
Taming Irregular EDA Applications on GPUs
Yangdong (Steve) Deng

Institute of Microelectronics
Tsinghua University

Beijing, 100084, China
86-10-62771733

dengyd@tsinghua.edu.cn

Bo David Wang
Institute of Microelectronics

Tsinghua University
Beijing, 100084, China

86-10-62784684

david.b.wang@gmail.com

Shuai Mu
Institute of Microelectronics

Tsinghua University
Beijing, 100084, China

86-10-62784684

mus04ster@gmail.com

ABSTRACT

Recently general purpose computing on graphic processing units
(GPUs) is rising as an exciting new trend in high-performance
computing. Thus it is appealing to study the potential of GPU for
Electronic Design Automation (EDA) applications. However,
EDA generally involves irregular data structures such as sparse
matrix and graph operations, which pose significant challenges for
efficient GPU implementations. In this paper, we propose high-
performance GPU implementations for two important irregular
EDA computing patterns, Sparse-Matrix Vector Product (SMVP)
and graph traversal. On a wide range of EDA problem instances,
our SMVP implementations outperform all published work and
achieve a speedup of one order of magnitude over the CPU
baseline. Upon such a basis, both timing analysis and linear
system solution can be considerably accelerated. We also
introduce a SMVP based formulation for Breadth-First Search and
observe considerable speedup on GPU implementations. Our
results suggest that the power of GPU computing can be
successfully unleashed through designing GPU-friendly
algorithms and/or re-organizing computing structures of current
algorithms.

Categories and Subject Descriptors

J.6 [Computer-Aided Engineering]: Computer-Aided Design
(CAD). D.1.3 [Concurrent Programming]: Parallel
Programming.

General Terms

Algorithms, Design, Languages.

Keywords

GPU, CUDA, EDA, sparse matrix, sparse-matrix vector product,
static timing analysis, graph algorithms, breadth-first search,
conjugate gradient, placement, data parallel computing.

1. INTRODUCTION
Due to the relative saturation of single-CPU performance, multi-
core processors are inevitably becoming the dominant computing
resources for EDA applications. Recently, general purpose
computing on graphic processing units (GPGPU) has become a

very important trend of high performance computing [1]. Unlike
multi-core CPUs that generally exploit task level parallelism,
graphic processing units (GPUs) utilize a data parallel
programming model. Upon receiving a workload, a GPU would
launch tens of thousands of fine-grain threads concurrently, with
each thread executing the same program but on a different data
set. Modern GPUs could deliver a very high computing
throughput. For example, NVidia’s flagship GPU, GT280, could
reach a peak floating-point throughput higher than the latest CPU
by a factor of 30. On workloads with appropriate computing and
memory access patterns, GPU could even attain a speedup of over
100X. Meanwhile, GPU programming has been made much more
accessible to non-graphic programmers with the introduction of
NVidia’s Compute Unified Device Architecture (CUDA)
technology [2].

Like many other software communities, Electronic Design
Automation (EDA) also needs an overhaul of parallelization so as
to keep pace with the ever increasing VLSI complexity. It is thus
appealing to unleash the computing power of GPU for EDA
applications. There are already a few papers [e.g. 3-5] presenting
encouraging results on utilizing GPU to solve specific EDA
problems. However, a comprehensive evaluation on the potential
of GPUs for EDA computing is still needed, because EDA
applications mainly depend on irregular data structures that are
less amenable to GPUs.

The irregular data access patterns are determined by the very
nature of VLSI circuits. In a typical gate level netlist, while most
gates would only connect to a small but non-fixed number of
neighboring cells, certain gates could have hundred of fan-outs.
Hence, the resultant data structures encoding the netlist have to be
irregular. One example is the connection matrix required by the
quadratic placement and force-driven placement [e.g. 6 and 7].
Based on our experiments on ISPD2006 benchmark circuits [8],
such matrices are extremely sparse, where most rows only have 3
to 5 non-zeros and a very small number of rows having hundreds
or thousands of non-zeros.

Major irregular EDA computing patterns include sparse matrix
manipulations and graph algorithms. In fact, the authors of [9]
identified major EDA applications and surveyed the underlying
computing patterns. Out of the 17 major EDA applications
investigated in [9], 15 applications are built on top of graph
algorithms and 4 applications involved sparse matrix
computations. In addition, the 17 applications do not include
device physics and process simulations, which also involve large
scale sparse matrices for finite element computations.

Although it has long been known that sparse matrix operation and
graph algorithms possess sufficient data level parallelism [10], it’s
extremely challenging to efficiently implement them on GPUs.
The reason is largely due to GPU’s design philosophy, which is to
devote most die area on computing resources but little on caches.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’09, November 2–5, 2009, San Jose, California, USA.
Copyright 2009 ACM 978-1-60558-800-1/09/11...$10.00.

539

For irregular applications where the memory access patterns are
unpredictable, GPUs would have difficulty to hide memory
latency and maintain good load balance. For example, the
computation of sparse-matrix vector product (SMVP) has also
been widely considered as one tough problem for GPUs and only
marginal speedup can be accomplished until recently. Bell and
Garland introduced a very novel solution [11] on NVidia GPUs to
address the data irregularity. A throughput of ~10 GFLOPS can be
achieved on problems from different engineering domains.
However, our experiments using the code released with [11]
indicate that the speedup is still limited on EDA problem
instances. As the second example, the GPU implementations for
the Breadth-First Search (BFS) problem proposed in [12] could
only achieve a good speedup on randomly created graphs where
the number of edges on a node is well bounded. For graphs
extracted from real-world applications, the GPU implementations
in [12] do not have much advantage over their CPU equivalents.

As a first step toward a systematic parallelization of EDA
applications, we explore efficient GPU solutions for irregular
EDA applications. Of course, the two topics of sparse matrix and
graph traversal still cover too broad a scope. So in this work we
focus on SMVP and BFS, which are typical problems from the
above two categories. We developed efficient SMVP
implementations using NVidia’s CUDA technology. We also
identified key combinations of techniques to adapt to problems
with varying internal structures. On a wide range of EDA problem
instances, we could achieve a speedup up to 50X, which
outperforms all published work. We then confirmed that our
SMVP kernels could expedite 2 fundamental EDA applications,
namely static timing analysis and conjugate gradient based linear
system solution, by one order of magnitude. Next we extended our
work to graph traversal problems by proposing a SMVP based
formulation for the breadth-first search problem, which is more
aligned to GPU’s data parallel model. Our work proved that
through properly re-organizing computing structures and/or re-
designing algorithms we can efficiently exploit GPU’s power for
irregular EDA applications.

The rest of this paper is organized as follows. In section 2, we
review the hardware architecture of NVidia GPUs and the
corresponding data parallel programming model. In section 3, we
introduce our CUDA implementation for the SMVP problem and
then present the experimental results. Next we discuss how to
directly apply the SMVP kernels to solve two EDA applications,
static timing analysis and circuit placement. Section 5 covers
graph traversal problems based on the SMVP procedure. Finally
we conclude the paper and outline future research directions.

2. OVERVIEW OF CUDA PLATFORM
In this work, we use NVidia’s CUDA platform to develop GPU
implementations. Here we briefly introduce the important details
of CUDA hardware and software.

2.1 Hardware Architecture
The architecture of NVidia’s latest flagship GPU chip, GT200, is
illustrated in Figure 1. The main computing resource consists of
240 streaming processors (SPs), evenly distributed into 10
streaming multiprocessors (SM). A single SP has its own
execution hardware, but no instruction fetch and decoding
capabilities, which wold be taken care of by the SM. A SM would
fetch instructions and schedule them on its 8 internal SPs. Two
special functional units (SFU) and a double precision unit are also

installed inside each SM. The SFUs have dedicated logic for
mathematical functions, while the double precision unit is a new
feature only belonging to G200 series GPUs. The GPU chip is
actually an array of SMs working concurrently. Given proper
computing and data accessing patterns, the peak floating point
throughput of GT200 series can reach 700~800GFLOPS.

During GPU computing, data would be stored inside the so-called
global memory, i.e. video memory, integrated on the graphic card.
Although the memory bus could deliver a high bandwidth, the
latency of accessing the global memory is still in the range of
400~800 cycles (GPU core clock). Today’s GPUs are enhanced
with a memory coalescing mechanism such that accesses to
adjacent memory addresses by neighboring processing elements
could be combined into a single operation. Such a blocked
accessing mechanism significantly boost effective memory
bandwidth by taking advantage of the parallel architectures of
memories. Every SM is equipped with a 16KB shared memory,
which could provide up to 16 4-byte words of data in one clock
cycle. It is completely software-controlled cache so that
frequently used data can be placed close to the computing
resource without suffering many times of global memory latency.
Programmers could also use the shared memory to make memory
access coalesced. Later we will show this technique is essential to
improve the efficiency of handling irregular data structures.

2.2 CUDA Programming Model
CUDA is a platform technology developed by NVidia for data
parallel computing. A CUDA program is composed of codes
running on both CPU and GPU. The GPU code would be
concurrently executed by GPU as coordinated by CPU. The
function called by CPU but executed on GPU is called a kernel.
One CUDA program could have multiple kernels.

According to the CUDA model, a GPGPU application could
launch up to tens of thousands of threads, with each running the
same program on different data sets. A thread is the minimum unit
of parallel execution and the internal code runs sequentially. A
number of threads are organized into thread blocks in a 1-D, 2-D,
or 3-D manner. The arrangement should match the problem
structure so as to simplify programming. The threads inside a
block could exchange data through the shared memory and

Figure 1. NVidia GPU architecture

540 2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers

synchronize with one another. A kernel is composed of a grid of
thread blocks arranged as a 1-D or 2-D array.

During GPU computing, thread blocks are assigned to SMs. Here
one thread block could be allocated to one and only one SM, but
one SM could accept several thread blocks. A SM groups every
32 threads into a warp. The threads in a warp have the same
instruction execution schedule. Since a SM has 8 SPs, 1 warp of
32 threads finishes an instruction in every four clock cycles.

3. SPARSE MATRIX VECTOR PRODUCT
3.1 Introduction
A matrix is sparse when only a small percentage of its elements
have a non-zero value. One example is the adjacency matrix for a
VLSI netlist used by many EDA applications. As illustrated in
Figure 2, the matrix entry (i, j) represents the connection from cell
i to cell j. An entry is a non-zero only when there's a net
connecting cells i and j. Obviously, a cell usually has only a few
connected cells in a whole netlist and thus the matrix tend to be
very sparse.

One of most commonly used storage format is Compressed Sparse
Row (CSR) format [13]. Interested readers please refer to [13] for
other formats. In CSR format, 3 vectors are required to represent a
sparse matrix. Vector col records the column index of each non-
zero, while vector elem stores the non-zero values. The third
vector, rowptr, keeps track the location of each row’s 1st nonzero
in vector elem.

We investigated a series of sparse matrix based EDA applications
including circuit simulation, circuit placement and finite element
based layout stress analysis. Our observation is that sparse matrix
vector product (SMVP) procedure is often the bottleneck. For
instance, our conjugate-gradient [14] solver for linear systems

spends more than 90% of CPU time in SMVP computing.
Accordingly, we believe that SMVP problem is one of the key
irregular patterns that need to be evaluated on GPU.

3.2 Efficient CUDA Implementations for
SMVP

3.2.1 Introduction and Prior Work
The C code for SMVP is listed in Figure 3. Every round of the
outer loop generates one element of the product vector. The inner
loop traverses all non-zero elements in one row. Using the CSR
format, a given non-zero with index j will be multiplied by the
vector element with index col[j].

Starting with the code listed in Figure 3, a straightforward
implementation of SMVP with CUDA would create multiple
threads with each computing of a single row. References [11] and
[15] provide details for such an approach. The performance,
however, turns out to be unsatisfying. A careful analysis reveals
two major reasons leading to significant inefficiency. First, the
memory access cannot be coalesced because one thread
(computing one element for the product vector) needs to load
varying number of data words from memory. Secondly, the load
balance is poor since there could be hundreds of nonzero elements
in some rows, while most other rows have only a few. Therefore,
the GPU run time is dominated by those less sparse rows. In fact,
the above problems make SMVP problem extremely challenging.
And there exist tough matrix instances where the straightforward
GPU implementation can be slower than its CPU equivalent [14].

In [11], Bell and Garland proposed a very novel solution to the
CSR based SMVP problem. This work uses a warp, i.e. 32 threads
scheduled and executed as a batch, to process one row. The
advantages are two-fold: 1) Memory accesses can be coalesced
because the 32 continuous threads in one warp work together to
fetch the non-zeros on one row; and 2) For those rows with many
non-zeros (>32), the workloads can be distributed to multiple
streaming processors and thus the load balance can be improved.
This approach is extremely efficient for those matrices with long
strips of non-zeros and a throughput of over 10 GFLOPS can be
achieved. Nevertheless, the implementation is less efficient for
problem instances arising from EDA applications, where most
rows have only several non-zeros.

3.2.2 Our New Approach
By carefully analyzing the code listed in Figure 3, we realized that
the SMVP problem actually consists of two phases with different
available parallelism. In the first phase, every non-zero matrix
element must be multiplied by a corresponding vector element.
From this point of view, the multiplication operations are fully
regular. In the second phase, we calculate the sum of the products
on each row. Here the number of summations per row is
determined by the distributions of non-zeros and thus cannot be
regular for general cases. The two phases can be organized as two
succeeding GPU kernels.

The first kernel, designated as the product kernel, can be
implemented in a straightforward manner by assigning one
multiplication to each thread. The CUDA kernel code is listed in
Figure 4(a), where the products of each pair of matrix and vector
elements are stored in array middle[]. Potentially all such
multiplications can be computed in parallel on an ideal GPU with

Figure 2. Sparse matrix and compressed row storage format
(a) A simple netlist, (b) Directed graph corresponding to (a),

(c) Adjacency matrix corresponding to (b), (d) CSR data
structures for the matrix in (c)

void smvp_serial(unsigned int *rowptr, unsigned int *col,
float *elem, const unsigned int num_rows, float *v, float *p)

{
for(unsigned int row=0; row<num_rows; ++row) {

unsigned int row_begin = rowptr[row];
unsigned int row_end = rowptr[row+1];
float sum = 0.0;
for(unsigned int j= row_begin; j< row_end; ++j)

sum += elem[j] * v[col[j]];
p[row] = sum;

}
}

Figure 3. Computing sparse matrix vector product

a b c d e f

2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers 541

virtually unlimited number of threads. And note that the
computation loads are also perfectly balanced.

Here the difficulty lies in the fetching of vector elements from the
global memory. As shown in Figure 4(a), the load operation, i.e.
v[col[elemid]], cannot be coalesced generally because the value
of col[elemid] can be arbitrary. Accordingly, we perform an
expansion operation to vector v as illustrated in Figure 4(b). The
expanded vector, v_expanded, has the same length as elem[] with
v_expanded[elemid] = v[col[elemid]]. Figure 4(c) listed the
improved implementation with completely coalesced memory
access. The expansion operation can be efficiently implemented in
CUDA and our experiments indicated that it takes less than 20%
of the execution of the product kernel. In addition, many
applications allow the expanded vector to be reused for many
times. The expansion of course incurs a memory overhead, but the
order of space complexity would not change and EDA instances
are usually very sparse. Experiment results showed that the
product kernel could be accelerated by one order of magnitude
using expanded vectors.

The second kernel, which is called the summation kernel, is
responsible of summing the products in one row together and then
output it to the product vector. The major bottleneck is again the
un-coalesced memory access due to the irregular distribution of
non-zeros.

As mentioned in Section 2, a 16KB shared memory is installed
into each streaming multiprocessor. In the case of SMVP, each
product create by our first kernel is only used once in the
summation process and so there’s no need for data sharing among
different threads. However, the shared memory can be used to
make the memory access coalesced. The idea is illustrated in
Figure 5(a), where GMEM stands for global memory and SMEM
represents shared memory. We can use threads in one block to
load the products created by the product kernel into shared

memory in a coalesced manner. The summation process could
then use data in the shared memory.

Of course, due to the limit of shared memory size, not all data can
be cached. Since we have 768 threads running on one streaming
multiprocessor, every thread could load 5 or 6 floating point
numbers (4 bytes each) into the 16KB shared memory. We
developed a CPU based shared memory simulator to evaluate the
effectiveness of the above technique. The results proved that the
“hit ratio” (probability of required data in the shared memory)
could be higher than 90% for a wide range of matrix instances
when the average number of non-zeros per row is less than 6.
When there’re 10 non-zeros on a row on average, the hit ratio is
still higher than 45%.

The summation kernel is listed in Figure 5. On line 9, we derive
the index of the elements required by the 1st thread in the current
thread block. The index is then aligned to be a multiple of 16,
which is required by the coalescing rules. The code on lines from
12 to 17 coordinates threads in one block work together to load
data into shared memory. The remaining code performs the
summation. Before an adding operation, the code on line 26
checks if the data is already cached in the shared memory. If it’s
not cached, a global memory access is still needed.

__global__ void product_kernel(const unsigned int *col, const float *elem,
const unsigned int num_nz, const float *v, float *middle){

unsigned int elemid = blockIdx.x * blockDim.x + threadIdx.x;
if(elemid < num_nz)

middle[elemid] = elem[elemid] * v[col[elemid]];
}

(a) Straightforward implementation

(b) Example of vector expansion

_global__ void expanded_product_kernel(const float *elem, const unsigned int
num_nz, const float *v_expanded, float *middle){

unsigned int elemid = blockIdx.x * blockDim.x + threadIdx.x;
if(elemid < num_nz)

middle[elemid] = elem[elemid] * v_expanded[elemid];
}

(c) Implementation with expanded vector

Figure 4. Product kernel

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

(a) Coalescing through shared memory

__global__ void summation_kernel(const unsigned int *rowptr,

float *middle, const unsigned int num_row, const unsigned int num_nz,
const unsigned int num_loads_per_thread, float *p)

{
__shared__ float cache[SHARED_MEM_PER_BLOCK];
__shared__ unsigned int num_nz_before;
unsigned int thread_begin = blockIdx.x * blockDim.x;
if(threadIdx.x == 0)

num_nz_before = rowptr[thread_begin]/16*16;
__syncthreads();
unsigned int elemid, cache_idx;
for(int i = 0; i < num_loads_per_thread; i++){

cache_idx = i * NUM_THREAD_PER_BLOCK + threadIdx.x;
elemid = num_nz_before + cache_idx;
if(cache_idx < SHARED_MEM_PER_BLOCK && elemid < num_nz)

cache[cache_idx] = middle[elemid];
}
__syncthreads();

unsigned int row = thread_begin + threadIdx.x;
if (row < num_row){

float sum = 0.0;
unsigned int row_begin = rowptr[row];
unsigned int row_end = rowptr[row + 1];
for (unsigned int i = row_begin; i < row_end; i++){

 if(i >= num_nz_before && (cache_idx = i –
num_nz_before) < SHARED_MEM_PER_BLOCK)
sum += cache[cache_idx];

 else
sum += middle[i];

}
p[row] = sum;

}
}

(b) Source code of summation kernel
Figure 5. Summation kernel

Original
vector

Expanded
vector

542 2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers

In the rest of the paper, the combination of the above two kernels
is designated as the product + summation kernels. When the
average number of non-zeros per row is larger than 10, the
summation kernel becomes less efficient. Under such a
circumstance, we switch to another summation kernel, designated
as the warped summation kernel, using a technique inspired by
[12]. The idea is to use a warp of 32 threads to perform the
summation process. Since the multiplication process is already
conducted in parallel, the combination of the product kernel and
the warped summation kernel is more efficient. We name such a
combination as the product + warped summation kernels.

3.3 Results
We tested our SMVP kernels on a wide range of sparse matrices
(not necessarily from EDA applications) to verify the
effectiveness of our techniques. All experiments are performed on
a Linux PC with a 3.33-GHz, Core 2 Duo processor, an NVidia
GTX280 graphic card and 4-GB RAM. All programs are
implemented with CUDA release 2.1 [16]. The CPU
implementation of SMVP procedure was carefully optimized and
the CPU time is slightly faster than Matlab [17] (for a matrix with
14M non-zeros, our CPU implementation spends 72ms on average,
while Matlab needs 81ms).

Table 1. Characteristics of matrix set 1

Inst. # rows

columns
non-
zeros

avg. # non-
zeros per

row
description

ns3Da 20414 20414 1679599 82.3
3D Navier Stokes

equation

raefsky3 21200 21200 1488768 70.2 Turbulence problem

venkat01 62424 62424 1717792 27.5 2D Euler solver

b18_100K. 100000 333740 14327592 143.3 Static timing analysis

Yangliu 235620 235620 17563926 74.5
Finite element based
layout stress analysis

Table 2. Characteristics of matrix set 2

Inst. # rows

columns
non-
zeros

avg. #
non-zeros
per row

description

Lin 256000 256000 1766400 6.9
Large sparse Eigenvalue

problem

t2em 921632 921632 4590832 5.0
Electromagnetic

problems

ecology1 1000000 1000000 4996000 5.0
Circuit theory applied to

animal/gene flow

cont11 1468599 1961394 5382999 3.7 Linear programming

sls 1748122 62729 6804304 3.9
Large least-squares

problem

G3_circuit 1585478 1585478 7660826 4.8 AMD circuit simulation

thermal2 1228045 1228045 8580313 7.0
FEM, steady state
thermal problem

kkt_power 2063494 2063494 12771361 6.2
Optimal power flow,

nonlinear optimization

Freescale1 3428755 3428755 17052626 5.0
Freescale circuit

simulation

We reported GLFOPS of GPU implementations as well as their
speedup against their CPU equivalents. To make a comprehensive
comparison, we also include the results created by Bell and
Garland’s kernel, designated as B&G kernel. The source code

downloaded from NVidia’s CUDA forum [18] uses texture
memory to store the vector to be multiplied because texture
memory is cached. However, the texture memory is read-only and
thus cannot be applied to the cases where the vector to be
multiplied needs to be iteratively updated. So in our experiments
we removed the texture access code in B&G, but it should be
noted that both B&G and our kernels could enjoy another 30%
performance improvement with the texture memory.

When computing throughput, we do not include the data transfer
time between CPU and GPU because generally the data will be re-
used for many times. For example, the same matrix could be
multiplied by around 1000 times in the case of finite element
based layout stress analysis, while a linear system solver would
iterative over the same matrix for over 80 times. Similarly, we do
not include the vector expansion time since the expansion kernel
usually finishes within 20% of the execution time of the product
kernel. In addition, the summation/warped summation kernel
dominates the execution time in all the experiments and the
product kernel only consumes 5-20% of the total time.

We used two sets of test cases with radically different numbers of
non-zeros per row. The characteristics of these matrices are listed
in Tables 1 and 2, both ordered by the number of non-zeros. The
5th column reports the average number of non-zeros in each row.
The matrices in the first set have relatively more non-zeros on
each row. Among these, the first 3 matrices are randomly picked
from University of Florida Sparse Matrix Collection [19], while
the remaining two are from static timing analysis (explained later
in section 4.1) and finite element based layout stress analysis [20].
All taken from [19], the matrices in the second set are either
directly created by EDA programs or by applications closely
related to EDA. Determined by the problem nature as discussed in
the previous section, these matrix instances have rather few non-
zeros in each row.

Table 3. SMVP throughput for matrix set 1

Instance CPU B&G
speed-

up
product+

summation
speed-

up

product
+warped

summation

speed-
up

ns3Da 0.51 5.02 9.84 3.79 7.43 18.08 35.43

raefsky3 0.53 12.29 23.15 5.41 10.19 14.54 27.40

venkat01 0.53 8.13 15.47 5.71 10.87 8.63 16.43

Yangliu 0.49 9.08 18.53 5.67 11.57 20.20 41.22

b18_100K 0.55 5.14 9.38 5.12 9.34 27.42 50.03

Table 4. SMVP throughput for matrix set 2

Instance CPU B&G
speed-

up
product+

summation
speed-

up

product
+warped

summation

speed-
up

Lin 0.26 1.23 4.81 9.23 36.04 1.28 5.01

t2em 0.29 1.54 5.40 12.41 43.44 1.68 5.88

ecology1 0.24 0.93 3.87 9.03 37.43 1.01 4.20

cont11 0.31 1.14 3.63 10.66 33.84 1.25 3.95

sls 0.28 1.18 4.26 10.10 36.49 1.32 4.77

G3_circuit 0.21 0.91 4.24 8.86 41.45 0.99 4.64

thermal2 0.21 1.24 5.81 8.97 41.89 1.35 6.31

kkt_power 0.26 1.23 4.77 5.70 22.01 1.34 5.16

Freescale1 0.29 1.65 5.76 11.56 40.37 1.88 6.57

2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers 543

In Tables 3 and 4 we report both the throughput and the speedup
of GPU against the CPU baseline implementations. The
throughput is measured in Giga FLoating Operation Per Second
(GFLOPS). During a SMVP operation, each non-zero element
incurs one floating multiplication and one floating addition. So the
total number of floating operations is just two times the number of
non-zeros. Then the throughput can be computed by measuring
execution time with utility functions provided in CUDA SDK [16].
Columns 2, 3, 5, and 7 report the GFLOPS results of CPU, the
B&G kernel, the product + summation kernels, and the product +
warped summation kernels, respectively. Columns 4, 6, and 8
collect the corresponding speedup values against the CPU
baseline implementation. To rule out the variance of execution
time, we conducted 1000 runs for each dataset and report average
time of one run.

For matrix set 1, the product + warped summation kernels
perform the best because the workloads of different threads are
better balanced. Such an implementation could achieve a speedup
of over 15X on all test cases and over 40X on the two largest
matrices. Meanwhile, due to the fully parallelization of the
element-wise multiplication, our implementation also significantly
outperforms the original B&G kernel.

For matrix set 2, the product + summation kernels have a
considerable performance advantage. Before this work, the best
SMVP throughput is realized by the B&G kernel with a speedup
of around 5X. Now our kernels accelerate all test cases by one
order of magnitude (over 30X for 8 out of 9 cases). For the
circuit and thermal simulation test cases (i.e. G3_circuit, thermal2
and Freescale), the performance of our SMVP implementation can
be improved by a factor of over 40X.

Now the efficiency of our SMVP kernels has been established. It
should be noted that our GPU implementations can be embedded
into any EDA applications involving large scale sparse matrix
operations. Meanwhile, our techniques of data re-organization can
be integrated into a compilation framework for automatic parallel
optimizations. It also bears mentioning that the data parallel
model is complement to the task-level parallel and distributed
computing models. Accordingly, GPU computing could provide a
new dimension of parallelization for future EDA software.

4. DIRECT APPLICATIONS OF THE
SMVP KERNEL
In this section, we show how to use the SMVP kernels to solve 2
commonly used EDA applications, static timing analysis and
linear system solution for circuit placement.

4.1 Static Timing Analysis (STA)
In [21], Ramalingam et al. introduced an efficient procedure to
derive timing analysis through SMVP. Given a netlist, the timing
graph is constructed by treating every pin as a node. There is an
edge between 2 nodes if they are connected through a gate or a
wire. Then by enumerating all paths that can be sensitized, a
matrix can be established by allocating one row to each path and
one column to each pin. A matrix entry (i, j) equals to 1 if pin j
belongs to path i. A delay vector is built by allocating an entry for
every pin and assigning the value as the associated delay. Path
based timing analysis can be carried out by a SMVP procedure on
the above matrix and vector.

We tested our SMVP kernels on two largest ITC99 benchmark
circuits, b18 and b19 [22]. For each circuit, we created two test
cases with 50K and 100K paths randomly picked up. The delay
vector is constructed by using the parameters from a 0.13um
standard cell library [23]. Table 5 describes the statistics of these
matrices and Table 6 lists the throughput in terms of number of
paths per second of STA. Since the average number of non-zeros
on each row is relatively high, the product + summation kernels
perform best and achieve a throughput of more than 100M paths
per second, equivalent to a speedup of around 50X against CPU
implementations. Note that the combination of the product and
warped summation kernels significantly outperforms the original
B&G kernel. Our timing analysis engine can be extended to
handle statistical timing and an even higher speedup can be
expected due to the larger data volume.

Table 5. Characteristics of STA matrices

Instance # rows # columns # non-zeros
avg. # non-
zeros per

row

b18_50K 50000 333740 7057712 141.2

b18_100K 100000 333740 14327592 143.3

b19_50K 50000 673144 5562170 111.2

b19_100K 100000 673144 11332042 113.3

Table 6. STA throughputs (#paths per second) via SMVP

Instance CPU B&G
speed-

up
product +

summation
speed-

up

product +
warped

summation

speed-
up

b18_50K 1.95E+06 1.78E+07 9.14 1.80E+07 9.23 1.02E+08 52.33

b18_100K 1.92E+06 1.79E+07 9.34 1.79E+07 9.31 9.57E+07 49.82

b19_50K 2.46E+06 1.98E+07 8.05 2.34E+07 9.51 1.10E+08 44.64

b19_100K 2.42E+06 2.01E+07 8.28 2.37E+07 9.80 1.14E+08 47.00

4.2 Linear System Solution for Circuit
Placement
Many EDA applications involve solution of large scale linear
systems. One typical application is the analytical placement (e.g.
[5, 6]), where more than 60% of the CPU time is spent on solving
linear systems using a Conjugate Gradient (CG) solver [24].
According to our experiences on a force-driven placer [14], over
90% CPU time of a CG solver is consumed by the SMVP
procedure. Accordingly, we implemented a CG solver on top of
our SMVP kernels. Besides the SMVP procedure, a CG solver

also needs SAXPY (sum of Alpha ! x + y, where Alpha is a scalar

and x and y are vectors), inner product, and reduction kernels,
which all can be accelerated by 50-100X on GPU’s.

We tested our CG solver on 7 ISPD06 placement benchmark
circuits [8]. The first 3 columns of Table 7 show the statistics of
these circuits. We then use a hybrid approach defined in [25] to
construct the connection matrix. The characteristics of the sparse
matrices are listed in the last 4 columns of Table 7. The
throughput results for solving a linear system (i.e. equivalent to
one round of global placement) are collected in Table 8. Since the
number of non-zero per row is in the range of 3 to 5, the product +
summation kernels deliver the best GFLOPS values as expected.
The solution time can be reduced by a factor of around 20X on
GPU’s. For the largest test case with 2.5M cells, the GPU
implementations could be 28 times faster.

544 2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers

Table 7. Characteristics of placement matrices

Instance # cells # nets # rows # columns # non-zeros
avg. # non-

zeros per row

new_blue1 330474 228901 398096 398096 1595758 4.0

new_blue2 441516 465219 529672 529672 2340198 4.4

new_blue3 494011 552199 561819 561819 1875296 3.3

new_blue4 646139 637051 784321 784321 3152532 4.0

new_blue5
123305

8
128425

1
1447872 1447872 6287726 4.3

new_blue6
125503

9
128844

3
1521703 1521703 6287132 4.1

new_blue7
250795

4
263682

0
3068717 3068717 15120230 4.9

Table 8. Throughputs of CG (GFLOPS)

Instance CPU B&G
speed-

up
product+

summation
speed-up

product+ warped
summation

speed-
up

new_blue1 0.26 1.27 4.80 4.84 18.32 1.35 5.12

new_blue2 0.28 1.40 5.09 5.63 20.43 1.50 5.44

new_blue3 0.27 1.08 4.07 5.84 21.99 1.12 4.23

new_blue4 0.28 1.30 4.65 5.08 18.18 1.39 4.97

new_blue5 0.25 1.39 5.45 6.02 23.68 1.51 5.92

new_blue6 0.26 1.33 5.04 6.44 24.32 1.43 5.40

new_blue7 0.25 1.57 6.16 7.33 28.79 1.71 6.74

5. BREADTH FIRST SEARCH (BFS)
Graph algorithms, which also tend to be irregular, constitute
another family of core EDA algorithms. As illustrated in Figure 2,
the sparse matrix is closely related to many graph problems
arising from EDA applications. Accordingly, our SMVP kernel
can be deployed to accelerate the solution of many graph
algorithms.

Garland already showed how to compute the shortest path using
SMVP [14]. Our experiments proved that a 15X speedup can be
achieved with our SMVP kernels. Similar to the shortest path
problem, Breadth First Search (BFS) is also widely used by EDA
applications. Moreover, BFS exhibits a similar computing pattern
to many EDA applications such as logic simulation and block
based timing analysis. For instance, during logic simulation a
transition at an output pin would trigger events on neighboring
gates. Such a pattern can be exactly captured in a BFS process.

We use the adjacency matrix illustrated in Figure 2 as an example.
The circuit is represented as a direct graph. An entry (i, j) is equal
to 1 if node i has a directed edge toward node j. Figure 6
illustrates the breadth first traversal process. The dotted circle
represents vertices reached after one expansion. We begin
expansion from primary input nodes a, b, and c, which are
recorded in a vector, x, by setting the corresponding entries to 1.
The product vector of ATx has one unique entry for one vertex and
a non-zero indicates that the corresponding vertex has been
reached. This procedure can be repeated by multiplying AT with
the product again and again until all nodes have been visited. A
nice feature of this approach is the value of an entry in the product
vector reflects how many paths lead to the corresponding graph
node. Such information is necessary for the critical path method
(CPM) used in block based timing analyzers [26].

To check if all nodes are traversed, we need two extra kernels,
with both already having very efficient GPU implementations.
The first kernel assigns one thread for each vertex to check if the

corresponding entry in the product vector is set to non-zero after
SMVP. If the condition satisfies, a thread will write a 1 to a book-
keeping vector, on which the second kernel then performs a logic
and operation. The second kernel is actually a parallel reduction
[10] and we use the efficient implementation provided in CUDA
SDK [16].

Table 9. Characteristics of connection matrices and BFS
results

Instance #nodes
CPU
time
(ms)

throughput
(#vertices /s)

GPU time (ms)
product +

summation

throughput
(#vertices/s)

speed-
up

b18 333740 869.45 3.84E+07 67.22 4.96E+08 12.93

b18_1 315683 802.28 3.93E+07 63.02 5.01E+08 12.73

b19 673144 1795.15 3.75E+07 130.43 5.16E+08 13.76

b19_1 638283 1685.31 3.79E+07 120.83 5.28E+08 13.95

The results of BFS are summarized in Table 9. The input matrices
are created from the timing graph of the 4 largest ITC benchmark
circuits [22]. The timing graphs are constructed by treating each
pin as a vertex and each gate or wire as a directed edge (please
refer to [26] for details). The baseline CPU implementation also
uses the sparse matrix formulation, which is faster then the
traditional queue based BFS procedure (e.g. the classic
implementation outlined in [27]). The average number of non-
zeros on each row is very low (i.e. between 1 and 2 for all test
cases), because most pins only drive 1 fan-out. Accordingly, the
B&G kernel and the product + warped summation kernels
perform very badly on these test cases, where a marginally 2X
speedup can be achieved against the CPU baseline. So we only
reports results collected by using the product + summation kernel.
The throughput of the GPU implementation is approaching 500M
vertices per second, which used to be achievable only on
supercomputers.

6. CONCLUSION AND FUTURE WORK
Modern GPUs are delivering considerable computing power. The
irregular data access patterns inherent to EDA applications,
however, pose noteworthy challenges for efficient GPU
implementations. In this work, we propose effective GPU based
techniques to address two important irregular EDA computing
patterns, the sparse-matrix vector product problem and the
breadth-first graph traversal problem. We first introduce efficient
SMVP implementations, which could accelerate many computing
intensive EDA applications by an order of magnitude. Then we
adapt the SMVP procedure to address irregular graph traversal
problems. By introducing a new formulation of breadth-first

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
 ()

1 1 0 0 0 1 0 2 1 1 0 0 0 1 2

0 0 1 0 0 1 0 1 0 0 1 0 0 1 1

0 0 0 1 1 0 0 0 0 0 0 1 1 0 0

T T TA x A A x

! " ! " ! " ! " ! "

$ # $ # $ # $ # $

$ # $ # $ # $ # $

$ # $ # $ # $ # $
= = = =# $ # $ # $ # $ # $

$ # $ # $ # $ # $

$ # $ # $ # $ # $

$ # $ # $ # $ # $

% & % & % & % & % &

i i
0

0

0

3

! "

$

$

$

$

$

$

$

% &

Figure 6. BFS through sparse matrix vector product

2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers 545

search using sparse matrix, the BFS operation can be efficiently
solved on GPUs with a speedup of over 10X. The above work
establishes that with proper data structure transformation and
algorithm re-designing, GPUs will serve as a powerful platform to
solve irregular EDA problems.

In the future, we are going to extend our work in several
directions. First, we will investigate applying our new BFS
formulation to solve the logic/RTL simulation problem. Second,
it’s worth exploring the feasibility of GPU for solving SPICE
simulation using a direct method [28]. Another important
extension is to address the time-consuming formal verification
problems.

7. ACKNOWLEDGMENTS
This work was partially supported by a faculty initialization
funding from Tsinghua University and NVidia Professor
Partnership Awards. We also acknowledge hardware donation
from NVidia. We thank N. Bell and M. Garland for sharing their
code and paper on the sparse matrix vector product problem.

8. REFERENCES
[1] Blythe, D. 2008. Rise of the graphics processor. Proceeding

of IEEE, Vol. 96, No. 5, 761– 778, May, 2008.

[2] NVidia. 2008. CUDA programming guide.

[3] Feng, Z. and Li, P. Multigrid on GPU: tackling power grid
analysis on parallel SIMT platforms. In Proc. of Int’l Conf’
on Computer Aided Design.

[4] Gulati, K. and Khatri, S. P. 2008. Towards acceleration of
fault simulation using graphics processing units. In Proc. of.
ACM IEEE Design Automation Conf.

[5] Gulati, K., Croix, J. F., Khatri, S. P., and Shastry, R. 2009.
Fast circuit simulation on graphics processing units. in Proc.
of Conf’ on Asia and South Pacific Design Automation.

[6] Kleinhans, G. Sigl, F. Johannes, and Antreich, K. 1991.
Gordian: VLSI placement by quadratic programming and
slicing optimization. IEEE Trans. CAD, vol. 10, no.3, March
1991.

[7] Eisenmann, H. and Johannes, F. M. 1998. Generic global
placement and floorplanning. In Proc of Design automation
Conf., 269-274.

[8] Nam, G.-J., Alpert, J. C., and Villarrubia, P. G. 2007. ISPD
2005/2006 placement benchmarks. Modern Circuit
Placement. Ch. 1. Springer US.

[9] Catanzaro, B., Keutzer, K., and Su, B.-Y. 2008. Parallelizing
CAD: a timely research agenda for EDA. In Proc. Design
Automation Conf., 12-17.

[10] Blelloch, G. E. 1990. Vector models for data-parallel
computing. MIT Press.

[11] Bell, N. and Garland, M. 2008. Efficient sparse matrix-vector
multiplication on CUDA. NVIDIA Technical Report. NVR-
2008-004.

[12] Harish, P. and Narayanan, P. J. 2007. Accelerating large
graph algorithms on the GPU using CUDA. In Proc. Of High
Performance Computing – HiPC. 197-208.

[13] Saad, Y. 2000. Iterative methods for sparse linear systems.
SIAM.

[14] Deng, Y. and Mu, S. 2008. The potential of GPUs for VLSI
physical design automation. In Proc. of International
Conference on Solid-State and Integrated-Circuit
Technology.

[15] Garland, M. 2008. Sparse matrix computations on manycore
GPU's. In Proc. of Design Automation Conference, Jun.
2008, pp. 2-6.

[16] NVidia, 2009. CUDA Programming Guide, CUDA Driver,
Toolkit, and SDK code samples.
http://www.nvidia.com/object/cuda_get.html.

[17] MathWorks. 2007. Matlab V7.4.
http://www.mathworks.com/.

[18] Bell, N. 2008. Sparse Matrix-Vector Multiplication on
CUDA.
http://forums.nvidia.com/index.php?showtopic=83825&st=0

[19] Davis, T. University of Florida Sparse Matrix Collection.
Available online:
http://www.cise.ufl.edu/research/sparse/matrices/.

[20] Xue, J., et. al. 2009. Layout Dependent STI Stress Analysis
and Stress-Aware RF/Analog Circuit Design Optomization.
In Proc. of ACM/IEEE Int’l Conf. on Computer-Aided
Design.

[21] Ramalingam, A., Nam, G.-J., Singh, A. K., Orshansky, M.,
Nassif, S. R., and Pan, D. Z. 2006. An accurate sparse matrix
based framework for statistical static timing analysis. In
Proc. of the 2006 Int’l Conf. on Computer-Aided Design,
[doi>10.1145/1233501.1233547]

[22] ITC'99 Benchmarks (2nd release), Available online:
http://www.cad.polito.it/tools/itc99.html.

[23] SMIC, 0.13um Low Leakage Cadence PDK.
http://www.smics.com/website/cnVersion/DS/SMIC-
PDK.htm.

[24] Barret, R. et al, 1994. Templates for the Solution of Linear
Systems, 2nd Edition, SIAM.

[25] Viswanathan, N. and Chu, C. C.-N. 2005. FastPlace:
Efficient analytical placement using cell shifting, iterative
local refinement and a hybrid net model. IEEE Trans.
Computer-Aided Design, Vol. 24, No. 5, 722-733, 2005.

[26] Sapatnekar, S. 2004. Timing. Springer; 1 edition. Ch. 5.

[27] Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C.
2001. Introduction to algorithms. 2nd Edition. MIT Press.

[28] David, T. 2006. Direct methods for sparse linear systems.
SIAM.

546 2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers

