
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 12, DECEMBER 1993 1913

Computation of Floating Mode Delay in
Combinational Circuits: Theory

and Algorithms
Srinivas Devadas, Member, IEEE, Kurt Keutzer, Member, IEEE, and Sharad Malik

Abstract-This paper addresses the problem of accurately
computing the delay of a combinational logic circuit in the
floating mode of operation. (In this mode the state of the circuit
is considered to be unknown when a vector is applied at5 the
inputs.) It is well known that using the length of the topologi-
cally longest path as an estimate of circuit delay may be pessi-
mistic since this path may be false, i.e., it cannot propagate an
event. Thus, the true delay corresponds to the length of the
longest true path. This forces us to examine the conditions un-
der which a path is true. We introduce the notion of static co-
sensitization of paths which leads us to necessary and sufficient
conditions for determining the truth or falsity of a single path,
or a set of paths. We apply these results to develop a delay
computation algorithm that has the unique feature that it is
able to determine the truth or falsity of entire sets of paths
simultaneously. This algorithm uses conventional stuck-at-fault
testing techniques to arrive at a delay computation method that
is both correct and computationally practical, even for partic-
ularly difficult circuits.

I. INTRODUCTION
IVEN INPUT stimuli, a combinational circuit pro- G duces outputs. These outputs depend on the sensiti-

zation of particular paths in the circuit. Certain paths in a
combinational circuit may never transmit an event be-
cause the logicial functions computed by the gates and
their propagation delays preclude these paths from being
sensitized. These paths are said to befalse and must be
excluded in analyzing the delay of the circuit. This paper
examines the problem of computing the true delay of a
combinational logic circut that ignores the contribution of
these false paths.

We consider the floating mode of operation [5] . In the
floating mode of operation when a vector is applied to the
primary inputs, the states of the nodes in the circuit are
assumed to be unknown. Pessimistic assumptions are
made about the states so as to consider any possible event

Manuscript received October 26, 1992; revised March 15, 1992. This
work was supported in part by the Defense Advanced Research Projects
Agency under Contract N00014-91-J-1698, and IBM Faculty Development
Award, and an NSF Research Initiation Award. This paper was recom-
mended by Associate Editor M. Heydemann.
S. Devadas is with the Department of Electrical Engineering and Com-

puter Science, Massachusetts Institute of Technology, Cambridge, MA
02139.

K. Keutzer is with Synopsys, Mountain View, CA.
S. Malik is with the Department of Electrical Engineering, Princeton

IEEE Log Number 9212342.
University, Princeton, NJ 085445263.

propagation based on previous history. In order to accom-
plish this, if the input vector results in a controlling value
at a gate input, the unknown side-inputs are assumed to
have non-controlling values on them so as to facilitate the
propagation of the event at this gate.

We use a circuit representation developed by Arm-
strong, called the Equivalent Normal Form (ENF) [l], to
examine the interactions between the functional and tem-
poral aspects of the behavior of a circuit. We introduce
the notion of static co-sensitization of paths that leads us
to the necessary and sufficient conditions for a path to be
true, or for some path within a specified set of paths to be
true. We then use our understanding of these conditions
to develop a delay computation algorithm that has the
unique feature that it is able to determine the (truth or)
falsity of entire sets ofpaths, simultaneously. Because the
circuits that are most troublesome for false-path-eliminat-
ing static timing analyzers are those with literally millions
of paths, and in particular millions of longest paths, the
ability to handle entire sets of paths simultaneously re-
sults in a very efficient delay computation procedure.

We begin by taking a brief look at the previous work
done in this area in Section I1 and highlight the main lin-
mitation of the existing work; thus setting the stage for
the research presented in this paper. Next, we formally
define important terms in Section I11 and take a closer look
at the delay models considered in Secton IV. In Section
V we describe the ENF of a combinational circuit. We
introduce the notion of static co-sensitization in terms of
the ENF in Section VI while developing the necessary and
sufficient conditions for a path to be true. We then use
these conditions to derive a delay analysis algorithm in
Section VII. Preliminary results on applying this algo-
rithm to particularly troublesome circuits are given in
Section VI11 .

11. PREVIOUS WORK
There has been significant research done in the area of

timing analysis that includes consideration of false paths
during the analysis stage. The important landmarks in this

‘Chen and Du [5] were the first to determine the necessary and sufficient
conditions for a path to be true, However, our analysis technique is unique
and lends itself to easy extension in dealing with sets of paths.

0278-0070/93$03.00 0 1993 IEEE

1914 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 12. DECEMBER 1993

will be pointed out here. A more detailed history may be
found in [121.

The eariliest reference to this problem is made by Hrap-
cenko [1 11 who demonstrated the existence of false paths
on a parametric circuit that he constructed. Initial at-
tempts to deal with false paths in timing analysis de-
pended on the designer providing some input to the timing
analysis routine. This was done by explicitly listing the
paths that were known to be false and had to be ignored
[lo], [6]. This had two drawbacks. First, the number of
false paths may be very large, making their explicit listing
very difficult. Second, the procedure to determine the truth
or falsity of paths is non-trivial, and except for the most
obvious cases this was beyond what can be expected from
a designer. This task should be performed by the analysis
algorithm itself.

Perhaps the first attempt at using the functional behav-
ior of circuit elements during timing analysis was made
by Brand and Iyengar [3]. However, as pointed out by the
authors themselves, the conditions established for a path
to be false were only necessary, not sufficient, and hence
the computed delay was a correct but possibly pessimistic
estimate. McGeer and Brayton introduced the notion of
viability of paths, a path had to be viable for it to be true.
Hence, viability too may pessimistically result in a path
being classified as true, while it may actually be false.
Chen and Du [5] were the first to propose necessary and
sufficient conditions for a path in the circuit to be true. A
common limitation of all of these previous techniques is
that they focus on one path in the circuit at a time. This
limits their practical utility to circuits that have only a few
long false paths which may be individually eliminated in
the analysis. For circuits where this is not true, this path-
at-a-time approach breaks down. It is precisely this limi-
tation that the work presented in this paper addresses.

111. DEFINITIONS AND NOTATION
As this paper will span the areas of synthesis, testing

and timing analysis, we need to provide a minimal amount
of terminology from these fields.

3.1. Logic Synthesis
A Boolean function F of N variables is a mapping from
P = {0, l}" + (0 , l}. We model P as a Binary N-cube.
A vertex (or input vector) U E fl for which F(v) = 1 is a
member of the owset. If F(v) = 0 then v is a member of

A literal is a Boolean variable or its complement. A
cube is a set of literals and is interpreted as a product of
literals. For example { a , b , c } is a cube, interpreted as a
- b * c which may be abbreviated to abc. A minterm is
a cube in which every variable in the Boolean function
appears. We may interpret the minterm as a vertex in the
N-cube .

Minterms and cubes may be used to represent the val-
ues of a set of input variables: e.g., x p is shorthand for
n = 1, y = 0, and z = 1. In this way there is a natural

the OFF-Set.

correspondence between an input vector or input stimu-
lus, a minterm and a vertex in the N-cube. This corre-
spondence may be extended to cubes where unspecified
values in the function are assumed to be undefined values.
Thus, if a circuit C has inputs U , w, x, y , z then applying
the cube xyz to C i s shorthand for applying v = X, w =
X, x = 1, y = 0, and z = 1. (Here X denotes an unknown
value).

Following the historical usage we define a cover as a
set of cubes and we interpret the cover as a sum-of-prod-
ucts expression. For example { { a , b , c } , {d, e , f}} is a
cover, interpreted as abc + de$ We say that cube q cov-
ers a cube (or vertex) T if q G T. If a cube q covers only
owset vertices of a Boolean function F then q is called an
implicant of F. A relatively essential vertex of a cube q
in a cover C is a vertex that is covered by q and is not
contained in any other cube in C.

3.2 Testing
A combinational Logic Circuit is represented as a la-

beled, directed, acyclic graph (dag) G = (V , E) with each
vertex v labeled with the name of a primitive gate such as
AND, OR or NOT, or with the name of a primary input or
output. A combinational logic circuit can be created from
gates of arbitrary complexity, but to simplify the discus-
sion we assume that the circuit is expressed in terms of
primitive gates. (In Section 7 . 3 we will address the issue
of cell libraries with complex gates in them.) There is an
edge (U, U) in V between two vertices if the output of the
gate associated with U is an input to gate v. If the output
gate, q l , is connected to an input of gate, g,, g , is a fanin
of g2. Gate g 2 is a fanout of gate g l .

The member of V that have no fanin are the only ver-
tices that may be labeled with the name of a primary in-
put. The members of V that have no fanout are the only
vertices that may be labeled with the name of a primary
output.

A single-output combinational logic circuit computes a
Boolean function in the obvious way. An N input M out-
put combinational logic circuit computes a pseudo-
Boolean function from fl -+ p. As we will be dealing
primarily with combinational logic circuits in this paper,
we will use circuit to mean combinational logic circuit.

A gate has an input/output stuck-at-1 (stuck-at-0) fault
if the logical value associated with the input/output is 1
(0) independent of the value presented at the input. A cir-
cuit has a single-stuck-at-fault if there is one stuck-at-
fault in the circuit. A circuit has a multiple-stuck-at-fault
(multifault) if there are one or more stuck-at-faults in the
circuit. A multifault is denoted as a set of its single fault
components.

For a fuller treatment of testing terminology, see [4],
PI.

3.3. Timing/Delay Testing
A path in a combinational circuit is an alternating se-

quence of vertices and edges, [v ~ . eo. * * * , v,, e,,, U,, + ,},

DEVADAS et al.: FLOATING MODE DELAY: THEORY AND ALGORITHMS 1915

where edge ei, 1 I i I n , connects the output of the
vertex, vi to an input of vertex vi + 1. For 1 I i I n, vi
is a gate; vo is a primary input and v , + ~ is a primary
output. Each ei is a net. With each vertex v we associate
a delay d(v) .

is defined as length (P) = C yzd d(vi).
An event is a transition 0 + 1 or 1 + 0 at a gate.

Consider a sequence of events, (ro, r l , - - - , r,> occur-
ring at gates {go, gl, - - * , g,} along a path, such that ri
occurs as a result of event ri - 1. The event ro is said to
propagate along the path.

A controlling value at a gate input is the value that
determines the value at the output of the gate independent
of the other inputs. For example, 0 is a controlling value
for an AND gate. A non-controlling value at a gate input
is the value which is not a controlling value for the gate.
For example, 1 is a non-controlling value for an AND gate.
We say a gate g has a controlled value if one of its inputs
has a controlling value; otherwise, we say g has a non-
controlled value.

, U,, e,, v , + ~) be a path. The
inputs of vi other than ei- l are referred to as the side-
inputs to x .

We say that an input vector w statically sensitizes to a
l(0) path ‘K in C iff the value of v, + is l(0) and for each
vi, 1 I i I n +1, if vi has a controlled value then the
edge ei - is the only input of vi that presents a controlling
value. Thus for ‘K to be statically sensitizable there must
exist an input vector such that all the side-inputs along ‘K

settle to non-controlling values for that vector.
For notational convenience, we denote the value of a

circuit C on a vector v by C(v). For example for the cir-
cuit ubc + de., C(ubcdef) = 1. We denote the Boolean
value of a cube q on a vector v by q(v). For example given
the cube q = ubc, q(ubcdef) = 1. Similarly, we denote
the Boolean value of a literal 1 in a cube q on a vector v
by ql(u). For example given the cube 4 = abc,
qb(abcedef) = 1.

A path is said to be true if it is can propagate an event.
The exact conditions for a path to be true will be the sub-
ject of investigation of the rest of this paper. The critical
path is the longest true path in the circuit. The delay of
a circuit is the length of the critical path.

The length of a path P = { vo, eo, > U“, e,, % + l L

Let ?r = (vo, eo, - *

IV. CIRCUIT AND GATE DELAY MODELS
Most timing analyzers make some assumptions about

the electrical behavior of the circuit components and pos-
sible variations in the delay. This section first examines
some of the models used and then specifies the domain of
this paper in terms of these models. We first consider the
models based on differences in the electrical behavior.*

Consider the operation of a circuit over the period of
application of two consecutive input vectors vl and v2. In
the transition mode of operation, the circuit nodes are

*This is the same as that introduced in [5] .

assumed to be ideal capacitors and retain their value set
by v1 till v2 forces the voltage to change. Thus the timing
response for v2 is also a function of v1 (and possibly other
previously applied vectors). In the floating mode of op-
eration, the nodes are not assumed to be ideal capacitors
and hence their state is unknown till it is set by v2. Thus,
the timing behavior for v2 is independent of vl.

The most common delay model for a circuit component
is one in which the delay is assumed to be a fixed number
d . This is referred to as the fixed delay model. However,
in reality this number is typically an upper bound on the
expected delay, so in fact the actual delay may be any
number bounded above by d . This potential speedup is
incorporated in the monotone speedup model [12], which
assumes that the delay for each component lies in the
range [0, 4. The bounded delay model attempts to be
more realistic about how much each component can in
fact speed up. It specifies the delays as a pair of numbers,
[dl, 43, specifying the lower and upper bounds of the ac-
tual delays.

For the purpose of developing the ideas in this paper it
is sufficient that we restrict the delays in a circuit to gates.
This is general enough to accommodate other delay quan-
tities such as wire delays and pin to pin delays by intro-
ducing buffers with appropriate delays in the circuit.
While more sophisticated delay parameters such as slope
delays and separate rise and fall delays are not directly
accommodated into the “delay lumped at a gate” para-
digm, it will be subsequently shown in Section 7.3 that
the results in this paper hold for even those models.

In [5] the following results were shown.

For the floating mode of operation, circuit delay un-
der the fixed, monotone speedup and bounded delay
model are the same (for the same upper bound on
each delay value).
The circuit delay in the floating mode is an upper
bound (hence correct though possibly not tight esti-
mate) of the delay in the transition mode.

This paper focuses on the floating mode and considers
the monotone speedup delay model. From the previous
results we see that it is sufficient to consider the fixed de-
lay model for this purpose.

V. ENF ANALYSIS
5.1. Introduction

Analyzing the Boolean and temporal behavior of mul-
tilevel logic circuits using topological arguments can be
confusing. Our approach is to use an alternative represen-
tation of a multilevel circuit developed by Armstrong [l]
called the ENF. The ENF of a circuit is a two-level rep-
resentation that represents the logic function computed by
the multilevel circuit while retaining the path informa-
tion.

We illustrate the derivation of the ENF of a circuit with
the help of an example taken from [l]. First, the multi-
level circuit of Fig. 1 is made internal fanout free by un-

1916 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 12, DECEMBER 1993

-
Fig. 1 . Multilevel circuit.

I d" - I fa d

d
b

Fig. 2. Making a circuit fanout tree.

folding it. This is illustrated in Fig. 2. The numbers inside
the gates are unique identifiers for those gates. This in-
volves duplicating gates if needed so that each copy of a
gate has a single fanout connection. The duplicated gates
retain the same integer as the original gate. Next, the in-
verters are pushed backwards towards the primary inputs
using DeMorgan's laws of complementation to change the
gates encountered in the process (See Fig. 3.)

This resulting circuit is referred to as the leaf-DAG cir-
cuit. The ENF of the output is constructed bottom up
starting at the primary inputs of the circuit. Each variable
in an ENF expression is simply a primary input of C, such
as i, and has a label (or tag) consisting of a set of gates
denoting the path this input has taken to reach the output.
The ENF for a uncomplemented (complemented) primary
input i is simply io (;{I). The ENF expression corre-
sponding to the output of an AND (OR) gate g with inputs
a,, bo is a sum-of-products expression over tagged liter-

Boolean reductions are made in reducing Eg to sum-of-
products form.

als, Eg = aau {g} * b, U {g} (Eg = a, U {g) + bow {g)). No

The ENF for primary output M is:

- -
+ '{3,5,6) '{I, 3,5,6)d{2, 5.6) + a{3, 5,6) '{I, 3,5,6) b{2,5,6}

+ a{%5,6)d{~,3.5,6) d{2,5,6) + a(3,5,6) d{1,3,5,6}b{2,5,6}.
- - -

There is a one to one correspondence between paths in
the multilevel circuit, paths in the leaf-DAG, and distinct
tagged literals in the ENF. Corresponding to a path a is
a tagged literal I , . 1 is a literal of the input variable of a
and its tag is the set of gates along a. For example, con-
sider the path form b through gates 4 and 6 to M . The

Fig. 3 . Pushing inverters to the primary inputs.

b
a
b
C
d
a
d
a
b

C

C

I!

d
a
+LJ

Fig. 4 . A two-level circuit representing the ENF.

M

tagged literal b{4,61 represents this path in the ENF. Thus,
the ENF simultaneously captures information about the
function and paths of the original multilevel circuit.

There is a two-level circuit that corresponds to the ENF
and which can be obtained by a direct translation of the
ENF to an AND-OR circuit. The ENF-two-level circuit for
the example in Figs. 2 and 3 is shown in Fig. 4. While it
is obvious that for the ENF-two-level circuit is logically
equivalent to the original multilevel circuit, it is also tem-
porally equivalent for purposes of delay computation. For
this we need to specify the delay values in the two-level
circuit. The delays of paths in the original multilevel cir-
cuit can be reflected by adding all the delay to the first net
in the two-level circuit and assuming all subsequent cir-
cuit elements have zero delay.

Consider a vector U , such that C(v) = 1, applied to the
primary inputs of a circuit. In the floating mode, all nodes
in the circuit are assumed to be in an unknown state when
U is applied. Correspondingly in the ENF, all the literals
have unknown values when U is applied. U will cause cer-
tain events to propagate in the circuit and finally the out-
put will stabilize to a 1. Correspondingly, in the ENF,
different cubes will settle to their final values at different
times, and the output settles to a 1 as soon as the first cube
settles to a 1 . Thus, the delay for the rising transition is
determined by the time taken for the first cube to settle to
a 1 .

DEVADAS et al.: FLOATING MODE DELAY: THEORY AND ALGORITHMS 1917

VI. DELAY ANALYSIS USING THE ENF

6.1. Static Co-sensitization of Paths
The delay of a circuit is the maximum time taken by

the last possible transition at a primary output of the cir-
cuit. We consider the rising delay (delay of a 0 to 1 tran-
sition) and falling delay separately. The rising delay is
considered first. The falling delay is analyzed by consid-
ering the rising delay of the complemented circuit.

In Section V, we saw that the rising delay is determined
by the time taken for the first cube to settle to a 1. This
simple observation leads us to the necessary conditions
for a path to be true.

Let a be a path that we wish to check to be true or false.
For ‘K to be true, there must be some cube q containing
the tagged literal I, that evaluates to 1 for some vector v .
If this were not true then it would not be possible to trans-
mit a 1 along ‘K. This is formally stated in the following
theorem.

Theorem 6.2: Let C be a combinational circuit with
ENF expression E. If a is true for the rising transition
then there exists a vector v and there exists a cube q such
that 1, E q and l,(v) = q(v) = C(u) = 1.

Proof: Suppose there does not exist a cube q in E
such that I, E q and Z,(v) = q(v) = C(v) = 1 .

Then, for each v and cube q, s.t. l,(v) = 1 and I , E q,
we have q(v) = 0. Since we are considering the output
rising to a 1, we need concern ourselves with only C(v)
= 1. Since, q(v) = 0, C(v) = 1 due to cubes, qi, (qi(v)
= l), that do not contain 1,. Thus, 1, is not true for the

If v satisfies the condition in this theorem for path a
then v is said to statically co-sensitize a to a 1. Topo-
logically static co-sensitization is explained as follows.

Let a = (vo, eo, * * * , v,, e,,, v n + * } be a path. An
input vector v statically co-sensitizes to a l(0) path ‘K in
C iff the value of U, + is l(0) and for each vi , 0 5 i I
n + 1, if vi has a controlled value then the edge ei -
presents a controlling value. In comparison, the more
common condition of static sensitization requires that
ei - present the only controlling value.

Thus we see that static co-sensitization is a necessary
condition for a path to be true. Note that static co-sensi-
tization is a purely logical condition and does not depend
on the delay values of the various circuit components.

In [12]
a condition termed viability is presented as being suffi-
cient for a path to be true. We now proceed to relate static
co-sensitization to the relevant problem of viability of
paths in a circuit. Consider a path a passing through a
gate g in the network. Let eg be the edge along ‘K that is
an input to g. The inputs of g other than eg are termed the
side inputs of g for a. In analyzing the viability of a path
a on a vector v the side-inputs are divided into two groups:

1) The side-inputs that settle to their final value before
eg does. These are referred to as the early side-in-
puts.

rising delay of C. W

6.1. I . Static Co-Sensitization and Viability

2) The side-inputs that settle to the final values no ear-
lier than eg. These are referred to as the late side-
inputs.

For a path to be viable the following conditions must
be true:

All side-inputs that arrive early must present a non-
controlling value at g.
The values on the late side-inputs do not matter. The
time taken for the side-inputs to settle to their final
values is determined recursively by this definition.

It is now shown that viability does not imply static co-
sensitization, so a path may be classified as being viable
even though it may not be statically co-sensitizable and
hence false.3 When timing analysis is used in performance
optimization to identify paths that must be speeded up,
this incorrect analysis may result in resources being
wasted to speed up this path. In particular in Fig. 5 we
give an example of a path that is determined, using the
given delays in the figure, to be viable, but which is not
statically co-sensitizable. In the figure, integers assigned
to each gate represent the delay of the gate. The path in
consideration is the one shown in bold from the non-in-
verted input of the AND gate to the primary output.

This path is viable for a = 1. The side-input to the AND
gate is late, and the side-input to the OR gate is non-con-
trolling. However, this path is not statically co-sensitiz-
able. This can be verified by using h e r the ENF or by
the topological conditions for static co-sensitization.

First consider the ENF, E. E = al& + q. The tags 1,
2, 3 on the literals a indicate the three paths in the circuit.
Since there is no cube q E E, al E q, for which al(u) = 1
= q(v) = E(v), the path corresponding to a1 is not stati-
cally co-sensitizable to a 1. Consider the complemented
- ENF, E = q a 3 + ~2a3. Again, there is no - cube q E E,
al E q, for which & (v) = 1 = q(v) = E(v), the path
corresponding to al is not statically co-sensitizable to a 0.

Let us now examine what it means for a path not to be
statically co-sensitize in terms of the topology of the cir-
cuit. For a = 1 , the side input at the AND gate presents a
controlling value, while the value along the path is non-
controlling. Similarly, for a = 0, the side input at the OR
gate is controlling while the value along the path is non-
controlling. Thus, in either case the path is not statically
co-sensitizable.

It should be noted that while viability may incorrectly
identify some paths as being true the final delay value re-
turned by it is correct.

6.2. Necessary and Su#cient Conditions
Static co-senitization just ensures that there is some

vector v and some cube q containing 1, such that q eval-
uates for 1 to U. However, this is not enough. Not only

3The fact that a path may be classified as being true even when it is false
has been previously demonstrated by Chen and Du [SI. The purpose of this
section is to show that the specific condition that viability does not consider
is nothing but static co-sensitization.

1918 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 12, DECEMBER 1993

While Theorem 6.2 states the necessary conditions for
n to be true, any v satisfying those conditions actually
sensitizes a and thus these conditions are sufficient too.
Thus, Theorem 6.2 can be strengthened to an if and only
if form.

Theorem 6.3: Let C be a circuit with ENF E and let a
a

only if there exists a vector v such that

apz&
Fig. 5. A circuit with a path that is viable but not statistically co-sensitiz-

able.

must q evaluate to a 1 but it must be the first cube to
evaluate to 1. If this were not so, i.e., some other cube
evaluates to a 1 faster than q for each U satisfying Theo-
rem 6.1 then by the time q evaluates to 1 the output has
already settled to its final value and 9 cannot affect the

be a path in c* a is true for the rising transistion if any

1) There exists a cube q E E that contains I, such that

2) There does not exist any cube r E E such that r(u)

3) And finally Vn, E q # I , , Iength(u) I length (n).

q(v) = 1, C(u) = 1 and

= 1 and vm, E r , length (p) < length(a),

transition. In addition, for Z, to affect-the transition in q
it must be the last literal in q to evaluate to a 1. This is
formally stated in the following theorem.

be a path in C. If there exists a vector U such that

proof The necessity of these conditions has been
demonstrated by Theorem 6.2. We just need to show their
sufficiency here.

Let v be a vector that satisfies the conditions stated in
the theorem. Then by Condition 2, no cube that does not

6.2' Let be a circuit with ENF E and let

1) There exists a cube q E E that contains 1, such that

2) There does not exist any cube r E E such that r (v)

contain I, will settle io a 1 before q. Further, by Condition
3, q will settle to a 1 only when I , settles to a 1, since all
other literals in q settle to a 1 no later than I,. Thus, for
U , I , is the last literal to settle to a 1 in the first cube that

q(v) = 1, C(v) = 1 and

= 1 and Vmp E r, length@) < length(n),
3) And finally Vn, E q # I , , length (U) I Iength(a) settles to a 1. Alternatively, v sensitizes n.

then a is true for the rising transition.
Proof: Condition 1 has already been shown to be

necessary by Theorem 6.1. Thus, we just need to show
that Conditions 2 and 3 listed above are necessary.

Suppose Condition 2 is not satisfied, i.e., for each v
such that q(v) = 1, I , E q(v), there is some cube r such
that r(v) = 1 and Vm, E r , length(p) < length(a). Then
for each literal in r, the corresponding path is shorter than
n. For input U , r and thus C, will rise to a 1 before n can
propagate the 1 to the output. Thus, Condition 2 is nec-
essary.

Suppose Condition 3 is not satisfied, i.e., for each v
such that q(v) = 1, I , E q , there is some tagged literal n,
E q (for each q) such that length(u) > length(a). Then
this cube will settle to a 1 only when nu settles to a 1,
which will be after I , settles to a 1. Thus, I , will never be
responsible for getting the 1 to the output of the circuit
and hence is false for the rising delay. Thus Condition 3

The topological interpretation of this theorem is as fol-
lows. Let g be a gate along a and let v the vector satis-
fying the conditions of Theorem 6.2 be applied to the pri-
mary inputs. If a has a controlling value then it must be
the first of all the controlling values arriving at g. If ?r has
a non-controlling value not only must all the other side
inputs have non-controlling values on them (imposed by
static co-sensitization), the non-controlling value along n
must be the last to arrive at g . The topological interpre-
tation has been used previously as the starting point for
the delay computation algorithm presented in [SI. How-
ever, as we will see in the next section, analysis of the
ENF enables us to strengthen this observation by extend-
ing this result to entire sets of paths.

is necessary. H

6.3. Handling Sets of Paths
The analysis presented in the previous section can be

easily extended to sets of paths. In particular, consider the
set of paths 11 = {al, n2, * * - , n,> that contain all paths
of length at least 6. We wish to determine the necessary
and sufficient conditions for there being at least one true
path in this set. The results of the previous section can be
extended to the following.

meorem 6.4: Let C be a circuit with ENF and let I1 =
{TI, n2, * - , n,} be the set of all paths of length at least
6. At least one ai E I1 is true for the rising transition if
and only if there exists a vector v, such that C(v) = 1 and
for all q for which q(v) = 1, there exists some lTi satis-
fying lTi E q , ai E 11.

Proofi
Necessity: Suppose that the condition in the theo-

rem statement is not true, i.e., for each vector v such that
C(v) = 1, there exists some cube q such that q(v) = 1
and q does not contain any tagged literal from 11. Then
for each tagged literal mp E q , length(p) < 6 or else p
would have been in 11. Thus, q rises to a 1 before time 6
and hence no path in I1 is true.

Suficiency: Suppose that the condition in the
theorem statement is true, i.e., there exists a vector v,
such that C(v) = 1 and for all q for which q(v) = 1, there
exists some Z,, satisfying lT j E q , ai E 11. Among all cubes
qj for which qj(v) = 1 let q be the one that is the first to
settle to a 1. Let lTi be the tagged literal satisfying the
condition in the theorem statement, i.e., lTi E q, ai E II.
Let Z,, be the longest tagged literal in q , i.e., length(nj)
2 length(u), nu E q, I , # nu. Now aj is true for the rising
delay since on v, E , is the last literal to settle to a one in

DEVADAS et al.: FLOATING MODE DELAY: THEORY AND ALGORITHMS 1919

the first cube that settles to a 1. Since lengrh(nj) 1

In other words, for some input vector v , all the cubes
that evaluate to 1 must belong to the path cube complexes
of the paths in 11. (The path cube complex of I, is the set
of all cubes containing the literal IT.) This is equivalent
to saying that v is a relatively essential vertex of the path
cube complexes of the paths in 11, i.e., it is covered by
no other cubes. This immediately leads to the following
equivalent result expressed in terms of stuck-at-faults on
the tagged literals (1 ,).

Theorem 6.5: Let C be a circuit with ENF E and let I1
= (T I , ‘R2, - * , 7rJ be the set of all paths of length at
least 6. At least one ni E I1 is true for the rising transition
if and only if there is a test for the multifault (Z r 1 stuck-
at-0).

be the ENF obtained from E by setting
I,, to 0, for all 7ri E 11, i.e., effecting the multifault (Z,,
stuck-at-0). Thus, has no cubes containing any lTI. A
test for this multifault is a vector w such that E(w) #
&w). Note that since has been obtained by strictly de-
leting cubes from E; for any test w, E(w) = l and 8(w)
= 0.

Necessity: Suppose no test exists for the multi-
fault. Then for each vector w such that E(w) = 1, &w)
= 1. Thus, w is covered by some cube not containing any
1,. For w, this cube rises to a 1 before time 6 and thus no
path in II is true for the rising delay.

Suficiency: Suppose w is a test for the multifault.
Then, E(w) = 1 and &w) = 0. Thus, w is covered by
some cube containing an I,, and by no cube that does not
contain an ZT,. By Theorem 6.4, at least one path in 11 is

rn
This theorem forms the basis for a delay analysis al-

length(ai), nj E II.

Proofi Let

true for the rising delay.

gorithm that is presented in the next section.

Primary
Inputs

X

.....................

stuck-81-0
\ y G x .

................
s1uck-al-o
X

Fig. 6. A multifault of s-a-0’s in a leaf-DAG.

TABLE I
TIMING ANALYSIS USING TIMED-TEST GENERATION

Delay Esitmate

Name Longest True CPU Time

adder16 x 21 25.0 12.0 96s
adder16 X 4 21.0 12.0 132s
mult8 x 8 44.0 44.0 6s
multl6 x 16 88.0 88.0 23s
C6288 94.0 94.0 18.9111
5xpl 11.0 9.0 3s
bw 29.0 25.0 10s

literals 1, is the multifault with the first edge of each 7ri

stuck-at-0. As shown in Fig. 6 the first edge refers to the
edge after any possible inverters at the primary inputs.
This fault may then be tested using classic testing strate-
gies. Using the classic D-calculus notation [13], the test
generation algorithm will try and find an input vector for
which the stuck-at-0 edges have either a 0 or a D on them
and a D is propagated 6 a primary output.

VII. ALGORITHMIC ASPECTS
The theoretical results derived in the previous section

are now used to develop an algorithm for delay analysis.
We show how the problem of delay analysis can be
mapped to one of stuck-at-fault testing (with a modifica-
tion). Thus, the large body of work done in stuck-at-fault
testing can be applied towards the delay analysis problem.

As before, we first examine the problem of determining
the rising delay of the circuit, the falling delay can be
determined by a simple change at the first step of the al-
gorithm. The delay of the circuit is then determined as the
maximum of the rising and the falling delay.

The algorithm works by answering one or more ques-
tions of the form: “Is the delay of the circuit 1 A?” where
6 is some positive number. 6 may be chosen by a binary
search among the possible values or by examining the dis-
tinct path lengths sorted in decreasing order.

We now consider the resolution of the above question
for the rising delay first. From Theorem 6.5 we note that
this question can be directly answered if we are given the
leaf-DAG for the circuit. Now the multifault on the tagged

7.1. Timed Test Generation
In general the leaf-DAG’S are not available and are not

easily constructed. Unfolding a circuit to generate the leaf-
DAG will often lead to an exponential blow-up since the
size of the leaf-DAG is proportional to the number of paths
in the circuit which is often exponentially relatedto the,
size of the circuit. Fortunately it is possible to determine
the test for the multifault by directly working on the orig-
inal circuit C by considering timing information during
test generation. We call this procedure timed test gen-
eration and the use of this procedure to compute a test
for a multifault is the major contribution of this section.
For ease of exposition we will demonstrate this on a mod-
ified circuit C’ obtained from the original circuit C as fol-
lows: C‘ is obtained from C by migrating all inverters in
C to the primary inputs. The inverter at the output of a
gate may be moved to the inputs by using DeMorgan’s
laws of complementation. Thus, all the inverters may be
moved to the primary inputs by starting at the primary
outputs and recursively applying this procedure to all gates

I I

1920 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 12, DECEMBER 1993

I Y

x-

Fig. 7. Pushing inverters to the primary inverters.

in the circuit. As shown in Fig. 7, a gate that is used in
both inverting and non-inverting phase may need to be
duplicated. Since each gate is duplicated no more than
once, C' is at most twice the size of C. Note that the
sensitization conditions on paths in C' are the same as
those for the corresponding paths in C by an argument
similar to that given for leaf-DAG'S. We would like to
reiterate that C' is being used only for purpose of expo-
sition and as will be shown later, timed test generation
may be done directly on C.

Our objective is to test the multifault directly on C'.
We accomplish this by restricting the fault propagation to
paths in I1 by considering timing information during the
fault propagation. Surprisingly very little timing infor-
mation is needed to do this. For each edge i in C' we just
need to determine the following quantity: max' (e j) , which
is the length of the longest path starting at the head of
edge i and ending at some sink of the circuit DAG, i.e.,
at some primary output.

max' (ei) is determined as follows. A dummy sink is
added with an edge to it from each primary output max'
(e ,) is determined by a depth-first search from edge i to
this sink. Thus this step is O(lVl + IEI).

To test the multifault in question each fanout edge, e, ,
of a primary input for which max' (e,) 2 6 may have a D
or a 0 on that edge. As in Fig. 6 the D is placed after any
inverters present at the inputs. For such e, we know that
there is a path starting at e, along which the D may prop-
agate to the output. The goal of test generation is to prop-
agate a D to the output of the circuit. For each D that we
are trying to propagate forward through the circuit there
is an associated value D - s which captures the timing
information associated with the error value. The seman-
tics of D * s will be described shortly, at this point it is
sufficient to note that for each D placed on the fanout
edges of the primary inputs, D - s = 0.

There is a difference in the testing of this multifault and
classical stuck-at-fault testing in terms of how a fault ef-
fect is propagated through a gate. We now examine this
difference.
7.1. I. Timed D Calculus: Evaluation of the output of

a gate, g, given its inputs, is done in a manner similar to
the standard D-calculus with two differences. The first is
that the evaluation for each fanout edge, ei, of g is done
separately. Thus, the different fanout edges may evaluate
to different values. The second isthat the timing infor-
mation of each error value E(D or D), i.e., E s is taken
into account while evaluating the value for ei.

The following cases describe the evaulation of the value

e j , given the values on the inputs to g for some input vec-
tor v.

1) There is a controlling value at the input of g: This
forces ej to the corresponding controlled value.

2) Each input of g has a non-controlling value on it: e,
takes on the non-controlled value.

3) Some set of inputs have an error value on them,
some (possibly none) have non-controlling values:
Note that both D and D cannot be present on the
kputs of g since we only propagate either D's or
D's at a time, but not both. Let Ek be the error Val-
ues of the inputs and d(g) be the delay of gate g.
Let s be as given by the following table:

E gate S

D OR min (Ek . s)
g AND max (Ek . s)

OR max (Ek . s)
D AND min (Eh . s)

a) I f s + d(g) + max' (e j) 2 6, then ei evaluates to
the error value E with E - s = s.

b) I f s + d(g) + max' (e j) < 6, ei evaluates to the
error free values, i.e., 1 for a D and 0 for a D.

The following results provide the reassurance that the
timing information included in the evaluation is sufficient
to ensure that the timed D calculus applied to C' is equiv-
alent to the standard D calculus applied to the leaf-DAG.

Lemma 7.1: Let ei be an edge in C' and e i , l , q 2 ,
, ej,k be edges corresponding to ei in the leaf-DAG.

For input vector v, the timed-D calculus results in an error
value, E, with time value E * s, on an edge ei in C' if and
only if the standard D calculus results in an error value
on each edge, e j , I in the leaf-DAG, for which E a s +
max' (e iJ 5 6.

Proofi The proof is by induction on the depth of the
edges. The depth of an edge is the maximum number of
gates along any path from this edge to a primary input. A
few comments on the notation used are in order. A single
subscript used with an edge (e.g., e j) indicates an edge in
C'. A double subscript (e.g., ei,J indicates an edge in the
leaf-DAG. The time associated with an error value on
edge e, is denoted by s(ej) .

Induction Basis: Consider an edge, ei, of depth 0.
e, is the fanout of a primary input. If ei has an error value
on it then E * s = 0. We know that ei has an error value
on it if and only if each edge, e j , r such that max' (ei ,[) 2
6 has an error value on it.

Induction Step: Assume the statement in the theo-
rem to be true for depth less than n. We need to prove it
for depth n. Let ej be an edge of depth n. ei is a fanout
gate of gi. Let ej and e,,, be fanins of g,.

We consider four separate cases depending on the gate
type and the error value.

Gate Type: AND; Error Value: D: Note that an er-

. . .

DEVADAS et al.: FLOATING MODE DELAY: THEORY AND ALGORITHMS 1921

ror value on ei in C' represents an error value on some
edges ei, 1, ei, 2, * * - , ei, I , and an error free value on edges
ei , l+l , ' ' , q P . In the leaf-DAG let e j , k be the edge
corresponding to ej in C', that connects through gi to f?j,k.

Ifpart: Let ej,k have a D on it. Then, some e j , k
must have a D on it and the other inputs do not have con-
trolling values. Then by the induction hypothesis there is
some edge ej with a D on it and time value s(ej) 2 6 -
max' (qk) . Thus, ei has a D on it with time value s(eJ
such that s(eJ 2 s(ej) + d(g,). Rewriting this we get
s(ei) 2 6 - max' (ej,k) + d(gi). Since max' (ej,k) - d(gi)
= max' (ei,& we get s(ei) + max' (ei,k) L 6.

Only Ifpart: Let ei have a D with s(ei) denoting
the time value of this D. Let ej be the input of gi such that
the D on it had the maximum time value among all the
D's at the inputs of gate gi. Let this time value be s(ej).
Then we know that s(ei) = s(eJ) + d(gi). Let ei,k be an
edge in the leaf DAG corresponding to ej such that s(ei)
+ max' (q k) 1 6. Rewriting this we get s(ej) + d(gJ +
max' (qk) L 6 or equivalently s(ej) + max' (ej,k) 2 6.
Thus, by the induction hypothesis there must be a D on
edge e,,k in the leaf-DAG. The other inputs to gate i in
the leaf-DAG cannot have controlling values on them
since the error free value for a D is 1 which is non-con-
trolling for an AND gate. Thus, with a D on e,,k and no
controlling values on any other inputs of the gate, a D is
propagated to q k in the leaf-DAG.

Gate Type: OR; ERROR VALUE: D:
Ifpart: Let ei,k have a D on it. Then, some ej,k

must have a D on it and the other inputs do not have con-
trolling values. Then by the induction hypothesis there is
some edge ej with a D on it and time value s(ej) 2 6 -
max' (ej,k). If there is any other input, e,, of gi in C' that
has a D on it then s(e,) 2 6 - max' (em,k) would have an
error free value of 1 on it which for an OR gate would be
controlling and then ei,k would not have a D on it. Since
max' (em,k) = max' we see that s(ei) L 6 - max'
(ej ,J + d(gJ which gives us s(eJ + max' (e i , J 2 6.

Only Ifpart: Let ei have a D with s(eJ denoting
the time value of this D. Let ej be the input of gi such that
the D on it had the minimum time value among all the D's
at the inputs of gate gi . Let this time value be s(ej). Then
we know that s(ei) = $(ej) + d(gi). Let ei,k be an edge in
the leaf DAG corresponding to ei such that s(ei) + max'
(q k) 1 6. Rewriting this we get s(ej) + d(gi) + max'
(q k) L 6 or equivalently s(ej) + max' (ej+) -1 6. Thus,
by the induction hypothesis there must be a D on edge ej, k
in the leaf-DAG. The other inputs to gate i in the leaf-
DAG cannot have controlling values on them since any
other input e, to gi in C' that had a D on it will also force
a D on em,k since s(ej) I s(e,). Thus, with a D on and
no controlling values on any other inputs of the gate, a D
is propagated to ei,k in the leaf-DAG.

Gate Type: AND; Error Value: E: Similar to gate
type or and error value D .

Gate Type: OR Error Value: B: Similar to gate
rn

Theorem 7.1: For an input vector U an error value
type or and error value D .

propagates to the primary output in C' under the timed-D
calculus if and only if it propagages the same error value
to the primary output in the leaf-DAG under the standard
D calculus.

Proof: The proof follows directly by applying
Lemma 7.1 to the fanout edge of the primary output. Let
ei be the fanout edge of the primary output in C'. Then if
there is an error value on ei, s(eJ L 6. This ensures that
the fanout edge of the primary output in the leaf-DAG has
an error value on it. Conversely, let there be an error value
on the primary output in the leaf-DAG. Then by Lemma
7.1 there must be an error value on ei with s(ei) 2 6. rn

7.2. Test Pattern Generation
The previous section described the simulation seman-

tics of timed test generation, i.e., it specified how the out-
puts of a gate are determined given the inputs. If we look
at the historical evolution of traditional test pattern
generation for stuck-at-faults, we observe that first the
simulation semantics we described of the D-calculus was
developed, then this was used to search the space of input
vectors to find a vector that would generate an error value
in the circuit and propagate it to a primary output of the
circuit. Exactly the same paradigm is followed here for
timed test generation. No details are provided here. These
are reported in it companion paper [7].
7.2. I. Bounded Just$cation: It is interesting to note

that the timing information also helps in pruning the search
space during justification in the process of test pattern
generation. Analogous to max' (ei), we define max' (ei),
to be the length of the longest path from edge ei to a
source, i.e., a primary input of the circuit. Like max', the
computation for determining maxS is done in a single tra-
versal of the circuit graph. For an error value, E, to prop-
agate across a gate g, the other side-inputs to g must either
have non-controlling values on them, or the same e m f
value E. Let k vary over the inputs of g , and i vary over
the outputs of g. E will only be propagated to the output
of g if mink (E - s) + d(g) + maxi (max' (ei)) 1 6 or
equivalently mink (E - s) L 6 - maxi (max' (ei)) - d(g).
This puts a lower bound on the time value, E * s , of any
E on the input of the gate. Let t!k be an input edge of gate
g. If max' (ek) < 6 - (maxi (rnax' (ei))) - d(g), then an
appropriate error value can never be obtained at input edge
ek. If this is not the case then it might be possible to prop-
agate the error from some first edge to f?k. However, we
still need to justify E on edge ek. To prune the backwatd
search for E during justification, the lower bound on the
timing value of E is stored along with E as E b. Thus,
for ek, E b = 6 - (maxi (max' (ei))) - d(g). Let gk be
the input gate of edge ek. Then, for an input edge ej of gk
to provide E on ek the following condition must be true:
E b - d(gk) I maxS (ej). Thus we see that these bounds
prune the search for error values during justification.

It should be noted that the exact procedure used for jus-
tification is different for different testing algorithms. For
example, in PODEM [9] justification is only done for fault

I

1922 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 12, DECEMBER 1993

excitation. Since the multifault in question is at the pri-
mary input fanout edges, justification is trivial for that
case. For such an algorithm where justification of error
values is not used during fault propagation max' (ei) need
not be computed.

7.2.2. Avoiding Duplication of Gates: We now look
at timed test generation directly on C without needing to
generate C' . With each edge ei in C we need to store two
numbers instead of one. We store maxi (ei) and max: (ei)
which are the length of the longest path with an even and
an odd parity of inversions from the head of ei to a pri-
mary output respectively. If there is no path with a given
inversion of parties then the corresponding quantity is
- 00. Again the computation of these quantities is done
using a simple depth-first search. These quantities capture
both the path length information as well as the parity of
inversions seen along the paths. To start with, if we are
testing a multifault of s-a-0's on the first edges, we may
place D on tJe primary output fanout edge ei if maxi (ei)
1 6 and a D if max: (ei) I 6. Note that both a D and a
D may be placed on the same edge. Now the fault prop-
agation proceeds as discussed above with max'+ (e j) being
used for propagating a D and maxL (ei) for propagating a
0. Similarly max; (ei) is used for justifying a D and
max: (ei> for justifying 0.

7.2.3. Computing the Falling Delay: The falling de-
lay can be analyzed by considering the rising delay of the
circuit obtained by adding a zero-delay inverter at the pri-
mary output of the original circuit. In terms of the mul-
tifault this is equivalent to testing a multifault of s-a-l
faults on the first edges of the paths in I1 in the original
circuit. The circuit delay is the maximum of the rising and
falling delays.

7.3. Circuit and Delay Models: Practical
Considerations

We now address some practical concerns that arise in
the modeling of delays in the circuits. Thus far in this
paper we made the following simplifying assumptions: we
considered circuits of only simple gates and we restricted
the delays to one number per gate. We are now in a po-
sition to state that these restrictions are in fact not nec-
essary.

The delay computation algorithm presented in this sec-
tion was developed in two stages. First the simulation se-
mantics for the timed-D calculus was developed. These
semantics were a combination of timing simulation and
fault simulation semantics. The former determined the de-
lay of an error value as it progressed through the circuit,
the latter controlled the propagation of the error values.
Next the simulation semantics were used to search for an
input vector that would result in an appropriate error value
at the primary outputs. In order for the timed-D calculus
to directly handle gates and delay models of arbitrary
complexity, all we need to do is to define the timing and
fault simulation semantics of the gate. This is not a prob-

a b a 6 8 b

Fig. 8. An example with complex gates.

lem, since these are typically available with any library
gate.4

Not only do the library simulation models help solve
this problem, they are absolutely necessary to determine
the behavior of complex gates as is illustrated by the fol-
lowing example. Consider the circuit in Fig. 8. Here the
delay for the buffer after input x is 100 and all other gate
delays are 0. It is not possible to accurately determine the
delay of the circuit without knowing the behavior of the
multiplexor. Any arbitrary expansion of the multiplexor
in terms of simple gates is not sufficient. For example,
consider the two expansions of the multiplexor shown in
Fig. 9. a and b are the two data inputs and x is the control
input to the mux. In the former expansion, the rising delay
is dependent on the time at which x is ready, even when
a and b are equal. In the latter, when a and b are equal,
the rising delay does not depend on the time x is ready.
With the former expansion the rising delay of the circuit
in Fig. 8 is 100 while with the latter it is O!

7.4. Comparison with Previous Work
The techniques previously described in the literature for

delay analysis such as those presented in [12], [5] deter-
mine the condition for a path to be true. This reduces to
a satisfiability problem where a satisfying input assign-
ment needs to be determined that will make the condition
true. It may be argued that the timed test generation tech-
nique described here is also solving a satisfiability prob-
lem, so it is not clear if this is not a restatement of the
previously presented solutions.

This brings us to the fundamental difference between
timed test generation and the path based techniques. These
techniques operate on one path at a time, while timed test
generation works on all paths of length I 6 at the same
time. Working on a path at a time is a critical deficiency
for circuits such as multipliers which have a very large
number of long paths that need to be examined before one
of them can be ratified as being responsible for the delay.

Another point to be noted here is that no assumption is
made about the number of distinct path lengths in the cir-

4McGeer and Brayton [12] discuss the issue of complex gates in the con-
text of viability. However only a conservative handling of the situation,
using what they term as a symmetric macro-expansion, is provided. This
section demonstrates the need for and the sufficiency of a library simulation
model for a complex gate.

DEVADAS et al.: FLOATING MODE DELAY: THEORY AND ALGORITHMS

-
x a F b x a a b x b

~

(a) (b)
Fig. 9. Alternate expansions of the multiplexor.

cuit. All the paths of length greater than or equal to 6 are
implicitly considered, regardless of their number or indi-
vidual delays.

VIII. PRELIMINARY RESULTS
In this section we show the results from applying the

delay computation algorithm to some particularly trouble-
some examples. Results are summarized in Table I. The
examples adder16 X 2 and adder16 x 4 are 16-bit carry
bypass adders with 2 and 4 bits in the bypass chain, re-
spectively. The examples mult8 x 8 and multl6 x 16 are
carry-propagate parallel 8 X 8 and 16 x 16 multipliers,
respectively. C6288 is an optimized version of the 16 X
16 multiplier from the ISCAS-85 combinational logic
benchmark suite. The remaining two examples are ran-
dom logic benchmarks from the MCNC suite.

We are able to run these troublesome examples within
reasonable CPU times. The multiplier examples take over
20 hours of CPU time when run on a path by path basis.

The CPU times reported for our implementation were
on a SUN-4 320 workstation. More comprehensive ex-
perimental results are reported in [7].

IX. CONCLUDING REMARKS

Due to the ease of generating false paths in high-level
synthesis sytems [2] there is a growing need for correctly
identifying false paths to guide performance optimization,
in a computationally efficient manner. In this paper we
provided necessary and sufficient conditions for a path to
be true in the floating mode of operation. In particular
static co-sensitization has been introduced as a necessary
condition. Our results are then extended to determine the
truth or falsity of entire sets of paths simultaneously by

1923

expressing them in terms of the testability of a multifault
in an ENF expression. The second part of the paper is
devoted to applying this result directly to an unmodiJied
muZtiZeveZ circuit. Because the circuits that are most trou-
blesome for false-path-eliminating static timing analyzers
are those with literally millions of paths, and in particular
millions of longest paths, the ability to handle entire sets
of paths simultaneously results in a very efficient delay
computation procedure. This is demonstrated by the re-
sults from a preliminary implementation of the algorithm.
Based on these results we are confident that we can meet
the growing need for a computationally efficient correct
delay-computation procedure.

REFERENCES
D. B. Armstrong, “On finding a nearly minimal set of fault detection
tests for combination logic nets,” IEEE Trans. Comp., vol. EC-15
pp. 66-73, Feb. 1966.
R. Bergamaschi, “The effects of false paths in high-level synthesis,”
in Proc. Int. Conf on Computer-Aided Design, Nov. 1991.
D. Brand and V. Iyengar, “Timing analysis using functional analy-
sis,” IEEE Trans. Comp., vol. 37, Oct. 1988.
M. A. Breuer and A. D. Friedman, Diagnosis and Reliable Design
of Digital Systems.
H. C. Chen and D. H. Du, “Path sensitization in critical path prob-
lem,” in Proc. Tau 90: 1990 ACM Workshop on Timing Issues in the
Specijkation and Synthesis of Digital Systems, Aug. 1990.
J. J. Cherry, “PEARL: A CMOS timing analyzer,” in Proc. Design
Automation Conf., 1988.
S. Devadas, K. Keutzer, S. Malik, and A. Wang, “Computation of
floating mode delay in combinational circuits: practice and imple-
mentation,” IEEE Trans. Computer-Aided Design, to be published.
H. Fujiwara, Logic Testing and Design for Testability. Cambridge,
MA: MIT Press, 1985.
P. Goel, “An implict enumeration algorithm to generate tests for
combinational logic circuits,” IEEE Trans. Comput., vol. C-30, pp.
215-222, Mar. 1981.
R. B. Hitchcock, “Timing verification and the timing analysis pro-
gram,” in Proc. Design Automation Conf., 1982.
V. Hrapcenko, “Depth and delay in a network,” Soviet Math. Dokl.,
vol. 19, no. 4, 1978.
P. C. McGeer and R. K. Brayton. Integrating Functional and Tem-
poral Domains in Logic Design. New York: Kluwer Academic Pub-
lishers, 1991.
J. P. Roth, “Diagnosis of automata failures: A calculus and a
method,” IBMJ. Res. Devel., vol. 10, pp. 278-291, July 1966.

New York: Computer Science Press, 1976.

Srinivas Devadas (S’87-M’88) for a photograph and a biography, please
see page 598 of the May 1993 issue of this TRANSACTIONS.

Kurt Keutzer (S’83-M’84) for a photograph and a biography, please see
page 1231 of the August 1993 issue of this TRANSACTIONS.

Sharad Mdik for a photograph and a biography, please see page 578 of
the May 1993 issue of this TRANSACTIONS.

