. Among these, the first 3 matrices are randomly picked 
from University of Florida Sparse Matrix Collection [19], while 
the remaining two are from static timing analysis (explained later 
in section 4.1) and finite element based layout stress analysis [20]. 
All taken from [19], the matrices in the second set are either 
directly created by EDA programs or by applications closely 
related to EDA. Determined by the problem nature as discussed in 
the previous section, these matrix instances have rather few non-
zeros in each row. 

Table 3. SMVP throughput for matrix set 1 

Instance CPU  B&G 
speed-

up 
product+ 

summation 
speed-

up 

product 
+warped 

summation 

speed-
up 

ns3Da 0.51 5.02 9.84 3.79 7.43 18.08 35.43 

raefsky3 0.53 12.29 23.15 5.41 10.19 14.54 27.40 

venkat01 0.53 8.13 15.47 5.71 10.87 8.63 16.43 

Yangliu 0.49 9.08 18.53 5.67 11.57 20.20 41.22 

b18_100K 0.55 5.14 9.38 5.12 9.34 27.42 50.03 

Table 4. SMVP throughput for matrix set 2 

Instance CPU B&G 
speed-

up 
product+ 

summation 
speed-

up 

product 
+warped 

summation 

speed-
up 

Lin 0.26 1.23 4.81 9.23 36.04 1.28 5.01 

t2em 0.29 1.54 5.40 12.41 43.44 1.68 5.88 

ecology1 0.24 0.93 3.87 9.03 37.43 1.01 4.20 

cont11 0.31 1.14 3.63 10.66 33.84 1.25 3.95 

sls 0.28 1.18 4.26 10.10 36.49 1.32 4.77 

G3_circuit 0.21 0.91 4.24 8.86 41.45 0.99 4.64 

thermal2 0.21 1.24 5.81 8.97 41.89 1.35 6.31 

kkt_power 0.26 1.23 4.77 5.70 22.01 1.34 5.16 

Freescale1 0.29 1.65 5.76 11.56 40.37 1.88 6.57 
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In Tables 3 and 4 we report both the throughput and the speedup 
of GPU against the CPU baseline implementations. The 
throughput is measured in Giga FLoating Operation Per Second 
(GFLOPS). During a SMVP operation, each non-zero element 
incurs one floating multiplication and one floating addition. So the 
total number of floating operations is just two times the number of 
non-zeros. Then the throughput can be computed by measuring 
execution time with utility functions provided in CUDA SDK [16]. 
Columns 2, 3, 5, and 7 report the GFLOPS results of CPU, the 
B&G kernel, the product + summation kernels, and the product + 
warped summation kernels, respectively. Columns 4, 6, and 8 
collect the corresponding speedup values against the CPU 
baseline implementation. To rule out the variance of execution 
time, we conducted 1000 runs for each dataset and report average 
time of one run.  

For matrix set 1, the product + warped summation kernels 
perform the best because the workloads of different threads are 
better balanced. Such an implementation could achieve a speedup 
of over 15X on all test cases and over 40X on the two largest 
matrices. Meanwhile, due to the fully parallelization of the 
element-wise multiplication, our implementation also significantly 
outperforms the original B&G kernel. 

For matrix set 2, the product + summation kernels have a 
considerable performance advantage. Before this work, the best 
SMVP throughput is realized by the B&G kernel with a speedup 
of around 5X. Now our kernels accelerate all test cases by one 
order of magnitude (over 30X for 8 out of 9 cases). For the 
circuit and thermal simulation test cases (i.e. G3_circuit, thermal2 
and Freescale), the performance of our SMVP implementation can 
be improved by a factor of over 40X. 

Now the efficiency of our SMVP kernels has been established. It 
should be noted that our GPU implementations can be embedded 
into any EDA applications involving large scale sparse matrix 
operations. Meanwhile, our techniques of data re-organization can 
be integrated into a compilation framework for automatic parallel 
optimizations. It also bears mentioning that the data parallel 
model is complement to the task-level parallel and distributed 
computing models. Accordingly, GPU computing could provide a 
new dimension of parallelization for future EDA software.  

4. DIRECT APPLICATIONS OF THE 
SMVP KERNEL 
In this section, we show how to use the SMVP kernels to solve 2 
commonly used EDA applications, static timing analysis and 
linear system solution for circuit placement. 

4.1 Static Timing Analysis (STA) 
In [21], Ramalingam et al. introduced an efficient procedure to 
derive timing analysis through SMVP. Given a netlist, the timing 
graph is constructed by treating every pin as a node. There is an 
edge between 2 nodes if they are connected through a gate or a 
wire. Then by enumerating all paths that can be sensitized, a 
matrix can be established by allocating one row to each path and 
one column to each pin. A matrix entry (i, j) equals to 1 if pin j 
belongs to path i. A delay vector is built by allocating an entry for 
every pin and assigning the value as the associated delay. Path 
based timing analysis can be carried out by a SMVP procedure on 
the above matrix and vector.  

We tested our SMVP kernels on two largest ITC99 benchmark 
circuits, b18 and b19 [22]. For each circuit, we created two test 
cases with 50K and 100K paths randomly picked up. The delay 
vector is constructed by using the parameters from a 0.13um 
standard cell library [23]. Table 5 describes the statistics of these 
matrices and Table 6 lists the throughput in terms of number of 
paths per second of STA. Since the average number of non-zeros 
on each row is relatively high, the product + summation kernels 
perform best and achieve a throughput of more than 100M paths 
per second, equivalent to a speedup of around 50X against CPU 
implementations. Note that the combination of the product and 
warped summation kernels significantly outperforms the original 
B&G kernel. Our timing analysis engine can be extended to 
handle statistical timing and an even higher speedup can be 
expected due to the larger data volume. 

Table 5. Characteristics of STA matrices 

Instance # rows # columns # non-zeros 
avg. # non-
zeros per 

row 

b18_50K 50000 333740 7057712 141.2 

b18_100K 100000 333740 14327592 143.3 

b19_50K 50000 673144 5562170 111.2 

b19_100K 100000 673144 11332042 113.3 

Table 6. STA throughputs (#paths per second) via SMVP 

Instance CPU B&G 
speed-

up 
product + 

summation 
speed-

up 

product + 
warped 

summation 

speed-
up 

b18_50K 1.95E+06 1.78E+07 9.14 1.80E+07 9.23 1.02E+08 52.33 

b18_100K 1.92E+06 1.79E+07 9.34 1.79E+07 9.31 9.57E+07 49.82 

b19_50K 2.46E+06 1.98E+07 8.05 2.34E+07 9.51 1.10E+08 44.64 

b19_100K 2.42E+06 2.01E+07 8.28 2.37E+07 9.80 1.14E+08 47.00 

4.2 Linear System Solution for Circuit 
Placement 
Many EDA applications involve solution of large scale linear 
systems. One typical application is the analytical placement (e.g. 
[5, 6]), where more than 60% of the CPU time is spent on solving 
linear systems using a Conjugate Gradient (CG) solver [24]. 
According to our experiences on a force-driven placer [14], over 
90% CPU time of a CG solver is consumed by the SMVP 
procedure. Accordingly, we implemented a CG solver on top of 
our SMVP kernels. Besides the SMVP procedure, a CG solver 

also needs SAXPY (sum of Alpha ! x + y, where Alpha is a scalar 

and x and y are vectors), inner product, and reduction kernels, 
which all can be accelerated by 50-100X on GPU’s. 

We tested our CG solver on 7 ISPD06 placement benchmark 
circuits [8]. The first 3 columns of Table 7 show the statistics of 
these circuits. We then use a hybrid approach defined in [25] to 
construct the connection matrix. The characteristics of the sparse 
matrices are listed in the last 4 columns of Table 7. The 
throughput results for solving a linear system (i.e. equivalent to 
one round of global placement) are collected in Table 8. Since the 
number of non-zero per row is in the range of 3 to 5, the product + 
summation kernels deliver the best GFLOPS values as expected. 
The solution time can be reduced by a factor of around 20X on 
GPU’s. For the largest test case with 2.5M cells, the GPU 
implementations could be 28 times faster. 
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Table 7. Characteristics of placement matrices 

Instance # cells # nets # rows # columns # non-zeros 
avg. # non-

zeros per row 

new_blue1 330474 228901 398096 398096 1595758 4.0 

new_blue2 441516 465219 529672 529672 2340198 4.4 

new_blue3 494011 552199 561819 561819 1875296 3.3 

new_blue4 646139 637051 784321 784321 3152532 4.0 

new_blue5 
123305

8 
128425

1 
1447872 1447872 6287726 4.3 

new_blue6 
125503

9 
128844

3 
1521703 1521703 6287132 4.1 

new_blue7 
250795

4 
263682

0 
3068717 3068717 15120230 4.9 

Table 8. Throughputs of CG (GFLOPS) 

Instance CPU B&G 
speed-

up 
product+ 

summation 
speed-up

product+ warped 
summation 

speed-
up 

new_blue1 0.26 1.27 4.80 4.84 18.32 1.35 5.12 

new_blue2 0.28 1.40 5.09 5.63 20.43 1.50 5.44 

new_blue3 0.27 1.08 4.07 5.84 21.99 1.12 4.23 

new_blue4 0.28 1.30 4.65 5.08 18.18 1.39 4.97 

new_blue5 0.25 1.39 5.45 6.02 23.68 1.51 5.92 

new_blue6 0.26 1.33 5.04 6.44 24.32 1.43 5.40 

new_blue7 0.25 1.57 6.16 7.33 28.79 1.71 6.74 

5. BREADTH FIRST SEARCH (BFS) 
Graph algorithms, which also tend to be irregular, constitute 
another family of core EDA algorithms. As illustrated in Figure 2, 
the sparse matrix is closely related to many graph problems 
arising from EDA applications. Accordingly, our SMVP kernel 
can be deployed to accelerate the solution of many graph 
algorithms.  

Garland already showed how to compute the shortest path using 
SMVP [14]. Our experiments proved that a 15X speedup can be 
achieved with our SMVP kernels. Similar to the shortest path 
problem, Breadth First Search (BFS) is also widely used by EDA 
applications. Moreover, BFS exhibits a similar computing pattern 
to many EDA applications such as logic simulation and block 
based timing analysis. For instance, during logic simulation a 
transition at an output pin would trigger events on neighboring 
gates. Such a pattern can be exactly captured in a BFS process. 

We use the adjacency matrix illustrated in Figure 2 as an example. 
The circuit is represented as a direct graph. An entry (i, j) is equal 
to 1 if node i has a directed edge toward node j. Figure 6 
illustrates the breadth first traversal process. The dotted circle 
represents vertices reached after one expansion. We begin 
expansion from primary input nodes a, b, and c, which are 
recorded in a vector, x, by setting the corresponding entries to 1. 
The product vector of ATx has one unique entry for one vertex and 
a non-zero indicates that the corresponding vertex has been 
reached. This procedure can be repeated by multiplying AT with 
the product again and again until all nodes have been visited. A 
nice feature of this approach is the value of an entry in the product 
vector reflects how many paths lead to the corresponding graph 
node. Such information is necessary for the critical path method 
(CPM) used in block based timing analyzers [26].  

To check if all nodes are traversed, we need two extra kernels, 
with both already having very efficient GPU implementations. 
The first kernel assigns one thread for each vertex to check if the 

corresponding entry in the product vector is set to non-zero after 
SMVP. If the condition satisfies, a thread will write a 1 to a book-
keeping vector, on which the second kernel then performs a logic 
and operation. The second kernel is actually a parallel reduction 
[10] and we use the efficient implementation provided in CUDA 
SDK [16]. 

Table 9. Characteristics of connection matrices and BFS 
results 

Instance #nodes 
CPU 
time 
(ms) 

throughput 
(#vertices /s) 

GPU time (ms) 
product + 

summation 

throughput 
(#vertices/s) 

speed-
up 

b18 333740 869.45 3.84E+07 67.22 4.96E+08 12.93 

b18_1 315683 802.28 3.93E+07 63.02 5.01E+08 12.73 

b19 673144 1795.15 3.75E+07 130.43 5.16E+08 13.76 

b19_1 638283 1685.31 3.79E+07 120.83 5.28E+08 13.95 

The results of BFS are summarized in Table 9. The input matrices 
are created from the timing graph of the 4 largest ITC benchmark 
circuits [22]. The timing graphs are constructed by treating each 
pin as a vertex and each gate or wire as a directed edge (please 
refer to [26] for details). The baseline CPU implementation also 
uses the sparse matrix formulation, which is faster then the 
traditional queue based BFS procedure (e.g. the classic 
implementation outlined in [27]). The average number of non-
zeros on each row is very low (i.e. between 1 and 2 for all test 
cases), because most pins only drive 1 fan-out. Accordingly, the 
B&G kernel and the product + warped summation kernels 
perform very badly on these test cases, where a marginally 2X 
speedup can be achieved against the CPU baseline. So we only 
reports results collected by using the product + summation kernel. 
The throughput of the GPU implementation is approaching 500M 
vertices per second, which used to be achievable only on 
supercomputers. 

6. CONCLUSION AND FUTURE WORK 
Modern GPUs are delivering considerable computing power. The 
irregular data access patterns inherent to EDA applications, 
however, pose noteworthy challenges for efficient GPU 
implementations. In this work, we propose effective GPU based 
techniques to address two important irregular EDA computing 
patterns, the sparse-matrix vector product problem and the 
breadth-first graph traversal problem. We first introduce efficient 
SMVP implementations, which could accelerate many computing 
intensive EDA applications by an order of magnitude. Then we 
adapt the SMVP procedure to address irregular graph traversal 
problems. By introducing a new formulation of breadth-first 
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Figure 6. BFS through sparse matrix vector product 
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search using sparse matrix, the BFS operation can be efficiently 
solved on GPUs with a speedup of over 10X. The above work 
establishes that with proper data structure transformation and 
algorithm re-designing, GPUs will serve as a powerful platform to 
solve irregular EDA problems.  

In the future, we are going to extend our work in several 
directions. First, we will investigate applying our new BFS 
formulation to solve the logic/RTL simulation problem. Second, 
it’s worth exploring the feasibility of GPU for solving SPICE 
simulation using a direct method [28]. Another important 
extension is to address the time-consuming formal verification 
problems. 
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