
PSTA-based Branch and Bound Approach to the Silicon
Speedpath Isolation Problem ∗

Sari Onaissi
ECE Department

University of Toronto
Toronto, Ontario, Canada

sari@eecg.utoronto.ca

Khaled R. Heloue
ECE Department

University of Toronto
Toronto, Ontario, Canada

khaled@eecg.utoronto.ca

Farid N. Najm
ECE Department

University of Toronto
Toronto, Ontario, Canada
f.najm@utoronto.ca

ABSTRACT
The lack of good “correlation” between pre-silicon simulated de-
lays and measured delays on silicon (silicon data) has spurred
efforts on so-called silicon debug. The identification of speed-
limiting paths, or simply speedpaths, in silicon debug is a cru-
cial step, required for both “fixing” failing paths and for accurate
learning from silicon data. We propose using characterized, pre-
silicon, variational timing models to identify speedpaths that can
best explain the observed delays from silicon measurements. De-
lays of all logic paths are written as affine functions of process pa-
rameters, called hyperplanes, and a branch and bound approach
is then applied to find the “best” path combinations. Our method
has been tested on a set of ISCAS-89 circuits and the results show
that it accurately identifies the speedpaths in most cases, and that
this is achieved in a very efficient manner.

1. INTRODUCTION
“How good are our flows in really predicting silicon?” is a key

question that was raised by the authors of [1], hoping to spur
more research on learning from silicon data in order to achieve
better silicon-to-model correlation. Indeed, this question touches
on the widely accepted reality, that silicon speed-limiting paths,
or simply silicon speedpaths, are not always accurately predicted
by existing timing flows [2]. This can be attributed to a number
of effects, including process, design, or environmental effects, that
are either not fully understood or too difficult to model in modern
designs.

Silicon debug, whereby silicon information is obtained partic-
ularly in the form of silicon delay measurements and/or actual
silicon speedpaths, is an integral part of the design cycle and a
crucial step in achieving design closure. In [3], the authors give an
overview of the silicon debug process and the many steps involved
in it. Typically, designers go through several “revisions” of silicon
to further optimize and push the performance of a given design.
These silicon iterations are referred to as silicon steppings. One
obvious objective is to identify speedpaths so they can be “fixed”
before the next silicon stepping. In order to do that, functional
tests are repeatedly performed while continuously increasing clock
frequency so as to capture the point of failure. In this way, en-
gineers are able to identify a speed-limiting “logic block”. Using
logic and timing simulations, they further attempt to spatially

∗This work was supported in part by Intel Corporation.

isolate the speedpath that led to the failure. Another, more dif-
ficult, objective is to perform causality analysis on the silicon
speedpaths in order to identify the root causes of failure and pos-
sibly predict additional speedpaths. The latter issue is mainly
concerned with reconciling models and silicon, as it focuses on
how the silicon data, that is, the found speedpaths and their ac-
tual measured silicon delays, can be used to tune and improve
the EDA tools and flows, particularly the timing flows.

In the past few years, the above problem has been tackled from
different angles. In [4], silicon measurements are used to come up
with a “criticality ranking” of paths. The authors do not try
to find the speedpath corresponding to each measurement, but
rather to specify a list of critical paths. In [1], the authors give
an overview of speedpath isolation techniques. These involve func-
tional and timing analysis to determine the exact speedpath out
of a set of candidate paths. The authors also present a method to
identify the root causes which make these paths speed-limiting.
As mentioned earlier, the main purpose of this is to utilize the
silicon data to improve the EDA tools and models and is done as
follows.After isolating the speedpaths, simulation is used to deter-
mine the sensitivities of these paths to a set of chosen parameters.
Based on the magnitudes of the sensitivities, the possible root
causes of the timing failure can then be ranked. The delays of the
paths from silicon are not used in the analysis, and the authors
do not try to reconcile actual measurements with the models.
On the other hand, the authors of [2] employ a machine-learning
approach that uses a small number of identified speedpaths to
predict a larger set of paths that are potentially speed-limiting.
They do this without identifying the root causes, which they say
saves time and reduces the time to market. Other works, e.g. [5]
use silicon data to find exact gate delays for a given chip which
can be useful in tuning the timing models.

In order to operate correctly, all these approaches either i)
assume that the exact speedpath corresponding to a delay mea-
surement is available [2, 5], or ii) assume that it can be isolated
by running logic and detailed timing analyses [1]. Hence, being
able to isolate speedpaths or to associate silicon delay measure-
ments to actual speedpaths is clearly a cornerstone in all these
techniques. As a result, solving the silicon speedpath isolation
problem is crucial to achieving all the other benefits that one
could obtain from having silicon information.

Speedpath isolation is by no means a straightforward approach.
As mentioned in [1], even with the most accurate logical and tim-
ing analyses, it may still not be possible to isolate the speedpath
whose delay is the measured silicon delay. For example, if sev-
eral candidate speedpaths have similar delays, and in the pres-
ence of dynamic effects and/or process variations, the authors
in [1] acknowledge that their path isolation technique may fail to
determine the correct speedpath. In such cases, direct probing
techniques, such as laser probing [6], may be used to determine
the actual speedpath, although they are usually expensive and
undesirable to use.

In this paper, we propose a technique for silicon speedpath
isolation. Our approach first considers, for every silicon delay
measurement, a corresponding set of potential candidate speed-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’09, November 2–5, 2009, San Jose, California, USA.
Copyright 2009 ACM 978-1-60558-800-1/09/11...$10.00.

217

paths. Parameterized static timing analysis (PSTA) is then used
to obtain a variational model for every candidate path. These
variational models are then combined across the different sets of
candidate speedpaths to create a cost function that weighs the
different combinations of paths, with a combination being a col-
lection of paths, each selected from a different set of candidate
speedpaths. Using this PSTA-based cost function, we construct
a branch and bound search tree and determine the top combina-
tions of candidate speedpaths that are most likely to have resulted
in the measured silicon delays. Our experiments show that the
branch and bound approach to speedpath isolation is both ef-
ficient and accurate, even when silicon exhibits relatively large
deviations from the pre-silicon PSTA models.

It is important to note up-front that we did not, in fact, have ac-
cess to silicon measurements for purpose of this project. Instead,
we have emulated the potential errors, variations, and unmodeled
effects of silicon by software. In other words, we artificially per-
turb our timing models to create an alternate version of a circuit
that is supposed to represent the true circuit on silicon, and we
used the delay of that circuit as a “silicon measurement”.

2. BACKGROUND

2.1 Silicon Debug and Speedpath Isolation
The authors of [1] give an overview of the process of silicon

debug and how speedpaths are typically specified when silicon
delay measurments are taken. In the process of silicon debug,
input patterns are applied to the chip and the clock period is
reduced until a failure is observed at one of the scan elements
(latches or registers). When such a failure is observed, it is not
clear which input vector is the one that caused it. Therefore the
test is repeated for the clock period just larger than that at which
the failure occured, only this time the clock is reduced for only
one of the input vectors. This test is repeated until the vector
responsible for the failure is identified. At this stage it becomes
possible to run a functional simulation of the circuit to deter-
mine logic paths that are sensitized by this input vector. After
determining this set of sensitizable paths the testers can further
reduce this set by performing more accurate and detailed timing
simulations. However, if two or more of the sensitizable paths
have similar delays, and in the presence of process variability and
other dynamic effects, such an analysis fails to determine the path
responsible for the delay [1].

PSTA models provide an opportunity to use variability infor-
mation, although not necessarily complete, to further reduce the
number of paths with potentially speed-limiting behaviour. This
is because one can make use of commonalities/differences in the
variational models to favor/dismiss certain combinations of paths.
This will be explained in detail in the next section.

2.2 PSTA Timing Models
All logic cell and interconnect delays are modeled as linear

(strictly speaking, affine) functions of normalized process param-
eters, whose values vary between −1 and +1, as in [7, 8, 9]. Hence
the delay of a logic cell or of an interconnect RC-tree can be writ-
ten as an affine function of these process parameters. Because the
delays of individual paths, in both clock networks and functional
blocks, are sums of gate and interconnect delays, they also be-
come such affine functions of the process parameters. Let the
number of process parameters under consideration be p. Thus,
a timing quantity t, representing a timing arc, interconnect, or
path delay, is written as follows:

t = t̄ +
p

∑

j=1

δjXj (1)

where X = (X1, . . . , Xp) is the set of normalized process parame-
ters, t̄ is the nominal value of t, and δj is its sensitivity to process
parameter Xj . Such an affine function represents a hyperplane in
(p+1)-dimensional space, and will often be referred to as, simply,
a hyperplane.

However, characterized or pre-silicon timing models of logic
cells, interconnect, and consequently logic paths are necessarily

P1,1 P1,q1

P1

h1,1 h1,q1

H1

D1

P2,1 P2,q2

P2

h2,1 h2,q2

H2

D2

Pn,1 Pn,qn

Pn

hn,1 hn,qn

Hn

Dn

Figure 1: Problem Setup

approximate and will deviate from silicon by some error. This
can be attributed to various process, design and environmental
effects. For one, it will always be the case that timing models
will not account for certain physical effects that might be com-
putationally too costly to model or to include in the timing flow.
Also, some physical effects or logic cells might be mis-modeled,
therefore resulting in errors. Furthermore, dynamic effects such as
multiple input switching (MIS), cross-capacitive noise, and sup-
ply voltage droop are difficult to model and generally cause silicon
delays to deviate from the predicted delay models. Therefore we
write actual or post-silicon timing quantities representing delays
of timing arcs, interconnect, and paths as:

t = t̄ +
p

∑

j=1

δjXj + e (2)

where the silicon error e is a theoretically uncertain and un-
bounded term, which models the inaccuracies inherent in (1) rel-
ative to silicon. However, typically a lot of engineering effort
goes into creating delay models, and although we consider these
models to be approximate, they are still regarded as good approx-
imations of silicon delays. As such, the effect of the error term
introduced in (2) is in practice a relatively modest deviation of
silicon delay around (1) rather than an unbounded effect that
completely distorts the timing model.

3. OVERVIEW

3.1 Problem Definition
For a given sample chip C at a particular silicon stepping,

a set of delay measurements are obtained for each of the scan
latches {L1, . . . , Ln}. Let the set of these delay measurements be
D = {D1, D2, . . . , Dn}, where Di is the measured delay at the
scan latch Li. As mentioned earlier, even with logic and detailed
timing analysis, it may not always be possible to isolate or iden-
tify correctly which path in the fan-in cone of Li is responsible
for the measured delay Di. It is however possible to identify a
“bin” of candidate paths, where one can be certain that the true
speedpath, that is, the path that resulted in the measured delay
Di, is one of those candidate paths. Therefore, as inputs to our
problem, we can associate with every scan latch Li and conse-
quently every delay measurement Di, a unique bin of qi potential
candidate speedpaths Pi = {Pi,1, . . . , Pi,qi

}.
In this paper, we propose a novel CAD solution to the path

isolation problem, where the goal is to “filter” the bins of can-
didate paths and determine, by leveraging PSTA models, the
true path that corresponds to the measured delay in every bin.
In other words, we will use PSTA information about candidate
paths to determine the most likely combination of “true” speed-
paths P ∗ = {P1,t1 , . . . , Pn,tn

}, where Pi,ti
∈ Pi is the speedpath

whose delay is the measured delay Di, 1 ≤ i ≤ n. We show next
how this can be done.

In accordance with our timing model, every path Pi,k has a
hyperplane delay hi,k. Therefore, every delay measurement Di

is also associated with a bin Hi = {hi,1, . . . , hi,qi
} of hyperplane

delays, corresponding to the bin of candidate paths Pi, as shown
in Fig. 1. Each hyperplane delay includes a silicon error factor
representing possible distortion to the model as seen in (2), and

218 2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers

therefore a candidate hyperplane hi,k is written as:

hi,k = h̄i,k +
p

∑

j=1

δ
(i,k)
j Xj + ei,k (3)

As an illustration, suppose that we have measured a set of
three delays {D1, D2, D3} corresponding to three hyperplane bins
H1 = {h1,1, h1,2}, H2 = {h2,1, h2,2}, and H3 = {h3,1, h3,2, h3,3}.
The graphs in Fig. 2 show possible characterized hyperplane de-
lays of the paths in these bins along with the measured delay for
each bin assuming a single variable X1. Note that each of the hy-
perplanes deviates from silicon by an unknown value. Thus look-
ing at the first bin in this graph, it is not possible to tell whether
the measured delay D1 results from h1,1 or h1,2. If the process
point, here the value of X1, and the error terms were known,
then determining which path resulted in D1 could be done in a
straighforward way. We would simply find which hyperplane is
the one that achieves the measured delay for the given process
setting and silicon errors. However, for a chip such as our sample

chip C, the particular process point X(C) = (X(C)
1 , . . . , X

(C)
p) is

typically not known, and of course neither are any of the error
terms ei,ki

, 1 ≤ i ≤ n, 1 ≤ ki ≤ qi. This uncertainty prevents
the identification of the exact hyperplane hi,ti

∈ Hi responsible
for each of the n measured delays Di, at the scan elements Li,
1 ≤ i ≤ n.

X1

D
e

la
y

X1

h1,1 h1,2

D1

D3

h3,1
h3,2

h3,3

-1 +1

X1

D2

h2,1h2,2

Figure 2: Utilizing PSTA Information for Path Iso-
lation

In our analysis, the only available information is the silicon
measured delays and the characterized hyperplane delays of the
candidate speedpaths corresponding to those measured delays.

Although characterized delay models are incomplete, as explained
in Section 2.2, they still provide a valuable opportunity to make
better informed decisions about which paths are responsible for
measured delays. For example by looking at the second bin in
Fig. 2, we can predict that hyperplane h2,2 is more likely to be
the speedpath in H2 than h2,1 since the measured delay can be
achieved with less distortion to the hyperplane model. This pre-
diction places the process parameter X1 close to −1, and as a
result, we can use this information in the first bin, and conclude
that h1,1 is the more probable speedath in H1. This shows how
we can combine information across different bins to home in on
the most likely speedpaths.

Moving back to the general problem, let a combination or se-
lection of paths be any set of n paths such that each of the paths
belongs to one of the n path bins, e.g. {P1,k1 , . . . , Pn,kn

} where
Pi,ki

∈ Pi. Recall that we would like to leverage the PSTA infor-
mation to determine the most likely combination of true speed-
paths P ∗ = {P1,t1 , . . . , Pn,tn

}, where Pi,ti
∈ Pi is the speedpath

whose delay is the measured delay Di. Now consider the arbi-
trary selection of paths {P1,k1 , . . . , Pn,kn

}. Given the process

setting X(C) = (X(C)
1 , . . . , X

(C)
p) of the chip C, it is always pos-

sible to find an assignment {e1,k1 , . . . , en,kn
} of errors, such that

the delays of the paths in our arbitrary set become equal to the
measured delays. Thus, with the introduction of the silicon error
term in (2), it becomes possible for any such combination to be
considered the “true” selection of speedpaths. As a result, we are
not able to definitively exclude any combination from the possi-
bility of being the true combination. Therefore, it becomes clear
that we need to define some ranking metric to determine which
combinations are most likely to be the true combination. In this
work, we show how to determine this list of top m combinations,
without requiring any knowledge of the exact process point or
silicon error values.

3.2 A Cost Function
Recall that the silicon error terms of candidate hyperplanes are

deviations around the timing model, and therefore, for the “true”
combination of speedpaths, these are expected to be small. Based
on this premise, we define a cost function that determines the
likelihood of any given combination of paths {P1,k1 , . . . , Pn,kn

}
to be the selection of “true” speedpaths. The cost v is defined
as the optimized objective function of the following quadratic
program (QP):

minimize: v =
n

∑

i=1

e2
i,ki

Subject to :

h̄1,k1 +
p

∑

j=1

δ
(1,k1)
j Xj + e1,k1 = D1 (4)

h̄2,k2 +
p

∑

j=1

δ
(2,k2)
j Xj + e2,k2 = D2

...

h̄n,kn
+

p
∑

j=1

δ
(n,kn)
j Xj + en,kn

= Dn

This cost function evaluates the likelihood of a combination being
the selection of “true” speedpaths by minimizing the norm of er-
rors required to match each hyperplane with the measured delay
of its bin at a common process setting. Consider the combination
S1 = {h1,1, h2,2, h3,1} in our example in Fig. 2. A visual inspec-
tion of Fig. 2 shows that by incurring a small error on each of these
hyperplanes, we can make them intersect with their respective
measured delays and that this can be done at a common process
setting X1 that is close to −1. Thus, the cost of such a combina-
tion as computed by (4) would be small. In fact, for a particular
hyperplane combination, its cost is mainly affected by two factors.
The first is how “far” each individual hyperplane is from its mea-
sured delay. Consider the combination S2 = {h1,2, h2,1, h3,3}.

2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers 219

Each of these hyperplanes is relatively “farther” away from its
corresponding measured delay than the hyperplanes in S1, and
applying (4) on this combination will show that it not a likely
combination. The second factor that affects the cost of a com-
bination is whether “closeness” of candidate hyperplanes to mea-
sured delays is achieved for some common process setting, i.e.
whether the paths of a combination are “compatible” with each
other. Consider the combination S3 = {h1,2, h2,2, h3,1}, which
only slightly varies from S1. We see that taken individually, these
hyperplanes are not far from their respective measured delays.
However these can only be made equal to their measured delays
at a low cost for very different process points, therefore the cost of
S3 will be much higher than that of S1. This shows how our cost
function can make use of the PSTA models and their interactions
to favor or dismiss different combinations.

Using (4), the costs of all combinations of paths can be com-
puted to determine the m combinations most likely to be the true
one. However, this would require running (q1×q2×. . .×qn) QP’s.
This exhaustive approach would be very expensive as the number
of possibilities is exponential in the number of bins n. Therefore,
in our approach we employ a branch and bound technique that
allows us to search for the best m combinations without having to
list all possible solutions. Before discussing our method in detail,
we will first give an overview of branch and bound and explain
how this method can be applied to our problem.

4. A BRANCH AND BOUND FRAMEWORK
Branch and bound is a term used to describe a generic al-

gorithm that is widely used to solve combinatorial optimization
problems where the enumeration of all possible solutions is too
expensive. Branch and bound works by building a search tree
that explores the complete search space without having to visit
every possible solution individually. Each node of this search tree
represents a subset of the space of all possible solutions, and by
branching a node, i.e. creating its children, this subset is fur-
ther divided into a set of, typically mutually exclusive, smaller
subsets. The root of the tree represents the space of all possible
solutions. Branching occurs starting from the root creating nodes
that represent subdivisions of the solution space, until the leaves,
which represent individual or specific solutions, are reached. It
is possible to construct a “full” tree, where the leaves enumerate
all possible solutions, and where the optimal solution would be
determined by finding the leaf with the minimum cost. However,
even without considering the cost of building the search tree, such
an approach would be just as expensive as the exhaustive enu-
meration of all possible solutions. Therefore, it is clear that in
order for branch and bound to provide a runtime improvement
over exhaustive enumeration, it would have to avoid building the
complete search tree.

Such an improvement is only possible if one uses a cost bound-
ing function. This is a function which gives a lower bound on the
costs of all the descendants of a node. For an internal node, the
knowledge of such a bound, combined with the availability of an
existing solution with a cost that is lower than this bound, allows
us to prune this node. That is, we can exclude the subtree rooted
at this node from the search since all its leaves are guaranteed to
have costs worse than that of the existing solution and will not
be optimal. Obviously, the quality of the cost bounding function
has a direct effect on the runtime improvment offered by branch
and bound. If this function gives very conservative bounds, then
few existing solutions will have lower costs. Similarly, the per-
formance of branch and bound is dependent on the quality of
existing or initial solutions. A “good” initial solution will have a
lower cost, and thus it is likely to result in more pruned nodes.

In addition to the bounding function and initial solutions, other
factors can also affect the performance of branch and bound. One
such factor is the division strategy used to determine how the sub-
space represented by a node is divided among its children. For
example, what part of the complete search space does each child
of the root represent and how is each of these children further
divided to create their child nodes. Another is the branching
strategy adopted; for example would the nodes be created in a
breadth first search (BFS) manner, a depth first search (DFS)

{ h1,1, h2,2, h3,1 } { h1,1, h2,2, h3,2 } { h1,1, h2,2, h3,3 }

{ h1,1, h2,1 } { h1,1, h2,2 }

{ h1,1 } { h1,2 }

{ }

{ h1,2, h2,1 } { h1,2, h2,2 }

Figure 3: A Search Tree

manner, or some mixture of both. In our path isolation problem,
we are not only interested in finding a single optimal solution, but
rather the top m optimal path combinations. Thus although our
proposed method uses the concepts presented here, it also builds
on them to achieve this aim. In what follows we present the main
components that make up the branch and bound framework of our
approach. We first discuss how a branch and bound search tree
can be organized in order to represent the search space of all path
combinations. After that, we present the cost bounding function
used for node pruning. Then, we discuss some other choices for
the rest of the factors that influence branch and bound perfor-
mance such as branching strategies and finding initial solutions.

4.1 A Search Tree for Path Isolation
Consider the tree in Fig. 3, which corresponds to the hyper-

plane bins shown in Fig. 2 and presented in Section 3.1. In this
example, an internal node with a partial combination such as
{h1,1, h2,2} represents all complete combinations, or simply com-
binations, which include {h1,1, h2,2} as a subset. In our approach,
the branch and bound search tree is such that at each level the
search space is further subdivided by fixing a hyperplane from a
specific bin. For instance, at level 2, the search space of each of
the nodes of level 1 is divided into two search spaces, each re-
stricted to one of the two hyperplanes that make up H2. Thus in
our division strategy, the division of a search space into subspaces
at level l is such that each of these only contains combinations
that include a particular hyperplane from Hl.

4.2 A Cost Bounding Function
For our problem, the cost of a path combination can be found

by applying (4). In order to apply a branch and bound solution we
need a cost bounding function that can provide a lower bound on
the costs of the descendants of an internal node. For an internal
node with a partial combination {h1,k1 , h2,k2 , . . . , hl,kl

}, l < n,
such a bound on the cost of all complete combinations which
include this partial combination can be computed as follows:

220 2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers

minimize: v =
l

∑

i=1

e2
i,ki

Subject to :

h̄1,k1 +
p

∑

j=1

δ
(1,k1)
j Xj + e1,k1 = D1

h̄2,k2 +
p

∑

j=1

δ
(2,k2)
j Xj + e2,k2 = D2 (5)

...

h̄l,kl
+

p
∑

j=1

δ
(l,kl)
j Xj + el,kl

= Dl

For a complete combination which has {h1,k1 , h2,k2 , . . . , hl,kl
}

as a subset, the optimization in (5) is in effect an underconstrained
version of (4). Therefore, it can be directly seen that (5) does
provide a lower bound on the cost of the descendants of an internal
node, and therefore it can be used as a cost bounding function.
Note that applying (5) on a leaf node, i.e. a node at level n,
gives the exact cost of that leaf. Thus (5) can be thought of as a
generalization of (4) that can be applied to both internal nodes
and leafs. For an iternal node, (5) gives a lower bound on the
costs of the descendants of this node, whereas for a leaf it returns
the exact cost. Therefore in our discussion the term node cost
refers to both the exact cost, if the node is a leaf, and to the
lower bound on the cost of the descendants of the node, if the
node is an internal node.

4.3 Other Factors
So far we have explained how a basic branch and bound ap-

proach can be applied to our problem, and we have presented
our cost bounding function. The order in which bins are con-
sidered has a direct effect on the performance of a branch and
bound solution of path isolation, where this is considered to be
part of the division strategy. We found that sorting the bins in
non-decreasing order of number of hyperplanes produces better
runtimes than a non-increasing or a random order. As for the
branching strategy, we adopt a BFS strategy in the presentation
of our work, although it is possible to use our proposed solution
in conjuction with other branching strategies.

5. PROPOSED METHOD
Our approach consists of two distinct stages. The first stage

builds a search tree using a greedy strategy to find a set of m
initial combinations. The optimality of these combinations is not
guaranteed and the objective here is for these to be “good” ini-
tial solutions to be used in the branch and bound approach. The
second stage of our approach uses the tree and the m initial com-
binations to come up with the optimal top m combinations. This
stage tries to verify the ranking of the first stage, and if need
be, “fixes” it to find the top m combinations using a branch and
bound strategy. In this section, a detailed explanation of both
stages is presented.

5.1 Greedy Search
The first step in our branch and bound method is to find a set

of m initial combinations using a greedy search approach. In this
step, a search tree is built such that at each level, the algorithm
only keeps nodes with the lowest costs. This is done by prun-
ing a pre-determined percentage of nodes at each level, where
the nodes pruned are those with the highest costs. This greedy
strategy is adopted in the hope that it will find m leaves with
relatively “low” costs. The pseudo-code of this stage is shown in
the GreedySearch algorithm in Procedure 1 and is explained in
detail below. However, we first present the scheme used to com-
pute the number of nodes to prune at each level when executing
this algorithm.

5.1.1 Computing Number to Prune
Recall that q1, . . . , qn represent the number of hyperplanes per

bin. We would like to come up with a pruning scheme that i)
results in at least m leaves, and ii) is such that the precentage of
nodes to be pruned increases with the level of the tree. The first
requirement stems from the objective of the greedy search stage,
which aims at coming up with m “good” combinations but whose
optimality is not guaranteed. After that, the second stage verifies
and, if need be, corrects the results of this stage to guarantee
optimality. On the other hand, the second requirement is set to
improve the quality of the results of the first stage. This is because
the costs of nodes deeper in the tree become more representative
of the costs of their descendant leaves, and thus with our heuristic
strategy it is less “risky” to prune nodes with the worst costs
at deeper levels. One pruning strategy which can satisfy these
requirements is to define at every level l, 1 ≤ l ≤ n, the ratio of
pruned nodes bl as:

bl = 1 − rl−1 (6)

where r ≤ 1. This pruning ratio satisfies the second criterion
that the percentage of pruned nodes increases with the level l.
It still remains to satisfy the first criterion of ending up with at
least m leaves. This can be achieved by assigning an appropriate
value to r as follows. Let T be the total number of possible path
combinations, thus we have:

T = q1 × q2 × . . . × qn (7)

Since we are pruning a ratio of bl nodes at any given level l,
the ratio of nodes preserved at each level is rl−1 = 1 − bl. Thus
at level l, the number of preserved nodes Tl can be written as:

Tl = (1)(q1) × (r)(q2) × . . . × (rl−1)(ql) (8)

Thus Tn, the number of leaves preserved, can be written as:

Tn = (1 × r × . . . × rn−1) × T (9)

Since we require the number of leaves to be m, we can write:

m = Tn =

(

r
n(n−1)

2

)

× T (10)

Therefore r can be computed as:

r =
(m

T

)

(

2
n(n−1)

)

(11)

Thus, in order to compute the number of nodes to be preserved
at any level l, we can compute Tl as shown in (8). In case the
value of Tl does not turn out to be an integer then we simply take
the ceiling of its value to be the number of nodes preserved.

Procedure 1 GreedySearch(m, H)

Inputs: m ← the number of desired combinations
H ← the set of n hyperplane bins

Outputs: SearchTree
1: Create the root of SearchTree;
2: Create first level of SearchTree;
3: Set CurrentLevel = 1;
4: while (CurrentLevel ≤ n) do
5: Compute TCurrentLevel, the number of nodes to preserve

at CurrentLevel;
6: Make TCurrentLevel nodes with lowest costs live;
7: Prune all other nodes at CurrentLevel;
8: if

(

CurrentLevel < n
)

then
9: Create children of live nodes at CurrentLevel, and com-

pute their costs;
10: end if
11: CurrentLevel = CurrentLevel + 1;
12: end while
13: return SearchTree;

2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers 221

5.1.2 Proposed Algorithm
The GreedySearch algorithm employs the pruning strategy

proposed above to construct a BFS tree that is used to come
up with m “good”initial combinations. This algorithm requires
as inputs the number of required top combinations m, and the
set of bins of hyperplanes H. As for the output of this procedure,
GreedySearch returns SeacrchTree, the BFS tree it constructs.

Algorithm 1 first creates the root of the search tree and then
adds the first level of the tree (lines 1–2). After that (lines 4–
11), GreedySearch builds SearchTree in a BFS manner where
at each level it preserves a number of nodes found using (8). For
each level CurrentLevel, 1 ≤ CurrentLevel ≤ n, the number of
nodes to be preserved TCurrentLevel, is first computed (line 5).
Then, that many nodes with the lowest costs are kept, and the
rest of the nodes at this level are pruned (line 6–7). After that, the
children of all live nodes at this level are created and their costs
are computed, unless these are at level n, i.e., unless these nodes
are complete combinations or leaves (lines 8–9). Thus, by the time
the loop (lines 4–12) exits at the last level with CurrentLevel =
n, we would have preserved (at least) TCurrentLevel = Tn = m
leaves as shown in (10). These leaves will be used as the m
initial combinations and will be returned along with SearchTree
(line 13).

5.2 Optimizing the Top Candidates
The greedy search is followed by a verification step that pro-

vides the top m optimal path combinations. This step considers
the list of the top m known combinations from the search tree
of the greedy search step. It checks whether this list is optimal,
and if not then it “revises” the combinations in the list in or-
der to ensure optimality of the results. The psuedo-code of this
stage is shown in the GetTopCombinations procedure shown in
Procedure 2 and is explained in detail below.

As is the case in Procedure 1, Procedure 2 requires as inputs
the number of required top combinations m, and the set of bins of
hyperplanes H. In addition, it also requires the tree SearchTree
constructed by GreedySearch. Procedure 2 returns the list of
top m optimal path combinations TopLeaves.

Procedure 2 begins by storing the sorted list of the top m
known combinations in TopLeaves (line 1). After that, the
ranked combinations in TopLeaves are adjusted so that they are
guaranteed to be optimal. The algorithm iterates over the m posi-
tions in TopLeaves (line 3–25) where for each rank CurrentRank,
the combination is verified, and possibly “fixed”, as follows. Let
us consider the case when CurrentRank = 1, i.e., the case when
Procedure 2 is finding the most favorable combination. On line
4, CurrentCandidate is set to the first combination currently
stored in TopLeaves, which is the top combination found by
GreedySearch. After that, a BFS traversal of SearchTree is
carried out, where at each level the cost of each childless node
is compared to the cost of CurrentCandidate (line 5–16). If
this cost is less than that of CurrentCandidate then the node
is made live and its children are created. On the other hand, if
this cost is greater than of CurrentCandidate, then this node
is pruned. Note that two types of childless nodes are consid-
ered here. The first type is that of nodes pruned by Proce-
dure 1 according to the pruning heuristic used in our greedy
search. Thus, in effect, Procedure 2 is checking the “legality”
of these prunings. If GreedySearch had pruned a node, whose
cost is less than that of any known leaf then this node should
be “unpruned”. The other type of nodes being considered are
descendants of “unpruned” nodes, produced through the expan-
sion of the tree that takes place on lines 9–10 when Procedure 2
determines that a node should be made live and creates its chil-
dren. After the traversal of the tree is performed, the tree be-
comes such that the cost of any pruned node is guaranteed to
be greater than the cost of CurrentCandidate. Therefore, the
leaves of the tree must include any candidate combinations whose
cost is less than that of CurrentCandidate, if any. Therefore,
the leaves of the tree are re-examined on lines 17–21 to see if

Procedure 2 GetTopCombinations(m, H, SearchTree)

Inputs: m ← the number of desired combinations
H ← the set of n hyperplane bins
SearchTree ← GreedySearch(m, H);

Outputs: TopLeaves ← array of m top combinations (leaves);
1: TopLeaves = sorted top m leaves in SearchTree;
2: CurrentRank = 1;
3: while (CurrentRank ≤ m) do
4: CurrentCandidate = TopLeaves[CurrentRank];
5: CurrentLevel = 1;
6: while (CurrentLevel < n) do
7: for all CurrentNode ∈ Childless Nodes at CurrentLevel

do
8: if

(

cost(CurrentNode) ≤ cost(CurrentCandidate)
)

then
9: Make CurrentNode live;
10: Create children of CurrentNode;
11: else
12: Make CurrentNode pruned;
13: end if
14: end for
15: CurrentLevel = CurrentLevel + 1;
16: end while
17: for all CurrentLeaf ∈ Leaves(SearchTree) do
18: if

(

(CurrentLeaf is not Don’t Touch) and

(cost(CurrentLeaf) ≤ cost(CurrentCandidate))
)

then
19: CurrentCandidate = CurrentLeaf;
20: end if
21: end for
22: TopLeaves[CurrentRank] = CurrentCandidate;
23: Set CurrentCandidate to Don’t Touch;
24: CurrentRank = CurrentRank + 1;
25: end while
26: return TopLeaves;

any of the leaves provide a better path combination than the
one in CurrentCandidate. In addition to comparing the costs
of the leaf CurrentLeaf and CurrentCandidate, Procedure 2
checks if CurrentLeaf is flagged as “Don’t Touch” (line 18).
The significance of this will be explained shortly, however for
the case of CurrentRank = 1 no leaves are marked as such,
and this loop simply finds the leaf with the lowest cost. After
that, TopLeaves[CurrentRank], the combination ranked first, is
updated to the optimal combination found after examining the
leaves of the search tree.

The last step in GetTopCombinations is to flag the found path
combination, or the leaf, as “Don’t Touch”on line 23. This means
that when Procedure 2 is finding the combination ranked second,
the combination marked first will be flagged as “Don’t Touch”
and thus will not be considered as a candidate for this position.
Similarly, when the algorithm is determining the ith ranked com-
bination, it has already determined the combinations up to the
(i − 1)th rank, and has flagged these as “Don’t Touch”. Thus,
the algorithm always finds the best “unranked” combination, and
then flags it as “Don’t Touch” and proceeds to find the next best
combination.

6. EXPERIMENTAL SETUP
Our approach was tested on a selected set of circuits from the

ISCAS-89 benchmark suite. These circuits were first synthesized
and mapped to a 90nm CMOS library. They were then placed
and routed, and the HSPICE netlist of each circuit was extracted.
Nominal delays and slews were characterized for all cells in the
library, and a set of 10 parameters X1, . . . , X10 was selected to
model process variations. The ranges of those parameters were
chosen such that their combined effect on the delay or slew of
a cell or an interconnect resistance or capacitance value is 20%.
The sensitivities of gate delays and interconnect RC-trees to these
process parameters were randomly generated.

For each of our test circuits, we designated a set of 15 registers

222 2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers

Table 1: Ranks of True Combinations

Mis-modeled Cell Capacitive-coupling Voltage Droop

ISCAS-89 Case 1 Case 2 Case 3 Varying 20% Varying 30% Varying 40% 15% Droop Effect
Circuit Rank/Cut-off Rank/Cut-off Rank/Cut-off Rank/Cut-off Rank/Cut-off Rank/Cut-off Rank/Cut-off
s400 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1
s5378 1 / 4 1 / 4 1 / 4 1 / 2 1 / 1 1 / 4 1 / 8
s9234 1 / 1 1 / 1 1 / 2 1 / 2 1 / 1 1 / 1 2 / 2
s15850 1 / 2 1 / 1 2 / 2 1 / 2 5 / 5 5 / 6 3 / 3
s38584 5 / 5 1 / 2 1 / 1 1 / 2 1 / 1 9 / 4 5 / 2

as the circuit’s scan elements. For each test circuit, we generate
“silicon” delay measurements at the inputs of its designated scan
registers, and then we determine the characterized hyperplane
delays of all candidate paths for each measurement. A C++
implementation of Procedure 1 and Procedure 2 is then applied
on the delay measurements and the hyperplane bins to determine
the combinations that are most likely to be “true”.

6.1 Simulating Silicon
Our circuits were not implemented on silicon; instead, we use

our extracted netlists in order to create a “silicon netlist”. For a
given circuit, this “silicon netlist” is derived from our extracted
netlist as follows. First, a random process setting is chosen for the
circuit. We then introduce errors to the delays of certain circuit
elements in the “silicon netlist” in order to simulate the impact
of some “silicon effect”. In particular, for each circuit we produce
“silicon netlists”that simulate three different“silicon effects”: mis-
modeled logic cells, capacitive-coupling, and voltage droop. Each
of these effects is produced differently, and in what follows we
present the details involved in reproducing these effects.

6.1.1 Mis-modeled Logic Cells
Usually a mis-modeled logic cell is discovered if it is used fre-

quently, since designers would catch on to the discrepancies be-
tween expected and silicon delays. However, problems generally
arise when some less commonly utilized cell is mis-modeled due
to characterization errors or an outdated model. In our tests, we
simulate the effect of such a mis-modeled cell by choosing a spe-
cific cell and increasing the delays of all the instances of this cell
in a given “silicon netlist” by 20%.

6.1.2 Capacitive-coupling
Typically, capacitive-coupling between interconnect lines that

are close to each other leads to a degradation in signal quality and
higher delays. We recreate this effect by introducing a penalty of
up to 5% on the delays of a certain number of randomly chosen
interconnect RC-trees of a “silicon netlist”.

6.1.3 Voltage Droop
Voltage droop refers to a reduction in the supply voltage of

a logic cell, which leads to an increase in the delay of this cell.
This effect is produced by choosing logic cells in a “silicon netlist”
randomly, and increasing their delays by up to 15%. Although
the cells are chosen randomly, we make sure that enough cells are
chosen so as to affect the “worst-case” delays at the inputs of all
scan registers.

6.2 Measured and Hyperplane Delays
The availability of the “silicon netlist”, where all delays are

exact, allows us to find the “worst-case”delay at the input of each
of the scan registers using static timing analysis. Therefore in our
approach we take these “worst-case” delays to be our measured
delays, and for each such delay we record the path that results in
it. It then becomes possible to find the input vector or pattern
that can sensitize it.

Recall that each “measured delay” is associated with a set of
candidate speedpaths that is found using logic and detailed timing

1 2 3 4 5 6 7 8 9 10

Combination Rank

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
o
s
t

Figure 4: Cost Vs. Combination Rank

simulations. For our tests, the bin of candidate paths of a delay
measurement, taken at the input of a scan register, is considered
to be that of all paths that terminate at that input. That is,
we do not try to trim the list of candidate paths by performing
logic simulations. This will leads to more challenging cases to test
our method on. However, after listing the candidate hyperplane
delays of a given delay measurement we do remove those with
very “low” hyperplane delays from the list. This is somewhat
equivalent to performing timing simulations and removing paths
that are impossible to be speed-limiting. This is done in order to
avoid any artificial improvement of the quality of the results of
our method. That is, keeping such paths in the lists of candidate
paths would lead to cases were the number of combinations is
large but where many of these combinations can be easily removed
by our branch and bound approach.

7. RESULTS
Table 1, shows results for all three types of test cases. For each

test case, 15 (number of scan registers) delay measurements are
taken and are fed, along with the bins of characterized hyper-
planes of the candidate speedpaths, into Procedure 1 and Proce-
dure 2 to identify the combinations most likely to be the “true”
combination. Tests were run for a required number of combina-
tions m = 10. For each test, two figures are reported. The first is
“Rank”, which here is the rank of the “true” combination in the
top 10 combinations our method identified. The second figure,
referred to as “Cut-off”, describes another aspect of our results
which is explained in detail below.

7.1 Predicting the True Combination
In each of our tests, we use a “silicon netlist” to measure de-

2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers 223

lays, and in each case record the “true” combination of paths
that resulted in the delays. The recorded combination can then
compared to the top combinations found using our method to
check how well our approach ranks it. Consider the results for
“mis-modeled cell” tests in Table 1. For each circuit, we ran tests
for three different mis-modeled cells. Notice that in most cases,
our method correctly identifies the “true” combination, and even
when it doesn’t, the rank of the “true” combination is always
high. The next set of tests is that of “capacitive-coupling” tests.
In this type of test, we provide three tests cases where in each
case a different percentage of interconnect trees are affected by
capacitive-coupling. Note, that for the case where only 20% of
interconnect structures are affected, our method always finds the
“true”combination. Our method still finds the“true”combination
in most of the cases where 30% and 40% of the interconnect trees
are affected. However, as we introduce more silicon errors to the
circuit, the rank of the “true” combination falls sometimes. As for
the “voltage droop” tests, we notice that in these cases the “true”
combination is ranked very high, but not as high as in the other
types of tests. This could be explained by the considerable delay
penalty of 15% and the relatively large number of cells affected.

7.2 Cut-off Results
Consider the graph in Fig. 4 showing, for one of our test cases,

the top 10 paths combinations and their respective costs found
using our cost function in (4). This test was run on circuit s5378
where a capacitive-coupling delay penalty of up to 5% was im-
posed on 40% of interconnect trees. Although the top combina-
tion found by our method in this case was the“true” combination,
it is clear from the graph that the top 4 combinations stand out
for their low costs and that a significant jump in cost exists be-
tween the costs of the 4th and the 5th combinations. The“cut-off”
numbers reported in Table 1, refer to such a rise in the cost of the
combinations found. Thus in the case of the combinations seen
in Fig. 4, the 4th combination is the “cut-off”. The value of this
parameter allows engineers to evaluate the reliability of results
reported by our method. Thus a “cut-off” of 1 means that a sin-
gle combination stands out with a much lower cost than all other
combinations. Therefore, it is less likely that another combina-
tion is the “true” combination and in this case the confidence in
the results increases. On the other hand, a “cut-off” of 4 as seen
in Fig. 4 means that it might be risky to completely ignore the
possibility that the “true” combination is any one of these four
combinations rather than the first one. However, it also turns
out that, typically, all the combinations before the “cut-off” share
a lot of their paths. For example, our top 4 combinations from
Fig. 4 share 13 paths out of the 15 each is made up of. This leads
to the conclusion that the 13 shared paths can be considered to
be“true”with a high degree of confidence. Also, the only possibil-
ities to be considered for the remaining two delay measurements
are those seen in the top 4 combinations. Therefore, the “cut-off”
value also allows the reduction of the search space for engineers
and allows them to do a minimal amount of probing or process
parameter measurement to try to determine the exact paths with
higher certainty.

Now cosider the “cut-off” values reported in Table 1. In many
cases we find that the rank of the “true” combination was 1 and
that this combination was also the “cut-off”. This means that
engineers can proceed with the results with a high level of con-
fidence. However, in some other cases we find that the “cut-off”
can increase to 8. Nevertheless, in almost all of the tests, except
for two, we always find that the rank of the “true” combination is
within the “cut-off”. Given the similarities between all the com-
binations within the “cut-off”, this means that most of the paths
of the “true” combination have been identified.

7.3 Runtimes
Table 2 shows the number of possible combinations for each

circuit and the average runtimes for running our method on each
of the circuits. Note that the runtimes presented are “proces-
sor times” and not “wall clock times”. Due to the large number
of possible combinations for these circuits, we do not present any
runtimes of the exhaustive approach, however the runtimes of our

Table 2: Average Runtimes

ISCAS-89 Number of Possible Average
Circuit Combinations Runtime
s400 2,488,320 4.01 sec
s5378 67,032 17.28 sec
s9234 105,984,000 24.4 sec
s15850 8,553,600 18.8 sec
s38584 7,464,960 13.36 sec

method show that our branch and bound approach is quite effi-
cient. Also note that the runtimes presented are not only depen-
dent on the number of combinations. This can be attributed to
the multitude of factors that affect the performace of any branch
and bound technique.

8. CONCLUSION
In this paper, we presented a new technique for silicon speed-

path isolation, whereby the (pre-silicon) characterized variational
models are used in order to identify the speedpaths resulting in sil-
icon measured delays. We showed that the problem can be solved
using a branch and bound approach that makes use of PSTA hy-
perplane delays and silicon delay measurements, in order to find
the path combinations that are most likely to be the true speed-
paths. Our results showed that these true speedpaths were accu-
rately identified in most cases, and that this was achieved with
efficient runtimes. This precise identification of speed-limiting
paths will not only enable engineers to “fix” these failed paths,
but more importantly, it will pave the way for accurate learning
from silicon data in order to better “tune” the pre-silicon models.

9. REFERENCES
[1] K. Killpack, C. Kashyap, and E. Chiprout. Silicon speedpath

measurement and feedback into EDA flows. In DAC, pages
390–395, 2007.

[2] P. Bastani, K. Killpack, L.-C. Wang, and E. Chiprout.
Speedpath prediction based on learning from a small set of
examples. In DAC, pages 217–222, 2008.

[3] D. Josephson and B. Gottlieb. The crazy mixed up world of
silicon debug. In Custom Integrated Circuits Conference,
2004. Proceedings of the IEEE 2004, pages 665–670, 2004.

[4] L. Lee, L.-C. Wang, P. Parvathala, and T. M. Mak. On
silicon-based speed path identification. In IEEE VLSI Test
Symposium, pages 35–41, 2005.

[5] F. Koushanfar, P. Boufounos, and D. Shamsi. Post-silicon
timing characterization by compressed sensing. In
International Conference on Computer Aided Design
(ICCAD), pages 185–189, November 2008.

[6] M. Paniccia, T. Eiles, V.R.M. Rao, and W.M. Yee. Novel
optical probing technique for flip chip
packagedmicroprocessors. In Test Conference, 1998.
Proceedings., International, pages 740–747, 1998.

[7] S. Onaissi and F.N. Najm. A linear-time approach for static
timing analysis covering all process corners. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 27(7):1291–1304, 2008.

[8] K. R. Heloue, S. Onaissi, and F. N. Najm. Efficient
block-based parameterized timing analysis covering all
potentially critical paths. In ICCAD, pages 173–180,
November 2008.

[9] S. V. Kumar, C. V. Kashyap, and S. S. Sapatnekar. A
framework for block-based timing sensitivity analysis. In
Design Automation Conference, pages 688–693, 2008.

224 2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers

