
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 3, SEYEMBER 1994

~

333

Certified Timing Verification and the
Transition Delay of a Logic Circuit

Srinivas Devadas, Member, IEEE, Kurt Keutzer, Senior Member, IEEE
Sharad Ma& Member, IEEE, and Albert Wang, Member, IEEE

Abstruct- Most research in timing verification has implicitly
assumed a single vector Jloatins mode computation of delay
which is an approximation of the multivector transition delay.
In this paper we examine the transition delay of a circuit and
demonstrate that the transition delay of a circuit can differ from
the floating delay of a circuit. We then provide a procedure for
directly calculating the transition delay of a circuit. The most
practical benefit of this procedure is the fact that it not only
results in a delay calculation but outputs a vector sequence that
may be timing simulated to cemB static timing verification.

I. INTRODUCTION
HE LONGEST-PATH DELAY of a circuit is simply the T sum of the cumulative delays of a circuit along the longest

graphical path. This measure of delay is still used in most
static timing verifiers but has the deficiency that it does not
take into account false paths. To remedy this deficiency the
$outing delay of a circuit may be analyzed. The floating
delay of a circuit is the delay under a single-vector static
analysis condition that considers the Boolean behavior of the
circuit but makes conservative assumptions about the state
of the circuit before the single vector is applied. A number
of techniques have been proposed for computing the true
floating delay of circuit, but a significant step was taken in
[131 where a technique that provided correctness in the light of
monotone speed-ups was demonstrated. Further improvements
were made in [5], [7] where techniques that more precisely
identified the critical path were presented. The transition delay
of a circuit is the delay under a multivector dynamic-analysis
condition that makes no assumptions about the state of the
circuit before the vector sequence is applied. A circuit is
presented in this paper whose true floating delay is greater
than its transition delay; thus, the floating analysis condition
itself has some deficiencies.

Meeting delay requirements is the most important constraint
imposed on a circuit. For this reason verifying the timing of a
circuit before manufacture is one of the most important tasks

Manuscript received July 6, 1993; revised February 2, 1994 and March 16,
1994. This work was supported in part by the Defense Advanced Research
Projects Agency under Contract "14-91-5-1968 and in part by a NSF
Young Investigator Award with matching funds from Mitsubishi and IBM
Corporation.

S. Devadas is with the Department of EECS, Massachusetts Institute of
Technology, Cambridge, MA 02139 USA.

K. Keutzer and A. Wang are with Synopsys, Inc., Mountain View, CA
USA.

S. Malik is with the Department of Electronic Engineering, Princeton
University, Princeton, NJ 08540 USA.

IEEE Log Number 9403168.

of a computer-aided design system. Unfortunately to date there
has been no fully satisfactory approach to this problem. One
solution to this problem is to simulate the behavior of the
circuit using an accurate timing simulator. Simulators such as
SPICE [l] are able to very accurately model the temporal
behavior of a circuit. Accurate simulation has two significant
problems: It is computationaliy expensive and its utility is
limited by the vector set that is applied. The first problem can
be addressed by using less accurate but more computationally
efficient algorithms such as CRYSTAL [14]. Unfortunately, in
any simulation-based approach the final result is only as good
as the vector set that is applied. Simulation of all possible
input stimuli is never an option, and if there is one unsimulated
input stimulus that could cause the circuit to go slower, then
the simulation results may lead to the manufacture of a circuit
that will not run at the required speed.

An approach that avoids the problem of vector dependency
is to use static timing verifiers [lo], [14]. In this approach
the delay of a circuit is determined to be the longest path in
the circuit. This approach also has two significant problems:
First, the timing models used in static timing verification are
typically not as accurate as those in timing simulators such
as SPICE. Secondly, there may not be any input stimulus
that activates the longest path in the circuit as determined by
the static timing verifier. Such paths are called false paths
[2]. Thus static timing verifiers may be too pessimistic as
regards the delay of the circuit. A potential solution to this
problem is to eliminate from consideration those paths that
are not statically sensitizable; however, it has been shown [3],
[13] that paths which are not statically sensitizable may still
contribute to the delay of the circuit. Thus simply eliminating
these paths from consideration may result in too optimistic a
notion of the delay of the circuit, and ultimately in a circuit
that is slower than was required.

The obvious course of action is then to augment static tim-
ing analysis with techniques to eliminate from consideration
only the false paths. This natural step also introduces three
problems: The first problem is to accurately determine the
false paths. While the work of [3], [13] and others made
significant strides in this direction even the recent work of
[13] cannot be said to correctly identify the paths that were
responsible for the delay of the circuit.' It was not until the
work of [5], [7] that the floating delay of a circuit could be
accurately identified. The second problem is eliminating the

' Although it could accurately identify the delay of the circuit in the floating
delay model.

1063-8210/94$04.00 0 1994 IEEE

__ -- -~ ~- . .___ I

334 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 3, SEWEMBER 1994

false paths in a computationally efficient manner. The work
of [7], [9] makes this procedure feasible on a wide variety
of circuits, by considering sets of paths rather than individual
paths. The third problem is that even with the most complete
information, such as post-layout wire capacitances, there are
still many potential inaccuracies in the modeling of the timing
verifier and it is desirable to do a final timing simulation with
the most accurate timing models.

Thus, despite the advances in the area of timing verification,
any designer who relies heavily on the final performance of a
circuit is reduced to the time consuming and error-prone task
of identifying long paths and handwriting simulation vectors
that will stimulate the paths that are determined to be critical
by the timing verifier. In this paper we hope to provide a
comprehensive solution to the problem of timing verifica-
tion through certified timing verification which incorporates
transition delay computation. In this approach the vector pair
resulting from transition delay computation can be used in a
subsequent timing simulation using a timing simulator with
more accurate timing models, that take into account layout-
level parasitic resistances and capacitances.

Our system, called TrueD, takes as input a combinational
logic circuit and outputs an accurate floating delay of the cir-
cuit, as well an accurate transition delay with a corresponding
set of simulation vectors that will allow certification of the
results of static timing verification.

In Section 11, we give the basic definitions and terminology
used. We motivate the consideration of two-vector transition
delay in Section 111. In Section IV, we give a spectrum of
transition delay models, that are applicable in a variety of
design scenarios. In Section IV-B we point out the differences
between the floating delay and transition delay of a circuit.
We describe a technique for computing the transition delay in
Section V, and results using these techniques are presented in
Section VI. We describe the methodology of certified timing
verification in detail in Section VII.

11. DEFINITIONS AND NOTATION
In this section we introduce terminology that will allow us

to discuss timing issues as well for temporal behavior.
A path in a combinational circuit is an alternating sequence

of vertices and edges, {go, eo,. . . , g,, e,, g,+l}, where edge
ei, 0 5 i 5 n, connects the output of vertex g; to an input
of vertex gi+l. For 1 5 i 5 n, gi is a gate; go is a primary
input and gn+l is a primary output. Each e; is a net. With
each vertex g (edge e) we associate a delay d(g)(d(e)).

The length of a path P = {eo,go,el, . . . , e,,g,,e,+l}
is defined as D (P) = Cz"_od(g;) + CTzi d(e;). Ignoring
sensitization conditions, the delay of a circuit as given strictly
by the length of the longest path is called the topological or
graphical delay.

An event is a transition 0 -+ 1 or 1 -+ 0 at a gate.
Consider a sequence of events, {rO1 rl, . . . , T,} occurring at
gates {go, 91,. . . , gn} along a path, such that T; occurs as a
result of event ~ i - 1 . The event r0 is said to propagate along
the path.

A controlling value at a gate input is the value that
determines the value at the output of the gate independent of

the other inputs. For example, 0 is a controlling value for an
AND gate. A noncontrolling value at a gate input is the value
which is not a controlling value for the gate. For example, 1
is a noncontrolling value for an AND gate. We say a gate g
has a controlled value if one of its inputs has a controlling
value; otherwise, we say g has a noncontrolled value.

Let x = {go, eo,. . . ,g,, en,gn+l} be a path. The inputs
of g; other than e;-l are referred to as the side-inputs to x.
If there exists an input vector w such that all the side-inputs
along x settle to noncontrolling values on w then x is statically
sensitizable.

The critical path is the longest sensitizable path in the
circuit under the stated delay model. If a path is not sensitizable
under the stated delay model then it is a false path. The precise
definition of sensitization can vary depending on the mode of
operation assumed. For our purposes here, we can assume that
the sensitization of a path implies that an event propagates
along the path from a primary input to a primary output of
the circuit.

111. CIRCUIT HISTORY: How MUCH IS ENOUGH?
We are interested in determining the delay of a circuit for

a given delay model, but the real motivation is to determine
the frequency at which a circuit can be clocked. There are
a number of possible definitions of transition delay and each
definition has implications on the issue of clocking frequency.
A full consideration of these problems is beyond the scope
of this paper, but in this section we introduce our notion of
transition delay and show under what conditions it results in
a valid clock clocking frequency.

Consider the operation of a synchronous digital circuit being
clocked at period T. At every clock period, the outputs are
latched and a new set of inputs presented to the circuit.
Let us examine the operation of a circuit over the period of
application of a sequence of input vectors. Let W O be the vector
applied at the present clock cycle, w-1 be the vector applied
at the previous clock cycle and so on. In the floating mode
of operation, the nodes are not assumed to be ideal capacitors
and hence their state is unknown till it is set by the current
vector. Thus, the timing behavior for W O is independent of
all previous vectors. In the transition mode of operation, the
circuit nodes are assumed to be ideal capacitors and retain
their value set by the previous vectors till the current vector
forces the voltage to change. Thus the timing response for
W O is also a function of w-1 and possibly other previously
applied vectors. In analyzing the timing response of the circuit,
we would like to deal with as little history as possible while
making no compromises on the accuracy. In this direction we
first propose the following model of measuring the delay in
the transition mode and subsequently justify it.

Let us assume that when vectors W O is applied, all circuit
nodes have stabilized to their values under 21-1. In this case
the effect is the same as if w - ~ is given an arbitrary amount
of time to settle. This mode of operation will be referred to as
the single stepping transition mode and for the remainder of
this paper and whenever we refer to transition delay it will be
relative to this mode of operation. The input transition from
w-1 to WO will result in some transitions at the circuit nodes.

DEVADAS ef al.: CERTIHED TIMING VERIFICATION 335

Let S be the time taken for the last transition at any of the
output nodes for all possible vector changes U-1 to VO. Thus,
for all r > 6 no transition will ever be observed at any of the
outputs in the single stepping mode.

Let us now use this value of r to clock the synchronous
circuit. At time 0, when vo is applied it is possible that the
circuit nodes may not have stabilized to their values under
' u -~ . (Note that the fact that the outputs have stabilized does
not imply that all the circuit nodes have stabilized.) A simple
sufficiency condition for a transition delay 7- to be a valid clock
period is for the state of the circuit to be the same whether
1) vo is applied only an interval of r after v - ~ or 2) WO is
applied at an arbitrary interval (which is longer than w) after
11-1. This is expressed in the following theorem which was
originally stated in [8]. We provide a detailed proof here.

Let C be a combinational subcircuit of a
synchronous digital circuit. Let T be the transition delay of the
circuit derived using the single stepping mode of operation. Let
w be the length of the longest graphical path in C. If T > w / 2
then T is a valid clocking period for C.

Proojl Let 'U-1 be the vector applied at time -T and let
vo be the vector applied at time 0. Let e-1 refer to any event
in the circuit that occurs after time 0 and is caused by 'U-1,

i.e., any event that is caused by 'U-1 but is still propagating
at time 0 after 'UO is applied. Each event e-1 has traversed
at least a distance corresponding to delay T from the primary
inputs and has at most a distance corresponding to w - r to
traverse to reach the primary outputs.

Now let us assume that the application of 710 results in an
event at the circuit outputs after time r (making r an erroneous
clock period) and let eo be the last such event. If this is true
then eo must propagate along a path, 7r , of length at least T

in the circuit. For each gate along 7r, the side inputs do not
witness any event e-1 after eo has propagated along 7r. To see
why this must be true, note that after time 0, en propagates
for at least time r and e-1 can propagate for no more than
w - r , which is strictly less than r when r > w / 2 . Thus, as
far as eo is concerned, its propagation along 7r looks exactly
as the case for the single stepping mode. But, we know that
for the single stepping mode eo cannot occur after time r at
the outputs. Thus, eo cannot occur at the circuit outputs after
time r even when the circuit is no longer operating in single

U
When this condition is true, then for events propagating

along all paths of length at least T , each gate will have settled
to its value under 'U-1 by the time the event gets to that
gate, which is the same as it would be in the single stepping
mode. The restriction 7 > w / 2 is not very stringent. Based
on practical experience this property holds for most circuits.
This is significant since it enables us to consider only the two
vectors involved in the change at the inputs in the analysis of
the timing response of this transition.

Theorem 3.1:

stepping mode, but is being clocked with period 7.

IV. COMPONENT DELAY MODELS
All simulation techniques as well as timing analyzers make

some assumptions about the possible variations in the delay of
various circuit components. To avoid further confusion with
other uses of the term "delay model" we call these component

d =aT)-
Fig. 1. Floating and transition delays differ

delay models. We now examine some of the models used and
then specify the domain of this paper in terms of these.

The most common component delay model for a circuit
component is one in which the delay is assumed to be a fixed
number d. This is referred to as the fixed delay model. In
this model a delay of 2 units on a gate indicates that the gate
switches instantaneously to a logical 0 or 1 value but that
the communication of this event to the output of the gate is
delayed by 2 units. In reality this number is typically an upper
bound on the expected delay, so in fact the actual delay may
be any number bounded above by d. This potential speedup
is incorporated in the monotone speedup model [13], which
assumes that the delay for each component lies in the range
LO, d1.

The bounded delay model is more realistic about how much
each gate can in fact be sped up. It specifies the delay as a
range, [d, d"], given by the lower and upper bounds on the
actual delays. There is some ambiguity in the literature as to
what the bounded delay model means. It has been interpreted
as either the switching delay or as the propagation delay. With
the former interpretation, a gate delay of [2, 41 would imply
that the gate would take somewhere between 2 and 4 units to
make the transition between the two logical values. Ternary
algebras [15] have been used to accommodate the unknown
value of the gate output (which is neither a 0 or a 1) in
the interval of uncertainty. If the bounded delay relates to
the propagation delay then this implies that the gate switches
instantly, but it is uncertain as to the time in the [2, 41 interval
at which it will switch. Note that unlike the previous case,
the gate output is always a 0 or a 1 and ternary algebras
are not needed. In this paper, we use the propagation delay
interpretation since we feel it is more realistic with respect to
current technologies.

336 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 3, SEPTEMBER 1994

Fig. 2. Floating and transition delays differ+ven with monotone speedup.

To simplify the presentation of this paper we consider
only the fixed delay model and we restrict the delays in
circuits to gates. This is still general enough to accommodate
other delay quantities such as wire delays and pin-to-pin
delays by introducing buffers with appropriate delays in the
circuit. While more sophisticated delay parameters such as
slope delays and separate rise and fall delays are not directly
accommodated into the “delay lumped at a gate” paradigm, it
can be shown with little effort that the results in this paper hold
for even those models. Bounded delays are treated extensively
in [l l j .

A. Instantaneous Glitches
Suppose that in a circuit simulation a rising event and a

falling event arrive at precisely the same time at an AND
gate with delay “2”. In static timing verification, which aims
at a robust though possibly pessimistic model of delay, it
is commonly assumed that an “instantaneous glitch” event
immediately occurs which is then communicated at the output
of the AND gate after a delay of 2. In this paper our general
assumption will be that such instantaneous glitches will not
be able to overcome the inertial delay of a gate. This is more
realistic given existing technologies.

B. Differences in the Floating Delay and the Transition Delay
It is easy to show that the floating and transition delay modes

can give different results. In Fig. 1 we show a two-level circuit,
resulting from a prime and irredundant cover, for which the
transition delay (under fixed gate delays) is different from the
floating delay. The number inside a gate corresponds to the
delay of the gate.

Fig. 1 shows one of the ways that the transition delay of
a circuit, assuming no monotonic speed-ups and no instanta-
neous glitches, can differ from the floating delay of a circuit.
The floating delay of this circuit for a rising transition at the
output is 4. In this example, on each transition on g1 for 0 + 1
at least one of the other gates makes a 0 -+ 1 transition sooner.
For example, let us look at the vector pair (1100,0000). The
gate g2 glitches to a 1 during the time interval [2 , 31 then the
gate g3 glitches to a 1 during the time interval [3, 4j and as
a result by the time the gate g1 makes a 0 + 1 transition (at
time 4), the output OR gate is already a 1.

However, since the work of [131 it has been considered to
be necessary that speed-ups in the circuit should not result
in increasing the delay of the circuit. In Fig. 1, if the input
buffershnverters to gates g2 and g3 speed up then the 0 -+

1 -+ 0 glitches of g2 and g3 on (1100,0000) settle to 0 before

g1 makes its 0 -+ 1 transition. As a result the transition delay
of the circuit becomes equal to the floating delay.

Because of examples like this it has been conjectured that
for any combinational circuit there exists a monotone speed-
up such that the transition delay equals the floating delay;
however, in Fig. 2 we give a circuit in which the transition
delay, with or without monotone speedup, is less than the
floating delay.

The floating delay of the circuit in Fig. 2 is 5 , and the
associated floating delay vector is (a = 1). The transition delay
of the circuit under the single stepping mode of operation is
3. We could give a full analysis of the transition delay for
this circuit, but for our purpose here it suffices to give an
intuitive argument why the transition delay is strictly less than
the floating delay even with monotone speedup.

In single stepping mode, we apply an input vector when
all circuit nodes are stabilized to their final values, in this
case signal d and e to logic 1. Consider the case where the
next input vector generates a rising transition at the input:
It immediately forces signal d, which in turn forces e, to
remain at logic 1. If the next input vector generates a falling
transition, it immediately causes a rising transition at signal
c which forces e to remain at 1 also. Therefore, no transition
can be observed at the output in the single stepping mode of
operation. The above argument remains valid under arbitrary
monotone speedup of the circuit as will be demonstrated in
the discussion in Section IV-C.

Thus, transition delay analysis using the single stepping
mode returns a delay of 0. However, Theorem 3.1 only
guarantees the validity of a clock period greater than w / 2 = 3.
For example with a clock period of 4, less than the floating
delay of 5 , the output of the circuit stays a stable 1.

It is interesting to note that the path { a , d, e } of length 5
in Fig. 2 is statically sensitizable. While it has been known
for some time that static sensitization can be too optimistic
a condition to determine the delay of a circuit this example
demonstrates that it can also be too pessimistic.

Circuits such as those in Figs. 1 and 2 motivate a further
enquiry into the relationship between transition delay and
floating delay.

C. Sources of Difference Between Floating
and Transition Delay

In the floating delay mode the delay of a path T is computed
on a single vector WO. At a gate g, along T , that is controlled
by W O it is implicitly assumed that if W O results in a static
noncontrolling value at a side input e along T , then there
always exists a vector sequence ending in 710 that will result
in that noncontrolling value on e when an event propagates
along T due to T I O . In other words the vector sequence
causes the noncontrolling value to be available when an event
occurs along T , even if a speed-up is required to deliver that
noncontrolling value. It will be useful to understand precisely
why this assumption is not always valid, and why a violation
of this assumption can result in the transition delay of a circuit
being less than the floating delay.

It will be interesting to understand precisely why the tran-
sition delay of a circuit can differ from the floating delay. For

DEVADAS et al.: CERTIFIED TIMING VERIFICATION 337

.................................... i2

i 4 I i i
Fig. 3. A multilevel combinational circuit.

an event travelling down a path to be affected by the delay of
a gate the event must propagate through the gate. The floating
delay mode makes conservative assumptions about the initial
state of a circuit when a vector is applied. Let us assume
that a path 7r is determined to be responsible for the delay of
the circuit in the floating delay mode. Let WO be the vector
that sensitizes T to result in this delay in the floating delay
mode. Let g be a gate along 7r whose output is a controlled
value on 210 and let e be a side-input of 7r at g that has a
statically noncontrolling value on WO. In floating delay analysis
it is implicitly assumed that there exists a vector 21-1 that will
result in a noncontrolling value on e when an event propagates
along T due to v0; however, it may be the case that for any
vector 21-1, e may be slow to transition to a noncontrolling
value and thus the event along 7r is blocked at 9.

Fig. 2 demonstrates this point. The vector W O = (a = 1)
statically sensitizes the path { a , d , e } and thus results in a
delay of 5 in the floating delay mode. Consider the activity at
gate d on the input pair W-1 = (a = 0) and WO = (a = 1).
Gate b settles to a 0 on WO but only after the rising event
associated with input a has reached the input of gate d.
Thus the event on the path { a , d , e} gets stopped at d. If
the delay of gate b is reduced to 0, through a monotone
speed-up, then an instantaneous glitch (see Section IV-A)
occurs at the inputs to d, but such instantaneous glitches are
assumed not to change the output of a gate. (We have a more
complex example for which it is not possible to transmit even
instantaneous glitches.) Thus, the floating delay assumptions
are too conservative for this circuit.

V. SYMBOLIC SIMULATION UNDER FIXED GATE DELAYS

A. Introduction
Having motivated transition delay let us now consider its

computation. In order to compute the delay of a circuit under
the transition mode, a strategy of symbolically simulating all
possible input vector pairs, that can be applied to the circuit
inputs, can be adopted. The possible resulting waveforms at
each gate are encoded by a set of Boolean functions, one for
each discrete time point. Each Boolean function is defined
over the Boolean variables corresponding to the circuit inputs
for the first and second vectors. We will consider the details
of symbolic simulation for fixed gate delays in the following
sections. For a symbolic simulation method for bounded gate
delays, the reader is referred to [1 11.

In the fixed delay case, a single set of Boolean functions at
each gate in the circuit suffices to capture all the information

i l

e3 X

e4
I I I I I I I I Normalized
I O ' I ' 2 ' 3 ' 4' 5 ' 6 ' 7 ' 8' 9'10' -Tinre

Fig. 4.
gates.

Signal waveforms for the primary inputs and the outputsof the logic

regarding the transitions occurring at the gate. We will begin
with an illustrative example.

B. An Example
Consider the multilevel combinational circuit shown in

Fig. 3.
It has four primary inputs and one output and consists of

four CMOS gates. (The gate surrounded by the dotted line
is a complex gate having series-parallel connections only.)
The circuit has a total of four gates: g1,92,93, and 94, in
addition to the four primary input nodes. Fig. 4 shows the
signal transitions at the primary input nodes as well as the
possible transitions at the internal nodes of the network. The
time points are in normalized units. The first three inputs,
z l , i2 , and i3, switch simultaneously between time periods
0 and 1. The fourth input, i4, is a late arriving signal that
switches between the time points 5 and 6. In this example, the
delays of both gate g1 and gate 93 are one time unit. Gate 92
has a delay of two units while Gate 94 has a delay of four
units. i4 arrives five time units after the other three inputs.

Also shown in Fig. 4 are the waveforms, ei's, representing
the signals at the outputs of ith logic gates. Each of the possible
transitions ei,j represents either a low-to-high or high-to-low
signal transition between [jIth and [j + lIth time points. The
number of all possible transitions at a gate output is bounded
by the sum of all possible transitions at the gate inputs. These
transitions are delayed by the gate's propagation delay. If a
gate is driven by the primary input signals, then the transitions
at the gate output will be determined by the transitions of the
primary input signals. Referring to the example, gate 91 has
waveform el which contains only one possible transition, el,l,
between the time points 1 and 2 because the total number of
transitions at the input of gate g1 at different time points is one.
The earliest signal event will arrive at the gate output one time
unit after zl switches because the delay of gate g1 is one time
unit. Similarly, gate 94 has a total of four possible transitions
between the time points 5 and 10 because the number of
transitions at the inputs of gate 94 at distinct time points is

338 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 3, SEFEMBER 1994

b
Fig. 5 . An inverter-and circuit.

four. The earliest transition, originated from gate g3, arrives
at the gate output between the time points 5 and 6, since gate
g4 has a delay of four time units.

C. Unit-Delay Model
In this section, we describe how symbolic simulation can

be used to compute signal transitions in a circuit under the
unit-delay model. The unit-delay restriction will be relaxed in
Section V-E.

Under the unit-delay model, the circuit activity caused by
applying an input vector pair can be seen as occurring at
discrete points in time implied by the unit-delay model, and all
signals are stable between the time points. The central idea in
our formulation is to describe the stable values of a signal in a
particular time interval symbolically as a Boolean function of
input variables over two input vectors (i.e., each implicant of
f ; corresponds to an input vector pair which generates a 1 at
signal f in time interval i). Determining whether a particular
signal changes from interval i to i + 1 now reduces to checking
for logical equivalence of the functions in the two intervals.
As a by-product, the input assignment that causes the two
functions to differ gives us the input vector pair that generates
a transition at time point between intervals i and i + 1.

As a notational convention, we use subscripts to denote the
time interval a variable is associated with. A special subscript
“-” is used to denote input variables associated with the first
vector.2 The time at which the second vector is applied is a
common reference point 0. So, for an input variable a, all
ai with i < 0 map to a- and all a; with i >= 0 map to
ao. Furthermore, for every function f(g, h, . . .) we construct
a new function f i (Si-1, hi-1, . . .) for a chosen i .

For example, consider the network in Fig. 5. For this
network in the first time interval.

In the next time interval,

91 =G
fl = gobo = z b o = K b o

Finally for the last interval,

f 2 = glbl = aobo

For this example there are three possible transitions:
g changes state from time interval 0 to 1,
f changes state from time interval 0 to 1,
f changes state from time interval 1 to 2.

’Note that we assume the single stepping mode of operation.

The symbolic formulas for these transitions arc, respectively;

eg,l = go 63 g1 = Kao + a-%
ef,l = fo e f1 = ~ b - b o + ~ K b o
e f , 2 = f1

-

f2 = Kaobo + a-Gbo
Each implicant in ef,2 gives an input vector pair which
generates a transition of signal f at time 2 (between time
interval 1 and 2). For example, implicant Kaobo corresponds
to vector pair ~ (a , b) = (0, X) and ~ (a , b) = (1 , l) .

It should be pointed out that our formulation is more
powerful than a procedure that just determines transitions of a
signal at a particular time point. For example, finding an input
vector pair that generates transition of f at both time 1 and
2 amounts to finding an implicant of ef,lef,z (e.g., Kaob_bo).
Also, the inputs need not be clocked at the same time. For
example, if the second value of a is clocked at time t , all ai
with i < t map to a- and all ai with i 2 t map to at. This
can be done on a per input basis.

As an efficiency concern, it is not necessary to generate
function f ; for all time points. The following lemma gives a
simple bound on the time points needed for a signal in the
circuit.

Lemma 5.1 Let A and 6 be the longest and shortest graph-
ical delay to a signal f . The set f o , f 6 , f6+1, . . . , fa-1, f a , is
sufficient to determine all possible transitions in the circuit.

The above lemma follows directly from the unit delay
model. Signal f cannot change until the change in the nearest
input propagates through, and will stop changing when the
input furthest away finally arrives. All references to f i map to
fa if i > A and to f o if i < 6.

D. Symbolic Event Suppression
To compute the transition delay of a circuit, it may not

be necessary during symbolic simulation to store, or even
generate, all the Boolean functions corresponding to each gate
and each time point. Typically, one is interested in answering
the question: “Is the delay of the circuit 2 6”’ In this case,
we only require the f t ’ s where t 2 6 - 1 and f is the circuit
output. We XOR f6-1 with each such ft and check the XOR’ed
function for satisfiability to see if there is indeed a transition
at time S.

Techniques similar to the event suppression techniques
described in [8] for the efficient simulation of a vector pair
on a circuit can be used in the symbolic simulation procedure
as well. For example, given a gate g in the circuit, let wg
be the length of the longest path from the gate output to the
circuit output. We only need to compute the gt’s such that
t + wg 2 6 - 1. The reason for this is simple. If the gate g
makes a transition at time t o , then this transition can appear
at the circuit output no later than t o + wg. If t + wg < 6 - 1
then the transitions corresponding to the function gt fall before
the interval of interest at the circuit output and need not be
computed at gate g.

E. General Delay Model
A gate with a large fanin may have several times the delay

of an inverter. If one uses normalized time units, one can

DEVADAS er al.: CERTIFIED TIMING VERIFICATION 339

EX val 1. d. f. d. #check

C17 1 5 5 1

TABLE I
STATISTICS OF BENCHMARK EXAMPLES

EX I inputs I outputs I liter& I longest

planet

styr 14 15 1004 15
SCf 33 63 1223 12

CPU t. d.
secs

0.03 5
I 1 I

C432 I 1
c499 I 1 %
C1908

27

I I I C2670 I 0 I 25 I 24 I 2 I 232 I 24 1
I *

C3540 I 0
C5315 I 1

41 39 10 182
46 45 9 11

0.2

+I
122

11 I I 1 I styr I 1 I 15 I 15 1 1 I 0.1 I 15 I
L - 4

always introduce unit-delay buffers at the output of gates in
a circuit, which have a delay greater than unity, in order to
model differing delays among logic gates.

F. Bounded Delay Model
The symbolic simulation algorithm can be extended to the

case where the gate delays are variable and bounded within a
given range. The reader is referred to Section IV of [1 1 I for
details regarding the extended method.

G. Checking Sutisjubility
We maintain the various Boolean functions as multilevel

logic networks during the course of symbolic simulation. The
size of these networks is not much larger than the circuit
itself. Alternatively, we could have used reduced, ordered
Binary Decision Diagram (ROBDD) [4] representations for
these functions, and propagated ROBDD’s through the circuit.

Once we have the f s - 1 CB f~ function for the circuit output,
we can determine if the function is satisfiable by constructing
a reduced, ordered Binary Decision Diagram for the function,
or using the satisfiability checking procedure of Larrabee [12].
In the case of circuits like multipliers, constructing ROBDD’s
for the Boolean functions is infeasible, but our method of
maintaining the Boolean functions as multilevel networks, and
the use of Larrabees’ satisfiability checking algorithm succeeds
in computing the transition delay of the circuit (cf. Section VI).

computation results in the procurement of vector pairs that
each propagate a transition along a longest true path to the
output. The set of vector pairs can be used to perform timing
analysis under more sophisticated delay models, (e.g., using
s P I c E).

The techniques described in the previous sections have been
implemented in the program TrueD-T. The statistics of the
chosen benchmark circuits are shown in Table I. The first set
of examples correspond to combinational circuits from the
ISCAS combinational logic benchmark set. The second set
correspond to state encoded, optimized and mapped finite state
machine controllers from MCNC FSM benchmark set.

Results on applying the fixed delay simulation calculus to
compute the transition delay of a circuit are given in Table 11.
We were able to exactly compute the transition delay under
the fixed unit gate delay model for all the benchmark circuits,
using the symbolic simulation algorithm described in Section
V. In the table, val corresponds to the logical value the path
was sensitized to, 1.d. is the longest path delay, f.d. is the
floating mode delay, and t.d. is the transition delay.

Note that for the finite state machine examples the set of
input vectors in floating delay computation was restricted to
i@s, with s E S where S is the set of reachable states.
In transition delay computation, the set of input vector pairs
(i l @ s l , i 2 @ s 2) were applied such that s1 E S with sa being
determined by the next state logic and i l @ s l . The combi-
national logic benchmarks showed no difference between the
floating delay and the transition delay. In virtually all of the
combinational circuits, the longest floating mode sensitizable
path is statically sensitizable, implying that the path is also
sensitizable under fixed gate delays and the transition mode of
operation. Differences between floating and transition delay in

VI. EXPERIMENTAL RESULTS
In this section, we present preliminary experimental results

in determining the transition delay of a circuit. Transition delay

340 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 3, SEPTEMBER 1994

TRANSITI~
EXA

T
C880
1

C1355 I 1

C3540

C6288

0
h
N DELP

1. d.
dPLES P -

27
34
25
41
46

123

-
-
-
-
-

TABLE III
COMPUTATION ON B

I BOUNDED GATE D

25
20 I 1

45
122

VCCHMARK
.AYS

CPU I t. d. I fl
0.79 25
0.66 I 20 I

45
812 I 122 I

I C7552 I 1 I 38 I 37 I 9 1 20 I 371

styr
scf

the finite state machine controller examples were observed due
to the additional restriction on the applied input vector pairs.

The fixed delay model may not be realistic for use in
certified timing verification since there will always be some
statistical variation in the predicted gate delays. We next
experimented with the bounded gate delay model, where all
gates have upper bounds equal to unity, and lower bounds
equaling zero.3 We have been able to obtain vector pairs that
validate the floating delay for all the ISCAS-85 benchmark
circuits under the bounded gate delay model. The results are
shown in Table 111.

The CPU times in Tables I1 and I11 are on a SUN-4
workstation and correspond to the time required for floating
delay computation using the method of [9] plus transition delay
computation. The time required for transition delay calculation
is typically a small fraction of the time required for floating
delay computation.

We are currently experimenting with random-logic circuits
to see if logic optimization affects the transition delay of a
circuit.

VII. CERTIFIED TIME VERIFICATION
In Section IV-B we demonstrated that there can be a

difference in the floating delay and transition delay of a circuit.
In Section V we gave a procedure that actually computed
the transition delay of a circuit assuming fixed delays and
no monotonic speed-up. This procedure produces a vector
pair that sensitizes the critical path in the transition delay
mode. Finally, in Section VI we presented results on applying
the transition delay computation procedure to a number of
benchmark examples. As Table I1 indicates, on benchmark

The monotone speed-up condition.

circuits the transition delay typically does not differ from the
floating delay, but we claim that it is still useful to compute the
transition delay because of the utility of the resulting vector
set for certifying the delay of the circuit. In this section we
briefly outline a procedure for certifying the results of static
timing verification.

The transition delay procedure works on the question “Is
there a path with transition delay greater than or equal to 6”’
The first step is to identify the upper bound on the delay of
the circuit. As the transition delay of a circuit is bounded
above by the true floating delay [5] the natural value for 6
is the true floating delay. This can efficiently be computed
using techniques described in [7], [9]. The derived value of 6
is then passed to the symbolic simulation procedure described
in Section V, or for computation using bounded delays the
procedure described in [111 may be employed. The nominal
use of these transition delay computation procedures is to
retum a single vector sequence which sensitizes an event along
some path, perhaps only one, of length at least 6. Whichever
approach is applied let us call the resulting vector sequence V.

The circuit model, perhaps with speed-ups required by the
transition delay computation procedure, is then given to the
timing simulator of choice. The vector sequence V is then
applied. In general the results of the timing simulation should
not give delay values that are worse than the results of the
transition delay calculation. If this happens it means that
the delays used in the transition delay calculation were not
pessimistic enough; these should be modified and the delay
calculation re-run.

The most complex case is when the timing simulation of
V reports a delay y that is less than S. If there is sufficient
confidence in the coverage of the vector set then an aggressive
designer may opt to clock the circuit at y. Another approach
is to further investigate the range of possible clocking speeds
using statistical methods [l l] . The hope here is that the
statistical analysis procedures will give a quantitative notion
of what percentage of parts are likely to run at each speed in
the range between y and 6.

Using a combination of transition delay computation and
timing simulation in this way gives a greater predictability to
the post-manufacture delay of the circuit.

VIII. CONCLUSION
In this paper we demonstrated for the first time that the

transition delay of a circuit can difler from the floating delay
even in the presence of arbitrary monotonic speed-ups in
the circuit. This result is used to motivate the derivation
of a procedure which directly computes the transition delay
of a circuit. The output of the transition-delay computation
procedure is a vector sequence which excites an event along
the longest sensitizable path of the circuit under consideration.

While this theoretical framework for the analysis of transi-
tion delay is in itself useful for understanding the relationship
between static and dynamic delay analysis, we envision the
most practical application of these results in certzjied timing
verzjication. In such a scenario the upper bound on circuit
delay is first derived by means of a floating delay calculation.
The transition delay of the circuit is then derived using

DEVADAS et al.: CERTIFIED TIMING VERIFICATION 34 1

the transition delay calculator, and a vector sequence for
sensitizing the critical paths of the circuit is produced as a
by-product of this delay calculation. This vector sequence can
then be applied using a timing simulator equipped with more
accurate timing models. Such a procedure promises to give
the high accuracy of timing simulation with the computational
efficiency and the comprehensive path coverage of static
timing verification.

A. Work in Progress
A great deal of work remains to be done in order to

understand completely the relationship between transition and
floating delay. Even the definition of transition delay requires
further examination. The common single-stepping definition of
transition delay together with a simple sufficiency condition
for a valid clock frequency was presented in Section 111,
but a full consideration of the relationship between transition
delay and clocking frequency remains to be done. Encouraging
progress toward resolving this question with regard to floating
delay was presented in [6] . Correct computation of transition
delay seems to become enmeshed in many technology specific
issues, such as the instantaneous glitches discussed in Section
IV-A, and these issues also require further resolution. Further-
more, while a distinction between floating delay and transition
delay has been drawn in this paper we presently have no clear
idea of how fundamental this difference is. We have presented
circuits in which a difference occurs and we have derived a
number of circuit properties that give sufficiency conditions
under which the two delay modes give the same value but we
have not closed the gap with precise necessary and sufficient
conditions under which those two delay modes give the
same value. Finally, while we see the immediate practical
applications of this work in certified timing verification and
delay fault testing, we hope that resolution of the issues
discussed in this section will ultimately eliminate the need of
timing simulation for synchronous digital circuits altogether.

ACKNOWLEDGMENT
The authors acknowledge V. Agrawal for questioning the

accuracy of floating delay computation; this probing question
motivated us to pursue this work. Thanks also to R. McGeer
and R. Rudell, for interesting discussions on delay computa-
tion. Thanks to the reviewers for constructive comments and
to Reviewer 3 for suggesting the use of finite state machine
for transition delay computation.

REFERENCES

[I] P. Antognetti and G. Massobrio, Semiconductor Device Modeling with
SPICE.

[2] J. Benkoski, E. Meersch, L. Claesen, and H. De Man, “Efficient
algorithms for solving the false path problem in timing verification,”
in Proc. Int. Con$ on Computer-Aided Design, 1987.

[31 D. Brand and V. Iyengar, “Timing analysis using functional analysis,”
in IEEE Trans. Comput., vol. 37, Oct. 1988.

[41 R. Bryant, “Graph-based algorithms for Boolean function manipulation,”
in IEEE Trans. Comput., vol. C-35, pp. 677-691, Aug. 1986.

151 H.-C. Chen and D. Du, “Path sensitization in critical path problem,”
IEEE Trans. Computer-Aided Design, vol. 12, no. 2, pp. 196-207, Feb.
1993.

[61 S.-W. Cheng, H.-C. Chen, D. Du, and A. Lim, “The role of long
and short paths in circuit performance optimization,” in Proc. Design
Automation Con$, 1992.

New York: McGraw Hill, 1988.

S. Devadas, K. Keutzer, and S. Malik, “Computation on floating mode
delay in combinational logic circuits: Theory and algorithms,” IEEE
Trans. Computer-Aided Design, vol. 12, no. 12, pp. 1913-1923, Dec.
1993.
S. Devadas, K. Keutzer, S. Malik, and A. Wang, “Event suppression:
Improving the efficiency of timing simulation for synchronous digital
circuits,” IEEE Trans. Computer-Aided Design, vol. 13, no. 6, pp.
814822, June 1994.
-, “Computation of floating mode delay in logic circuits: practice
and implementation,” IEEE Trans. Computer-Aided Design, vol. 12, no.
12, pp. 1924-1936, Dec. 1993.
N. P. Jouppi, “TV: An nMOS timing analyzer,” inProceedings, Third
Caltech Conference on vlsi, R. Bryant, Ed. Rockville MD: Computer
Science, 1983, pp. 71-85.
H. Jyu, S. Malik, S. Devadas, and K. Keutzer, “Statistical timing analysis
of combinational logic circuits,” IEEE Trans. VLSI Syst., vol. 1, no. 2,
pp. 126-137, June 1993.
T. Larrabee, “Test pattern generation using Boolean satisfiability,” in
IEEE Trans. Computer-Aided Design, vol. 11, pp. 4-15, Jan. 1992.
P. C. McGeer and R. K. Brayton, Integrating Functional and Temporal
Domains in Logic Design.
John K. Osterhout, “Crystal: A timing analyzer for nmos v l s i
circuits,” in Proceedings, Third Caltech Conference on vls i, R. Bryant,
Ed.
C.-J. Seger and R. E. Bryant, “Modelling of circuit delays in symbolic
simulation,” in IFIP Int. Wkshp. on Applied Formal Methods for Correct
VLSI Design, Nov. 1989, pp. 625-639.

New York Kluwer Academic, 1991.

Rockville MD: Computer Science, 1983, pp. 57-69.

Srinivas Devadas (S’87-M’88) received the B. Tech degree in electrical
engineering from the Indian Institute of Technology, Madras in 1985 and
the M.S. and Ph.D. degrees, also in electrical engineering from the University
of California, Berkeley, in 1986 and 1988 respectively.

Since August 1988, he has been with the Massachusetts Institute of
Technology, Cambridge, and is currently an Associate Professor of Electrical
Engineering and Computer Science. He held the Analog Devices Career
Development Chair of Electrical Engineering from 1989 to 1991. His research
interests span all aspects of synthesis of VLSI circuits, with emphasis on
optimization techniques for synthesis at the logic, layout and architectural
levels, testing of VLSI circuits, formal verification, hardwardsoftware co-
design, design-for-testability methods and interactions between synthesis and
testability of VLSI systems..

Dr. Devadas is a member of ACM. He has received five Best Paper awards
at CAD conferences and journals, including the 1990 IEEE TRANSACTIONS ON
CAD Best Paper award. In 1992, he received a NSF Young Investigator Award.
He has served on the technical program committees of several conferences
and workshops including the Intemational Conference on Computer Design
and the International Conference on Computer-Aided Design

Kurt Keutzer (S’83-M’84-SM’94) received the B.S. degree in mathematics
from Maharishi International University in 1978 and the M.S. and Ph.D.
degrees in computer science from Indiana University in 1981 and 1984,
respectively.

In 1984 he joined AT&T Bell Laboratories where he worked to apply
various computer-science disciplines to practical problems in computer-aided
design. In 1991 he joined Synopsys, Inc. where he continues his work
as Director of Research. His research in technology mapping led to the
inclusion of a paper in the anthology “Twenty-five Years of Electronic Design
Automation”. He presently serves on the editorial boards of three journals:

AND SYSTEMS; FORMAL METHODS IN SYSTEM DESIGN; and INTEGRATION-THE
VLSI JOURNAL.

Dr. Keutzer currently serves on the technical program committees of DAC
and EuroDAC and has served on ‘numerous other technical program and
executive committees in recent years. His investigations into synthesis for
testability, asynchronous synthesis, and timing verification have led to DAC
Best Paper Awards in 1990 and 1991, as well as an ICCAD Distinguished
Paper citation in 1991 and an ICCD Best Paper Award in 1992.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS

342 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 3, SEPTEMBER 1994

Sharad Malik (S’88-M’90) received the B. Tech. degree in electrical engi-
neering from the Indian Institute of Technology, New Delhi in 1985 and the
M.S. and Ph.D. degrees in computer science from the University of California,
Berkeley in 1987 and 1990, respectively.

Currently he is an Assistant Professor with the Department of Electrical
Engineering, Princeton University, Princeton, NJ. His research interests are in
the synthesis and verification of digital systems.

Dr. Malik has received the President of India’s Gold Medal for academic
excellence (1985), the IBM Faculty Development Award (1991), an NSF Re-
search Initiation Award (1992), a Best Paper Award at the IEEE International
Conference on Computer Design (1992), the Princeton University Engineering
Council Excellence in Teaching Award (1993, 1994), the Walter C. Johnson
Prize for Teaching Excellence (1993), Rhinestein Award for Junior Faculty
(1994) and the NSF Young Investigator Award (1994).

Albert Wang (S’84-M’89) received the B.S. degree
in computer engineering and applied mathematics
from the University of California, San Diego in
1984 and the Ph.D. degree in computer science from
the University of Califomia, Berkeley in 1989.

He is a Staff Research Engineer at Synopsys
Inc., Mountain View, CA. His research interest
has been in the area of synthesis, optimization
and verification of synchronous and asynchronous
digital circuits for area, speed, and power. His cur-
rent interest involves all aspects of computer-aided

designs of embedded systems, with emphasis on retargetable compilation
technologies.

Dr. Wang received the Darlington Award from IEEE Circuits and Systems
Society in 1987. His thesis shared the Sakrison Memorial Prize for the best
dissertation in EECS at Berkeley in 1989.

