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ABSTRACT 
We propose a new statistical timing analysis algorithm, which 

produces arrival-time random variables for all internal signals and 
primary outputs for cell-based designs with all cell delays modeled 
as random variables. Our algorithm propagates probabilistic tim- 
ing events through the circuit and obtains final probabilistic events 
(distributions) at all nodes. The new algorithm is deterministic and 
flexible in controlling run time and accuracy. However, the algo- 
rithm has exponential time complexity for circuits with reconver- 
gent fanouts. In order to solve this problem, we further propose a 
fast approximate algorithm. Experiments show that this approxi- 
mate algorithm speeds up the statistical timing analysis by at least 
an order of magnitude and produces results with small errors when 
compared with Monte Carlo methods. 

1. INTRODUCTION 
Process variations, manufacturing defects and noise are major 

factors in determining the timing characteristics of deep sub-micron 
designs. Process variations often result in a wide range of possible 
device parameters, making circuit performance hard to estimate. 
Delay faults caused by interconnect defects and noise sources are 
also unpredictable in terms of size of induced delay. All these 
factors are statistical in nature and are best modeled using statis- 
tical models. Therefore, the use of statistical methods for timing 
analysis to incorporate statistical timing deviations caused by these 
sources seems to be inevitable. 

For statistical timing analysis, the delays of cells/interconnects 
are modeled as correlated random variables with known probability 
density functions (pdf 's). Given these cell/interconnect delays, the 
cell level netlist and the clock period, statistical timing analysis can 
derive the probability density functions of the signal arrival times at 
internal signals and primary outputs. For large designs with a large 
number of delay random variables, determining closed forms for 
the probability density functions of the arrival times at the primary 
outputs is computationally expensive and impractical. Therefore, 
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the popular Monte Carlo based technique is often used to approxi- 
mate the probability density functions of the signal arrival times at 
the internal signals and primary outputs. Each run of Monte Carlo 
simulation consists of two steps: sampling and analysis. In the 
sampling step, a single value is chosen from each random variable 
according to the law of probability. The analysis step utilizes these 
sampled values to derive the arrival times at all signals for the given 
circuit instance. The stop (convergence) criteria are decided based 
on the desired accuracy of results or the confidence level. Once 
the mean or variance converges within the desired precision range, 
the procedure terminates. The main drawback of the Monte Carlo 
based method is that a large number of runs is required to achieve 
a high confidence level. Also, a large number of these runs con- 
centrates on values near the nominal value. Statistical methods for 
timing analysis have been proposed in [l, 2, 31. However, due to 
their high computational complexity, these methods are rarely used 
in practice. A more practical Monte Carlo-based statistical timing 
analysis framework applicable to larger designs has been proposed 
in [4]. This paper also considers the effects of output capacitance 
loads and input transition times to improve the accuracy. 

In this paper, we propose a new, fast statistical timing analysis 
algorithm. The algorithm targets cell-based designs and all cell de- 
lays are modeled using random variables. The goal is to produce 
arrival-time random variables for all internal signals and primary 
outputs. The algorithm can be applied for vectorless static analysis 
as well as for dynamic simulation with given input vectors. The 
flow of the algorithm is similar to the compiled-code simulation, 
where each cell is evaluated after all the values at its fanins have 
become available. At the beginning, the simulation queue contains 
only the initial events at primary inputs. After that, the algorithm 
enters a loop in which cells are processed in a levelized order to pro- 
duce the arrival-time random variables at their outputs. The process 
continues until all the cells have been evaluated. 

The most important characteristic of the new algorithm is that it 
is deterministic. The final results produced by the algorithm can be 
determined completely by inputs, i.e., the same inputs will produce 
the same results, as opposed to the random process used by Monte 
Carlo methods. Another special feature of the algorithm is that it 
uses discrete delay random variables to model cell delays. There- 
fore, it is possible to control the behavior of the algorithm by con- 
trolling the discretization of pdf's of random variables. The smaller 
the number of samples of discrete random variables is, the less ac- 
curate the results are and the faster the algorithm runs. We will 
describe each of these features in detail in later sections. Apply- 
ing the algorithm to circuits with reconvergent fanouts could result 
in exponential time complexity. Therefore, we propose a fast ap- 
proximate algorithm for these circuits. Experiments show that this 
approximate algorithm speeds up the process by at least an order of 
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Figure 1: Probabilistic events. 

magnitude and produces results with small errors when compared 
with Monte Carlo methods. 

2. SIGNAL ARRIVAL TIME EVALUATION 
FOR A CELL USING PROBABILISTIC 
EVENTS 

The new algorithm takes a cell-level netlist and the pin-to-pin 
and wire cell delays (as random variables) as inputs and produces 
signal arrival times for every node and wire. The basic operation is 
processing of an individual cell. This requires evaluating the prob- 
abilistic events at the output of the cell given the events at the cell’s 
inputs. Starting from a description of the probabilistic events, the 
following sections will explain how to obtain signal arrival times at 
the output of a cell. 

2.1 Probabilistic events 
Aprobabilistic event, which is described by a triple (s,t,p), is a 

signal s scheduled with an arrival time t and the probability p that 
the signal will arrive at this time. Figure 1 illustrates the concept 
of the probabilistic events. Figure l(a) shows a single probabilistic 
event for a signal which is scheduled at time 1 and has a probability 
of 1, i.e., this is a deterministic event. A signal could have more 
than one event associated with it. All the events at the same signal 
together form an event group. Figure l(b) shows an event group 
with four events. The signal’s arrival time has 20% of probability 
to be 2, 30% probability to be 3, etc. The sum of the probabilities 
in an event group has to be 1. In the rest of the paper for simplicity, 
the events will be indicated by the numerators of their probability 
fractions (which are integers) rather than the real probability values 
(Figure l(c)). We denote such integers as probability ratios. 

In statistical timing analysis, the cell delays are random vari- 
ables. We apply the ”fixed time unit” concept to discretize the 
delay random variables which can tremendously reduce the com- 
plexity of statistical timing analysis. Based on a chosen time unit, 
all pdf’s of random variables are discretized and represented in dis- 
crete forms, in which any two adjacent delay data points are spaced 
by the chosen time unit. This discretization process is described in 
the next section. 

2.2 Discretization of delay random variables 

Assuming triangle-shaped distribution 

Figure 2: Discretization of random variable. 

The discretization of delay random variables is used to generate 
discrete probability distributions based on a time unit (also called 
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Figure 3: Propagating a single event. 

a sampling step). The sampling step is a user specified fixed time 
unit to be used for discretizing all random variables. The sampling 
step is also used as the time unit for the signal arrival time evalua- 
tions during simulation or timing analysis. Figure 2 illustrates the 
discretization process with a sampling step A for a random variable 
having a triangle-shaped distribution. A smaller sampling step will 
result in more data points in the discrete distribution. Therefore, 
the sampling step controls the resolution and the run time of the 
algorithm. 

2.3 Signal Arrival Time Evaluation for A Cell 
In this section, we describe the propagation process for the prob- 

abilistic events and the signal arrival time evaluation for a cell. We 
start by describing propagation of a single event. Then, we de- 
scribe the propagation of an event group and finally, propagation of 
multiple event groups. 
Propagating a single event. Propagation of probabilistic events 
through the circuit can best be illustrated by examples. Figure 3 
shows the case of propagating a single event through an AND gate. 
In this example, the event is a falling transition arriving at time 
t = 1 to the input of the gate. The discrete random variable of 
the delay for the AND gate is also shown above the gate in the 
figure. The final events at the output of the AND gate are obtained 
by shifting the cell delay by one time unit since the deterministic 
input event arrives at time t = 1. Since this is a deterministic event 
propagation (the probability is l), the four events in the event group 
at the output of the AND gate will have the same probability values 
as the corresponding events in the discrete distribution of the cell 
delay. 
Propagating an event group. Propagating an event group through 
a cell requires two operations: shift with scaling and group. Shift 
with scaling shifts the cell delay according to each input event and 
scales the cell delay probability distribution by multiplying it with 
the probability ratio assigned to this event. The shift with scaling 
operation is illustrated in Figure 4. It results in 16 events at the 
output of the AND gate. Group operation adds the probabilities of 
events at the same arrival time and forms a single event for each 
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Figure 4: Propagating one event group. 
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Figure 5: Propagating two groups. 

arrival time. We use ”+” sign to denote a group operation in the 
following discussion. After grouping the events at the output of the 
AND gate in Figure 4, the number of events in the event group is 
reduced from 16 to 7. Note that we can use these two propagation 
rules to propagate arrival time events through wires/interconnects 
whose delays are also given as random variables. 
Propagating multiple event groups. When two or more event 
groups appear at the inputs of a cell, we first generate the output 
events for each fanin signal using shift with scaling and group op- 
erations. Then, we combine the output events into a single event 
group at the output. To combine the output events from different 
inputs, we use either a minimum(min) or maximum(max) operation 
depending on the transition type (rising or falling) and the cell type. 
Figure 5 illustrates the process of combining the events at the out- 
put of an AND gate. In this case, we use the minimum operation 
since the output of the AND gate has a falling transition and the ear- 
liest event should dominate the result (the dominating events define 
the final transition of the signal at the output if there are multiple 
transition types at the inputs). The minimum operation compares all 
possible pairs of events at the output and produces the earliest arriv- 
ing events. The probability of the event at the output is the product 
of the two probabilities associated with the pair of events which are 
compared to form the final event. For example, the event arriving 
at time t = 1 in the lower group shown at the output of the AND 
gate in Figure 5 is compared with all the events in the upper group. 
Since this event dominates all other events (its arrival time is earlier 
than all events in the upper group), the final event at time t = 1 will 
have a probability ratio 16=1+2+3+4+3+2+1. Next, the two events 
arriving at time t = 2 are combined together with a probability ratio 
45=1~(3+4+3+2+1)+2~(2+3+4+3+2+1)+1~2.The 
term 1 x (3 + 4 + 3 + 2 + 1)  represents the probability ratio of the 
output when the event at time 2 in the upper group (with a probabil- 
ity ratio 1) dominates (i.e., its amval time is earlier than events at 
the lower input). The number in parenthesis (3 + 4 + 3 + 2 + 1)  re- 
flects the probability of this assumption being true (by counting the 
probabilities of the events in the lower group whose arrival times 
are later than 2). The term 2 x (2 + 3 + 4 + 3 + 2 + 1)  is obtained 
by assuming the event at time 2 in the lower group dominates. The 
last item 1 x 2 represents the output event obtained by assuming the 
events at both groups arrive at the same time (time 2). The process 
continues until all the events have been processed. The maximum 
operation in done in a similar way. 

3. STATISTICAL TIMING ANALYSIS AL- 
GORITHM 

The previously discussed evaluation process for a single cell can 
be extended to handle circuits of tree-like structure by levelized 
simulation, where each cell is evaluated after all its fanin cells have 
been evaluated. However, for circuits with reconvergent fanouts, 
events propagated from the same fanout stem will converge at the 

same cell. When converging, the events at different inputs of the 
cell are not independent. Therefore, they require a special handling 
during the combining process (different from the minimum or max- 
imum operation). In the following sections, we will give details of 
the signal reconvergency problem and the solution by circuit parti- 
tioning. 

3.1 Signal Reconvergency and Supergates 
If a circuit has reconvergent fanouts, then propagating the event 

group at the stem forwards to its fanout cone using a minimum or 
maximum operation at each cell would result in mixing unrelated 
events. To illustrate, consider the circuit in Figure 6. Consider 
gate SG1 with inputs a and b and assume there are two events (el 
and e2) at stem S1. Let e l  produce an event group E l ,  at a and 
event group Elb at b. Similarly, e2 produces E2, and E2b. The 
correct events at SG1 should be max(EL, ,Elb)  +max(E2,,E2b). 
However, simply propagating e1 + e2 would lead to an incorrect 
result, max(E1, + E2,,E1b +E2b). In the latter equation, E l ,  
should not be compared with E2b because they are produced by 
two events e l  and e2 which do not happen at the same time. 

To solve the problem, we propose a circuit partitioning algorithm 
with a sampling technique for events at fanout stems. We first sim- 
plify the problem by partitioning the circuit into a set of super- 
gates [5]. A supergate is a single-output sub-circuit with all inputs 
being independent from each other. Therefore, to obtain the arrival 
time for the output cell of a supergate, it is sufficient to solve the 
problem on the subcircuit defined by the supergate. In other words, 
to obtain the signal arrival times for a cell, we have to first detect 
if the current cell is a reconvergent gate (i.e., the output cell of a 
supergate) and then derive the arrival time for the supergate using 
the algorithm described in the next section. For the example circuit 
in Figure 6, there are two supergates, SG1 and SG2, in the circuit. 
SG1 is defined as the intersection of fanin cone of SG1 and fanout 
cones of S1 and S2. Inside the region defined by the supergate SGl,  
there are two other stems: S3 and S4. Therefore, four fanout stems 
S1, S2, S3 and S4 are contained inside the supergate SG1. Likewise, 
supergate SG2 contains three stems S2, S3 and S4. Please note that 
supergates could overlap with each other (e.g., SG1 overlaps with 
SG2). 

3.2 The Exact Algorithm 
To derive the events at the output of a supergate, several tech- 

niques are needed. Next, we illustrate these techniques using first a 
supergate with only one stem, two stems, and finally a general case 
of multiple stems. 
Sampling-evaluation process for a stem. For a supergate with 
only one stem, we process the events at the stem one-by-one. Each 
time we take only one event from the group of events at the stem 
(sampling) and propagate it forward to the output of the supergate. 
Next, since there is no reconvergent problem, events produced by 
this single event at fanins of the reconvergent gate are combined by 
applying a minimum or maximum operation. Finally, the probabil- 
ities of the combined event group are scaled with the probability 
of the sampled stem event. This sampling-evaluation process is re- 
peated for each event at the stem and the resulting event group is 
continuously accumulated by applying the group operation. When 
all events at the stem have been processed, the accumulated event 
group represents the signal arrival time of the supergate. 
Sampling-evaluation process for two stems. In this case, there 
are two possible configurations: (1)  no stem is in the fanout cone 
of the other stem (S1 and S2 in Figure 6 for SGl), and (2) one stem 
is in the fanout cone of the other stem (S2 and S3 in Figure 6 for 
SG1). 
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Figure 6: Multiple stems in supergates. 

For the first case, the sampling-evaluation process is similar to 
the single stem case. The only difference is that the process starts 
with a sampled event pair. The sampled event pair is formed by 
taking one event from each event group. For a complete sampling- 
evaluation process, all possible pairs of events at the two stems 
should be considered. For example, assume there are two initial 
events at S1 (elslle2s1) and also two events at S2 (els2,e2s2). 
Therefore, there are four possible pairs: (elsl, elsz), (elsl ,e2~2),  
(e2s1, els;?) and (e2s1, e2s2) and the sampling-evaluation process 
will be done for each pair. At the end of each process, the prob- 
abilities of the resulting event group are scaled with the probabil- 
ity of the sampled event pair, which is the product of probabilities 
of two sampled events. We use the term cross-product sampling- 
evaluation to name this process. 

For the second case, when one stem is in the fanout cone of the 
other stem (S3  is in the fanout cone of S2 in Figure 6), the sampling- 
evaluation process starts from the stem closer to the primary inputs 
(i.e., stem S2). First, one event at S2 is sampled, evaluated and 
propagated until S3 is reached. Then, the event group of S 3  is also 
sampled and propagated to the output of the supergate repeatedly 
until all events at S3 are processed. After the simulation of events 
at S3 is done, the remaining events at S2 are re-visited for another 
round of sampling-evaluation phase. This process continues until 
there is no event left un-processed at S2. Each time events reach 
SG1, the probabilities of these events are scaled with probabilities 
of the two sampled events of S2 and S3, and accumulated at tem- 
porary storage at SG1. At the end of the process, final results are 
obtained at SG1. This recursion-like process is named as recursive 
sampling-evaluation. 
Sampling-evaluation process for a general case. For a super- 
gate with more than two stems, the sampling-evaluation should be 
further generalized. The evaluation sequence is the combination of 
two processes: cross-product and recursive sampling-evaluations. 
All stems of a supergate are first levelized according to their evalu- 
ation dependency, i.e., we check if one stem is in the fanout cone of 
the other stem. Stems are put in the same level if they do not depend 
on each other in the sampling-evaluation process. A cross-product 
sampling-evaluation is applied to these stems with a sampled event 
tuple formed by taking one event from each event group. When- 
ever another level of stems are reached by a previous sampling- 
evaluation process, a new cross-product sampling-evaluation phase 
starts for the new level. The process continues until all possi- 
ble pairs of events are evaluated for the current level. Then, the 
sampling-evaluation returns to the previous level (recursive sampling- 
evaluation). For example, for the four stems S1, S2, S3 and S4 of 
supergate SG1 in Figure 6, two stems S1 and S2 are in the first level 
and the other two stems are in the next level. Assume there is a total 

of three initial events: one at S1 (elsl) and two at S2 (elszle2s2). 
Also assume that els2 produces two events, e l ~ 3 , ~ l ~ ~  and e 2 , ~ 3 , ~ ~ ~ ~ ,  
at S3 and similarly another two events, and at S4. 
The complete sequence of computations to obtain the event group 
representing the signal arrival times at SG1 is: 

1. cross-product sampling-evaluate for SI  and S2 with (ebl, els2) 
2. cross-product sampling-evaluate for S3 and S4 with 

3. cross-product sampling-evaluate for S3 and S4 with 

4. cross-product sampling-evaluate for S 3  and S4 with 

5 .  cross-product sampling-evaluate for S3 and S4 with 

6. repeat steps 1-5 with replacing elsz by e2s2 

As it can be seen, the time complexity increases rapidly with 
increasing number of stems. The estimated run time is proportional 
to O ( N 3 )  (Ne is the number of events and is the number of 
stems), which is apparently not feasible for practical applications. 
In order to reduce the time complexity, we propose an approximate 
algorithm in the next section. 

( e l ~ 3 , ~ l ~ ~ , e l s 4 , ~ l ~ ~ ) ;  accumulate the event group at SGl 

(el~3,~1,,  , e2s4,+.ls2); accumulate the event group at SGI 

( e 2 ~ 3 , ~ l ~ ~  ,el~4,~1,);  accumulate the event group at SGI 

( e 2 ~ 3 , ~ l ~ ~  , e 2 , ~ 4 , ~ 1 ~ ~ ) ;  accumulate the event group at SG1 

3.3 An Approximate Algorithm 
The approximate algorithm combines several techniques to jointly 

improve the run time. They are described in the following several 
paragraphs. 
Dropping low probability events. In the process of event propa- 
gation, it is possible to produce events with very low probabilities. 
These events will only produce events with even lower probabil- 
ities. Therefore, it is desirable to set a minimum probability to 
screen out these events as early as possible. The events with prob- 
abilities lower than the set minimum probability are dropped from 
the event group whenever they are propagated to the output of a 
cell. 
Filtering out unnecessary stems. Although some stems produce 
reconvergent events, the arrival times of the events caused by them 
are so early that they will never affect the arrival time at the out- 
put of the supergate. By some simple analysis, we can identify 
such stems and eliminate them from the sampling-evaluation pro- 
cess and thus speed up the algorithm. Our method for identifying 
such stems is through the use of the simple event group propagation 
(Section 2.3) for each stem while assuming there is no event group 
at other stems. In this way, the range of arrival times of events 
(generated by the stem under consideration) at the output of the su- 
pergate can be estimated with low computing resources. A stem 
is removed from consideration in the sampling-evaluation process 
if the estimated range of the arrival time at the supergate output 
caused by events on this stem does not overlap with the range of 
the arrival times at the supergate caused by the events from other 
stems. 
Choosing effective stems. Stems do not produce equally signif- 
icant reconvergent events. Therefore, we can find the more impor- 
tant stems using the results obtained by sampling-evaluating each 
stem. The method compares the results of the sampling-evaluation 
process for each stem with those without considering any stems. 
Thus we can estimate how sensitive the signal reconvergency is to 
an event group produced by a stem. We propose to choose one or 
two most sensitive stems for each supergate to estimate the final 
event group at the output of the supergate (single-stem or two-stem 
estimation). This single-stem or two-stem technique is the most 
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effective method to improve the efficiency of the algorithm with 
minimum loss of accuracy. 
Limiting the circuit depth of supergates. The size of a super- 
gate is an important factor in the run time of the algorithm. This is 
because there is generally fewer stems in a supergate with a smaller 
number of gates and it takes less time to apply sampling-evaluation 
for each stem. This observation motivates the concept of limiting 
the circuit depth of supergates, i.e., limiting the number of logic 
levels between stems and the output of the supergate when build- 
ing the supergate structure. In this way, the size of supergates can 
be reduced. However, if we limit the logic level of a supergate, 
the inputs of the limited-level supergate will no longer be indepen- 
dent. Thus, the results will no longer be accurate. However, the 
effects caused by signal correlations are weaker if the reconvergent 
gate is farther from the stem source (the distance is measured by 
the number of logic levels between the source and the reconvergent 
gate) [6]. Therefore, the error caused by this heuristic can be min- 
imized if the limit of supergate depth is not too small (say, larger 
than 10). In the next section, we will present results of experiments 
conducted in order to observe how accuracy changes by varying the 
depth of supergates. 0.2 

0.15 
0.1 

0.05 4. EXPERIMENTAL RESULTS 

0.174 
- Errors of arrival time means (%) 

6.128 0.129 
- 

0.0892 0.0908 3.0939 - 
- 

In the following, we demonstrate that by using the approximate 
techniques discussed above it is possible to speed up the arrival 
time estimation process by at least an order of magnitude and at 
the same time maintain small error percentages as compared with a 
Monte Carlo-based static timing analyzer. All experiments utilize 
the techniques for "filtering unnecessary stems" and "single-stem 
estimation". 

First, we demonstrate the effectiveness of the "dropping low prob- 
ability events" heuristic. Next, we show that by varying the number 
of data samples of each random variable, it is possible to select an 
optimal parameter for discretizing random variables to balance be- 
tween run time and accuracy. Similarly, it is also possible to find 
the optimal logic depth limit for constructing the supergates. Since 
all these techniques are orthogonal to each other, we can apply all 
of them for a fast statistical timing analysis. 

We use the combinational parts of ISCAS89 benchmark circuits 
for our experiments. These circuits were first optimized for per- 
formance by Synopsys Design Compiler [7]. The means of all cell 
delays are assumed to be a function of the number of inputs/outputs 
of the cells. The standard deviation (0) is in the range of (4%, 10%) 
of the mean (the value of 0 is fixed for each cell). 

In the following experiments, a Monte Carlo process for tradi- 
tional static timing analysis with 16 runs is used as a compari- 
son target. The number of runs, 16, is selected to balance the 
accuracy and the run time of the Monte Carlo method. The er- 
ror percentage of the sample mean obtained by Monte Carlo meth- 
ods is bounded by c * s / ( f i  * m) [8], where c is the solution of 
the equation, T ( c )  = (1 + y)/2 ( T ( c )  is the Student t distribution 
with a parameter c and y is the confidence level), .? is the sample 
variance, m is the sample mean and n is the number of samples 
(runs). Therefore, we can estimate the error percentage with 1 6  
runs as bounded by c * s/(& * m) = 3.0 * O . l O / m  = 0.095% 
with c = 3.0, y = 0.99 and s/m = 0.10. 

we need to select three parameters for the approximate techniques: 
the minimum probability of events (P,) for filtering, the number of 
data samples for discretizing cell delay random variables (&) and 
the depth limit of supergates (D). Note that only D is treated as 
a circuit-dependent parameter, while the other two parameters are 
kept the same for all circuits 

Before comparing the new algorithm with the Monte Carlo method, 

0.2 
0.15 
0.1 

0.05 

0.15 -Errors of arrival time means (%) 
o,0944 0.!06 O.&I4 O. 

- Errors of arrival time means (%) 

6.128 0.129 
- 

0.0892 0.0908 3.0939 - 
- 
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Figure 7: The error percentages and the run time V.S. the min- 
imum probability for ~15850. 
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143 200 
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The number of data samples of random variables 

Figure 8: The error percentages and the run time V.S. the num- 
ber of data samples of cell delay random variables for ~15850. 

Figure 7 shows the effects of dropping low probability events on 
the error percentages for arrival time mean and variance and run 
time for circuit ~15850,  which is chosen for demonstration because 
the size of the circuit is appropriate for experimenting various con- 
figurations and it actually has the worst performance among the 
tested benchmarks (Table 1). The error percentages are obtained 
by comparing the results of using different P, for filtering against 
the results obtained without dropping low probability events. As 
it can be seen, with the increasing P,, the errors for the mean and 
variance increase and the run time decreases. Using the plot in 
Figure 7, we choose P, = lop5 which gives reasonably low errors 
(0.114% for mean and 3.24% for variance) while it has a fast run 
time (174). Note that all error percentages used in this paper are 
[Me I + 3 * o,, where Me and oe2 are the mean and the variance of 
error percentages of signal arrival times of all signal nodes in the 
circuit. This error percentage bound can cover more than 99% of 
all cases by its 3 0  range. 

Figure 8 shows the effects of the number of data samples of ran- 
dom variables (Ns) on the error percentages for arrival time mean, 
variance and run time for circuit ~ 1 5 8 5 0  with P, = The com- 
parison target in this experiment is the Monte Carlo process. This 
plot demonstrates an interesting property of varying &: a bathtub 
shape of error graphs. A larger number of samples for discretizing 
cell delay random variables does not necessarily give lower errors. 
The reason is because with a fixed P, more events are filtered out 
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Ckt s5378 s9234 ~13207  ~ 1 5 8 5 0  
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Figure 9: The error percentages and the run time V.S. the depth 
of supergates for ~15850. 

due to the larger number of samples, where events have lower aver- 
age probabilities than those with a smaller number of samples. Us- 
ing this plot, we derive that Ns = 20 matches best with P, = lop5. 

The effects of the supergate depth limit on the error percentage, 
variance and run time are shown in Figure 9 with P, = and 
Ns = 20. The experiment shows that with a lower limit of logic 
level for supergates the run time will be lower, but the error will be 
larger. For ~15850,  D = 22 seems to be the best choice. The best 
values of D for different circuits depends on their circuit structure. 

Similar results and graphs are obtained for other benchmark cir- 
cuits. The results for several circuits are plotted in Figure 10 (the 
compared CPU time for the new algorithm include the time for the 
initialization, the circuit partition, and the heuristics.) The approx- 
imate algorithm has achieved more than one order of magnitude 
speedup over the Monte Carlo process with the errors of means 
bounded within 0.095% as compared with the results produced by 
the Monte Carlo process, except for the circuit ~38584.  The value 
0.095% is the error bound of Monte Carlo process. By tracing the 
sources of larger errors in ~38584,  we have found that the larger 
errors are actually caused by the "single-stem estimation" heuris- 
tic. To further increase the accuracy level, we propose to select a 
few supergates which require more elaborate methods than "single- 
stem estimation". To handle supergates with multiple stems, it is 
possible to use a special Monte Carlo process which can directly 
take samples from the probabilistic events. By applying the Monte 
Carlo method inside a supergate with the same number of runs for 
a complete circuit, we can have smaller errors for the supergate 
since there is a smaller s /m ratio inside a supergate. This leads to a 
somewhat hybrid approach that combines the new method with the 
Monte Carlo method. Please note that the new algorithm consumes 
about ten times the memory required by the Monte Carlo approach, 
since it has to store the probabilistic events for each signal. How- 
ever, these probabilistic events actually can be used to construct the 
waveform of the arrival time distribution, which is a more accurate 
description of the distribution than just with the mean and variance 
of the Monte Carlo approach. If the Monte Carlo approach is used 

Ng: average number of gates per supergate 
Ns: average number of fanout stems per supergate 
Table 1: The average number of gates and fanout stems of su- 
pergates 

0.149 
0.2 ~ r r o r s  of arrival time means 

s9234 ~13207 ~15850 ~35932 ~38584 

Benchmark circuits 

Figure 10: The speedup and the error percentages for bench- 
mark circuits. 

to collect the arrival time samples for each signal (for a complete 
waveform), the memory requirement will be in the same level as the 
new algorithm. And the unused probabilistic events can be deleted 
to save the resource when there is no further reference to them. 

There is another anomalous circuit (~15850) which has the low- 
est speedup factor. This circuit has very complex structures of su- 
pergates. Both the average numbers of gates and stems in a super- 
gate are the largest among all circuits (Table 1). These two num- 
bers indicate that the average time spent on handling each supergate 
within ~ 1 5 8 5 0  should be the highest among all circuits. 

5. CONCLUSIONS 
We propose a novel deterministic statistical timing analysis al- 

gorithm based on the concept of probabilistic event propagation. 
Experiments show that this algorithm is significantly faster than 
Monte Carlo methods and produces results with high accuracy. 
Therefore, it can be applied to larger circuits. The new method 
can also be used as a core engine in many applications for which 
it is important to consider statistical delay models such as: yield 
estimation and optimization, power/glitch estimation, performance 
sensitivity analysis and target selection for delay fault testing. 
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