
On Silicon-Based Speed Path Identification

Leonard Lee, Li-C. Wang
Department of ECE, UC-Santa Barbara

lylee, licwang@ece.ucsb.edu

Praveen Parvathala, T. M. Mak
Intel Corporation

praveen.k.parvathala, t.m.mak@intel.com

Abstract

Speed path identification is an indispensable step for
pushing the design timing wall and for developing the final
speed binning strategy in production test. For complex high-
performance designs, pre-silicon timing tools have so far
not been able to deliver satisfactory results in predicting the
actual speed limiting paths on the silicon. The actual speed
paths are mostly uncovered through test and silicon debug,
where tremendous manual effort is involved. This paper
presents a novel approach as the first step for automat-
ing the speed path identification process. Our approach is
silicon-based, meaning that timing information is extracted
through testing of silicon sample chips. We call this step
silicon learning. Based on silicon learning, we present an
iterative flow for speed path identification. Experimental
results are presented to explain the new methodologies and
to demonstrate the effectiveness of our techniques.

1. Introduction

Speed paths are those paths that limit the performance of
a chip. There are at least two purposes for finding the speed
paths. First, speed paths may be the places where potential
design fixes can be applied. By applying these fixes, we can
further improve the performance and push the design timing
wall. Second, speed paths may indicate places where po-
tential holes in the design methodologies exist. These paths
require further attention and study. Usually, additional tests
are produced for each path in order to exercise the worst de-
lays on the path. These tests can be used as part of the test
suite for speed binning in mass production.

Speed path identification (SPI) is a crucial step in the
post-silicon stage for speed-sensitive products. For com-
plex high-performance designs, it is commonly recognized
that the critical paths reported from the pre-silicon timing
analysis tools rarely correlate well to the actual speed paths
for two reasons: (1) Any pre-silicon analysis tool is only as
accurate as the model and the algorithms it uses. Obtain-
ing 100% accurate process models for nanometer processes
is difficult. Moreover, the analysis algorithms often try to
compute approximate results because of the complexity. (2)

In the pre-silicon phase, factors that affect circuit timing are
analyzed separately. While timing behavior on the silicon is
a result of all factors mingled together, in timing analysis, it
may not be possible to mingle the analysis of all these fac-
tors together because of its high complexity. Therefore, SPI
remains a crucial problem to be resolved in the post-silicon
stage. A silicon-based SPI methodology needs to resolve
two important issues:

• To identify the speed paths, we need an effective diag-
nosis framework.

• To ensure that the results are not biased by a pattern set,
we need a meaningful methodology to add patterns.

Suppose that from the first silicon, we obtain M sample
chips {c1, . . . ,cM}. An initial set of patterns are applied on
these chips and N patterns {P1, . . . ,PN} are identified to be
the speed-limiting patterns. For each pattern, logical diag-
nosis decides a set of paths that potentially affect the de-
lay of the pattern. Suppose that the union of these path
sets results in a total of L paths. In other words, the po-
tential speed paths after logical diagnosis of the N patterns
are {Path1, . . . ,PathL}. Essentially, the inputs to the SPI
problem are two matrices, R and S:

R =

∣∣∣∣∣∣∣∣

d11 d12 · · · d1M
d21 d22 · · · d2M
· · · · · · · · · · · ·
dN1 dN2 · · · dNM

∣∣∣∣∣∣∣∣
S =

∣∣∣∣∣∣∣∣

s11 s12 · · · s1L
s21 s22 · · · s2L
· · · · · · · · · · · ·
sN1 sN2 · · · sNL

∣∣∣∣∣∣∣∣

where di j is the delay observed on sample chip c j by
pattern Pi and si j indicates if path Path j can affect the delay
of pattern Pi, i.e. if si j = 1, then Path j can affect the delay of
pattern Pi; otherwise si j = 0 and it does not affect the delay
of the pattern. We note that given a pattern Pi, di1 != di2 !=
· · · != diM because of process variations. We call R the delay
matrix and S the sensitization matrix. Given R and S, the
SPI problem is to deduce the top k speed-limiting paths.

Logical diagnosis relies on logic simulation and utilizes
no timing information. One can imagine that logical di-
agnosis involves tracing back from the failure point(s) (a
scannable flipflop or a register) to extract the potential paths
that may contribute to the pattern delay. The effectiveness
of logical diagnosis is obviously crucial to the success of
SPI (to decide S); however, the diagnosis problem to be

Proceedings of the 23rd IEEE VLSI Test Symposium (VTS’05)
1093-0167/05 $ 20.00 IEEE

solved here is statistical in nature because di1 != di2 != · · · !=
diM for each pattern Pi.

The notion of statistical diagnosis was first proposed in
[1]. However, the methodology proposed in that work is not
applicable in the SPI application just described because it
relies on the assumption of an underlying fault (error) model
in order to restrict the search space.

The results of logic diagnosis (matrix S) depend on the
initial patterns applied to observe the silicon behavior. Even
with a good statistical diagnosis framework, the top k speed
paths resulting from one pattern set can be quite different
from another.

In this work, our objective is to propose new method-
ologies aiming to overcome the two challenges mentioned
above. For statistical diagnosis, what we need is a new ap-
proach that does not rely on an assumed fault model. We
call this type of statistical diagnosis silicon learning in or-
der to differentiate it from the statistical diagnosis problem
defined in [1]. For the issue related to the pattern set, we
need a silicon-based test flow where extracted silicon infor-
mation can be used to guide additional test generation.

1.1. The meaning of top k speed paths

Given M sample chips, the top k speed paths can be de-
fined in several ways. In this paper, we take an ”average”
point of view. We rank paths based on patterns’ average de-
lays across the M sample chips. Alternatively, one can rank
paths based on patterns’ maximum delays (or 3σ delays)
obtained from the sample chips.

By simplifying the delay matrix to their average values
(to a delay vector), one may wonder why statistical diag-
nosis is still required in SPI. For example, suppose that by
using a very good timing analysis tool, we can decide L po-
tential speed limiting paths Path1, . . . ,PathL. The problem
is that we do not know which k of them are the top k speed
paths, where k " L. Suppose that we can compose L pat-
terns P1, . . . ,PL such that Pi sensitizes only Pathi. By taking
the delay of Pi averaged over the M samples, we know the
average path delay for Pathi. Then, these average path de-
lays can be used to rank paths and decide the top k paths.

This simple methodology is not feasible due to two is-
sues (even though we have such a timing analysis tool):

• Given a path Pathi, there may not exist a pattern that
sensitizes only this path. It may be the case that sensi-
tizing Pathi always involves the sensitization of other
paths.

• The path delay of a path Pathi may be affected by
the sensitization of other paths. Therefore, we can-
not rely on single-path-sensitization patterns to decide
the speed-limiting paths. In other words, suppose that
pattern P1 sensitizes only path Path1 and P2 sensitizes
only path Path2. Suppose that another pattern P3 sen-
sitizes paths P1 and P2 together and does not sensi-

tize any other paths. It is not true that Delay(P3) ≤
max[Delay(P1),Delay(P2)]. It is possible that sensitiz-
ing P1 and P2 together may cause excessive delay due
to their interaction. Such an interaction can be caused
by Multiple Input Transition [2].

Because of these two issues, the SPI problem cannot be
solved by assuming that we are given a sensitization matrix
where one pattern sensitizes only one path. Moreover, we
cannot assume that the initial pattern set is sufficient to ex-
pose the worst scenarios of path delays. This means that
we need two methodologies: one to draw statistical infer-
ence about path delays from (average) pattern delays and
the other to allow additional patterns to be added.

The rest of the paper is organized as the following. In
Section 2 we propose silicon learning and the silicon-based
test flow as the two methodologies to overcome the issues
discussed. Section 3 and Section 4 describe the implemen-
tations of the silicon learning methodology and the test flow,
respectively. Section 5 presents initial experimental data.
Section 6 analyzes the experimental results in detail. Sec-
tion 7 concludes the paper and discusses future research.

2. Silicon learning and test flow

find the best hypothesis to minimize the error

a way to define

between the two
the difference

the error
difference

to be
minimized

a hypothesis
on model’s
parameters

simulated
behavior

silicon
observed

behavior

simulation
model

typical problem formulation
in post−silicon learning

Figure 1. Problem formulation - silicon learn-
ing.
Figure 1 presents the general problem formulation for

silicon learning. In silicon learning, the objective is to de-
rive values for the parameters of interest based on observed
silicon behavior. These parameters are associated with a de-
sign model, not with an error model. In silicon learning, we
need to define two important components: (1) model simu-
lation, and (2) error difference function.

Model simulation contains a special simulator to simu-
late the logic netlist of the circuit with an assignment of
parameter values. The simulated results are compared with
the observed results. This comparison is based on an er-
ror difference function. The error function determines the
”difference” between the simulated results and the observed
results. The formulation defines a minimization problem:
finding the best hypothesized parameter values in order to
minimize the difference.

Figure 2 shows the silicon learning of path delays. The
model parameters are based on a given set of paths, and the
parameter values are the path delays. The model simulation
takes the hypothesized path delays and estimates pattern de-
lays. The simulator can be implemented based on logic path

Proceedings of the 23rd IEEE VLSI Test Symposium (VTS’05)
1093-0167/05 $ 20.00 IEEE

search for the best hypothesis to minimize the error

estimated
pattern
delays

observed
pattern
delays

of path delays

from path delays
and path sensitization,

error
function

a hypothesis
estimate pattern delays difference

error
satisfy

path ranking

Figure 2. Apply silicon learning to derive path
ranking.

sensitization. With the hypothesized delays on the paths, we
can estimate a pattern delay based on those paths sensitized
by the pattern. The objective is then to find the best path
delay assignments in order to minimize the difference be-
tween estimated pattern delays and observed pattern delays.
The final answer is given as a path ranking based on the
final path delay values.

applyinitial
tests

sample
dies

post−silicon
path ranking

similar
ranking?

targeting
heuristics

additional

apply

tests TPG

no

yes
closure

Figure 3. SPI test flow using silicon learning.

Figure 3 shows how the results of this silicon learning
can be incorporated into a silicon-based test flow for SPI.
The SPI flow is iterative, where the silicon-learned path
rankings in two consecutive iterations are compared to de-
cide the stopping criteria.

One key component in this test flow is the targeting
heuristic that decides which paths should be targeted for
producing additional tests. The targeting heuristic is based
on the estimated path ranking. A simple heuristic can be to
target the top k paths in the current ranking.

The test flow provides two nice properties: (1) additional
TPG effort is guided through learned silicon information,
which in this case is represented as a path ranking. (2) The
flow has a clean way to reach closure, which is determined
by the change of path ranking between two consecutive iter-
ations. A closure point indicates that investing more effort
in silicon learning and/or TPG will not help more in SPI.

In this work, we assume that a TPG tool is available.
TPG in the functional domain remains to be an open prob-
lem. For speed binning, efforts have been made to replace
functional tests with structural tests [3]. Here, we do not
intend to debate whether functional tests or structural tests
should be used for speed binning. For the rest of the paper,
our goal is to develop the methods for realizing the path-
based silicon learning methodology and the proposed test
flow, and to devise experiments for studying their feasibility
and effectiveness. We note that the proposed silicon learn-
ing methodology and SPI test flow are independent of the
type of patterns in use.

In this work, silicon samples are produced by simulation

that is based on models for process variations. Because our
chip samples are simulated samples, we know what the top
speed paths are. Hence, the effectiveness of the method-
ologies in Figure 2 and Figure 3 can be quantified by com-
paring the ”silicon-extracted” speed paths to the true speed
paths from the simulation.

3. Implementing silicon learning

The path-based silicon learning in Figure 2 derives path
ranking. We call it a ranking optimization problem in [4]
and propose an iterative algorithm for it. Here, we briefly
discuss the key points in the algorithm. The inputs to the
problem contain a set of N patterns {P1, . . . ,PN} and a set
of M silicon sample chips. By applying these patterns at
various frequencies on the samples, we discover the first
failing frequency of each pattern on each sample. This value
is treated as a pattern delay. For each pattern, we utilize its
average delay di over all samples.

Given Pi, logic sensitization analysis gives us a set seti
of paths that have a chance to decide the pattern’s delay.
Our work does not try to optimize logical diagnosis. Hence,
for each pattern we simply extract all possible paths that
may potentially affect its delay [4]. For simplicity, we use
structural test patterns for the experiments. Our objective
is to demonstrate the effectiveness of silicon learning and
the proposed test flow methodology. Therefore, we began
with a simple experimental setup to avoid the complexity
of involving functional patterns. However, we note that our
proposed methodologies are general and not limited to the
application with structural test patterns only.

The ranking optimization consists of:

1. Inputs are the pattern set P = {P1, . . . ,PN}, average-
delay set D = {d1, . . . ,dN}, and set of sensitized path
subsets Set = {set1, . . . ,setN} (the sensitization matrix
S).

2. From (P,D,Set), calculate a path delay for path p as
Dp = w1d1+···+wkdk

(w1+···+wk)
, where the pattern delay di appears

in Dp iff the path p ∈ seti. All the assigned weights wi
begin at 1.

3. By using fixed-delay simulation with the calculated
path delays, we obtain the calculated pattern delays.

4. Calculate the total error value of difference between
the calculated pattern delays and the observed pattern
delays. The calculation of this error is defined in [4].

5. Apply a simple greedy heuristic to adjust the weight
assignment for the pattern whose error value is among
the largest. Repeat steps 2 through 4 until the total
error is brought down to a desired level.

6. Construct a path ranking based on their delay values
calculated in the last iteration.

The idea of the greedy heuristic is simple: In each iter-
ation, we will increase the weight assignment of a pattern

Proceedings of the 23rd IEEE VLSI Test Symposium (VTS’05)
1093-0167/05 $ 20.00 IEEE

whose error value is among the largest. This will reduce
its error value in the next iteration. By changing a pattern’s
weight wi, we will change the calculated path delays for all
paths contained in seti in the next iteration, which conse-
quently alters the path ranking.

4. Implementing the test flow

To obtain the initial set of patterns in Figure 3, we first
use a timing analysis tool to extract a set of paths for the
circuit. Given these paths, we use a SAT-based path oriented
ATPG tool [7] to produce robust patterns for the paths, one
pattern for each path. The don’t-care primary inputs are
filled randomly with 0 or 1s. Usually, this will ensure that
each pattern’s delay can be affected by many paths, not just
the target path. We use the same sensitization criteria as that
in [4] to decide if a path has a chance to affect a pattern’s
delay. This sensitization is different from path delay testing,
where a path is sensitized and considered to be covered if
it is certain that the path delay fault can be detected by the
pattern. Since an extracted path can be a false path, the
ATPG may fail to produce a pattern for these paths; however
they would still be kept in the initial path set.

This work utilizes a statistical timing simulator (STS) de-
veloped in the past. The prototype simulator was used for
the work in [4][5][6]. Our statistical timing model in the
simulator assumes pin-to-pin delay random variables. The
timing model is cell-based, and interconnects’ delays are
included. For experimental purposes, the random delay dis-
tributions were obtained using a Monte-Carlo-based SPICE
simulator (ELDO) [8]. We extracted the cells’ pin-to-pin
delay distributions from a 0.25µm, 2.5V CMOS technology.

To obtain silicon-based timing behavior in our experi-
ments, we use STS to produce a circuit sample by assigning
a random value based on the statistical timing model to each
pin-to-pin delay. After generating M circuit samples, STS
applies patterns onto these samples. The resulting pattern
delay information from STS is our silicon-based timing be-
havior.

4.1. SPI test iteration

The first iteration of the SPI test flow consists of:

• Use STS to apply the initial patterns onto a number of
sample chips, collecting delays for these patterns.

• Apply the path-based silicon learning described in
Section 3 to derive a path ranking.

• As this is the first iteration, there is no previous path
ranking to compare with, and so closure cannot be de-
termined.

Subsequently, every iteration consists of:

1. Use the top G ranked paths from the last iteration’s
ranking as the targeting paths.

2. Use the ATPG to generate patterns for the top G ranked
paths, n patterns for each path. These new patterns are
added into a cumulative pattern set, which includes the
initial patterns.

3. Use STS to apply the new patterns onto the same sam-
ple chips. We add the new pattern delays into a cu-
mulative set, which includes the initial pattern delays
from iteration 0.

4. Apply silicon learning to derive a path ranking, using
the cumulative pattern set and cumulative delay set.

5. Compare the top C (C < G) ranked paths from the cur-
rent iteration to the top C ranked paths from the previ-
ous iteration. Determine if: (a) Closure, as defined in
Section 4.2, has been reached, then the top C ranked
paths are identified as the speed paths. (b) Closure has
not been reached, then continue to the next iteration.

4.2. Closure in the SPI test flow

To terminate the SPI test flow, we introduce two different
strategies to check if the speed path ranking from one iter-
ation is similar enough to that from the previous iteration,
as shown in Figure 3. We can claim that the SPI test flow
has reached closure once the criteria defined here has been
reached. Both strategies compare the top C ranked paths
from the current iteration to the top C ranked paths from the
previous iteration.
• Set closure is a simple set equivalence check, ignoring

path ranking. For example, closure can be reached if
the top C ranked paths are the same in two consecutive
iterations.

• Ranking closure takes into account the ordering of the
paths. We assign each of the top C ranked paths a rank
number, starting with 0 for the path with the largest
delay and C − 1 for the path with the shortest delay.
Let rp(i) be the rank number for a path p in itera-
tion i. We define the ranking error of iteration i as
Re(i) = ΣC

p=1|rp(i)− rp(i− 1)|. If set closure has not
been reached, then we let Re(i) = ∞. Otherwise, rank-
ing closure is reached when Re(i) ≤ Te, where Te is a
threshold value. For the strongest ranking closure (call
it exact ranking closure), we have Te = 0.

5. Experiments and results

In this section, we present experimental results to
demonstrate the effectiveness of path-based silicon learn-
ing and the SPI test flow. We compare the silicon-based
path ranking obtained through silicon learning to the true
path ranking calculated from the simulation. Recall that
our silicon experiments are done through STS simulation
and hence, we know the true path ranking for each case. In
reality, the true path ranking is unknown.

In STS, the number of simulated samples is 100. As
mentioned earlier, in the path ranking, a path with the small-

Proceedings of the 23rd IEEE VLSI Test Symposium (VTS’05)
1093-0167/05 $ 20.00 IEEE

Top 100 True Ranked Paths

True Ranking

S
ili

co
n-

B
as

ed
 R

an
ki

ng

Top 100 Silicon Ranked Paths

True Ranking

S
ili

co
n-

B
as

ed
 R

an
ki

ng
 (a) (b)

Top 100 True Ranked Paths

True Ranking

S
ili

co
n-

B
as

ed
 R

an
ki

ng

Top 100 Silicon Ranked Paths

True Ranking

S
ili

co
n-

B
as

ed
 R

an
ki

ng

 (c) (d)

Top 100 True Ranked Paths

True Ranking

S
ili

co
n-

B
as

ed
 R

an
ki

ng

Top 100 Silicon Ranked Paths

True Ranking

S
ili

co
n-

B
as

ed
 R

an
ki

ng

 (e) (f)

Figure 4. Results upon reaching closure on
c880 by various criteria. (a) and (b) show the
rankings at iteration 0. (c) and (d) show the
improved rankings upon reaching set closure
(with Re = 30). (e) and (f) show the rankings
after reaching ranking closure (with Re = 16).

est rank value has the largest learned delay. In these exper-
iments for the SPI test flow, G = 300 and C = 100. In each
iteration, 1 additional pattern is generated for each path in
the top G = 300 paths in the current path ranking. We allow
the experiments to run indefinitely, only terminating when
an exact ranking closure has been reached. A set closure is
always reached before or concurrently with an exact rank-
ing closure.

In Figure 4, we present experimental results based on
the ISCAS benchmark circuit c880 by selecting an initial
path set with 1271 paths. Then, we produce a pattern for
each path to create the initial pattern set. In these plots,
we evaluate the effectiveness of the proposed methodology
against the true path ranking. All plots have x-axis and y-
axis scales from 0 to 200.

In plots (a), (c), and (e), we plot the top 100 paths from
the true path ranking. Because of this, no points fall beyond
the line x = 100 (shown in (a)). In contrast, plots (b), (d),
and (f) are for the top 100 paths from the silicon-based path

ranking. Hence, in these plots, no points fall above the line
y = 100 (shown in (b)).

Plots (a) and (b) are results from iteration 0 in the SPI test
flow. They demonstrate the effectiveness of the path-based
silicon learning working on the initial pattern set. Plots (c)
and (d) are results based on reaching a set closure. Plots (e)
and (f) are results based on reaching a ranking closure.

The nice correlations between the silicon-based ranking
and the true ranking demonstrate the effectiveness of the
proposed methodology. These plots show that for many
paths, their true ranks can actually be uncovered through
silicon learning, and they can be improved through itera-
tions of the SPI test flow (from plots (a), (b) to plots (c), (d)
and then, to plots (e), (f)).

Top 100 True Ranked Paths

True Ranking

S
ili

co
n-

B
as

ed
 R

an
ki

ng

Top 100 Silicon Ranked Paths

True Ranking

S
ili

co
n-

B
as

ed
 R

an
ki

ng

 (a) (b)

Figure 5. Results when reaching exact rank-
ing closure (with Re = 0).

Figure 5 shows the results upon reaching an exact rank-
ing closure (a ranking closure with error Re = 0). As can
be seen, by enforcing a more stringent closure criterion in
the SPI test flow, the silicon-vs-true ranking correlation im-
proves significantly.

Figure 6 shows similar results for s1488, and Figure 7
shows the results for s5378. Again, we show the ranking
comparisons at iteration 0 (plots (a) and (b)), set closure
(plots (c) and (d)), and exact ranking closure (plots (e) and
(f)). A similar improvement can be observed upon reaching
different closure criteria.

6. Analysis of results

In the previous section, we compare silicon-based path
rankings to their corresponding true path rankings. In prac-
tice, the top C = 100 silicon-based ranked paths are those
used for further analysis. Instead of the paths’ actual rank-
ings, it is sometimes more important to know how many
among the top 100 paths extracted from the SPI test flow
are among the true top 100 paths. We present these results
below.

Let Strue be the true top 100 speed paths. Let Ssi be the
top 100 speed paths extracted from the SPI test flow. We
want to know the percentage of coverage Cov = |Strue∩Ssi|

|Strue| .
It is also important to study the number of iterations

needed to reach closure in each SPI test flow experiment.

Proceedings of the 23rd IEEE VLSI Test Symposium (VTS’05)
1093-0167/05 $ 20.00 IEEE

Top 100 True Ranked Paths

True Ranking

S
ili

co
n-

B
as

ed
 R

an
ki

ng

Top 100 Silicon Ranked Paths

True Ranking

S
ili

co
n-

B
as

ed
 R

an
ki

ng
 (a) (b)

Top 100 True Ranked Paths

True Ranking

S
ili

co
n-

B
as

ed
 R

an
ki

ng

Top 100 Silicon Ranked Paths

True Ranking

S
ili

co
n-

B
as

ed
 R

an
ki

ng

 (c) (d)

Top 100 True Ranked Paths

True Ranking

S
ili

co
n-

B
as

ed
 R

an
ki

ng

Top 100 Silicon Ranked Paths

True Ranking

S
ili

co
n-

B
as

ed
 R

an
ki

ng

 (e) (f)

Figure 6. Results for s1488. (a) and (b) show
the rankings at iteration 0. (c) and (d) show
the rankings upon reaching set closure, with
an error of 62. (e) and (f) show the rankings
at exact ranking closure.

Table 1 shows the results of Cov and the numbers of itera-
tions needed. There are several interesting points to observe
from these data.
• From the path coverage point of view, set closure is

good enough. Although in Figure 5, exact ranking clo-
sure can help to improve the correlation between sili-
con ranking and true ranking, it does not improve path
coverage by much.

• The ”best Cov” data are the highest coverages found
in all SPI test iterations. One may wonder why we
do not stop the iteration at these points. This is be-
cause when applying the SPI test flow in reality, we
are not supposed to know the true answer Strue. The
results of ”best Cov” are shown here so that they can

Table 1. Coverages at key iterations.
Circuit Iteration 0 Set Closure Exact Re = 0 Best Cov

Cov Iteration Cov Iteration Cov Iteration Cov
c880 66% 45 75% 68 76% 20 78%
s5378 67% 10 79% 92 78% 8 79%
s1488 59% 27 64% 69 68% 58 69%

Top 100 True Ranked Paths

True Ranking

S
ili

co
n-

B
as

ed
 R

an
ki

ng

Top 100 Silicon Ranked Paths

True Ranking

S
ili

co
n-

B
as

ed
 R

an
ki

ng

 (a) (b)

Top 100 True Ranked Paths

True Ranking

S
ili

co
n-

B
as

ed
 R

an
ki

ng

Top 100 Silicon Ranked Paths

True Ranking

S
ili

co
n-

B
as

ed
 R

an
ki

ng

 (c) (d)

Top 100 True Ranked Paths

True Ranking

S
ili

co
n-

B
as

ed
 R

an
ki

ng

Top 100 Silicon Ranked Paths

True Ranking

S
ili

co
n-

B
as

ed
 R

an
ki

ng

 (e) (f)

Figure 7. Results for s5378. (a) and (b) show
the rankings at iteration 0. (c) and (d) show
the rankings upon reaching set closure, with
an error of 132. (e) and (f) show the rankings
at exact ranking closure.

be compared to the results established at set and ex-
act ranking closures. Because the closures are based
on the comparison of the top 100 paths found in two
consecutive iterations in the SPI test flow, these results
demonstrate that our closure criteria are valid. The an-
swers found by our closure criteria are close to the best
answer found during the iterations of our methodology.

• The number of iterations required to reach a closure
is a big concern because each SPI test iteration in-
volves test generation as well as test application. Un-
less we have an integrated and automatic test genera-
tion/application framework, it is important to minimize
the required number of iterations to reach closure as
much as possible.

6.1. Reduce the number of iterations in SPI test flow
by adding more patterns in each iteration

Recall that in the above experiments, in each SPI test it-
eration, 1 pattern is produced for each of top 300 paths. This

Proceedings of the 23rd IEEE VLSI Test Symposium (VTS’05)
1093-0167/05 $ 20.00 IEEE

is actually a very ineffective approach in practice. Because
the TPG targets on only the top 300 silicon-based ranked
paths, in each iteration we can produce as many patterns
as the tester memory allows. Generating as many patterns
per path as possible in each SPI test iteration allows silicon
learning to be based on as complete information as possible.
It is interesting to see if this change can reduce the required
number of iterations to reach closure.

Table 2. Coverages at key iterations for c880
and s5378.

Circuit Iteration 0 Set Closure Exact Re = 0 Best Cov
Cov Iteration Cov Iteration Cov Iteration Cov

c880 66% 7 77% 18 81% 14 81%
s5378 67% 3 78% 24 78% 2 78%

Table 2 shows the results based on generating 100 pat-
terns per path in each SPI test iteration. Two interesting
points can be observed: (1) The numbers of required iter-
ations are dramatically reduced from those in Table 1 and
the Cov results are improved. Figure 8 shows the ranking
correlation plots for c880 and s5378, when set closures are
reached. The results are better than before.

Top 100 True Ranked Paths

True Ranking

S
ili

co
n-

B
as

ed
 R

an
ki

ng

Top 100 Silicon Ranked Paths

True Ranking

S
ili

co
n-

B
as

ed
 R

an
ki

ng

 (a) (b)

Top 100 True Ranked Paths

True Ranking

S
ili

co
n-

B
as

ed
 R

an
ki

ng

Top 100 Silicon Ranked Paths

True Ranking

S
ili

co
n-

B
as

ed
 R

an
ki

ng

 (c) (d)

Figure 8. Results upon reaching set closure
when generating 100 patterns per path per
iteration instead of 1. (a) and (b) show the
rankings for c880, and (c) and (d) show the
rankings for s5378.

7. Conclusion
In this paper, we propose a novel framework for silicon-

based speed path identification. The SPI framework con-
sists of two methodologies: silicon learning and SPI test
flow. The objective of silicon learning is to perform statisti-
cal diagnosis to extract silicon-based information, and that

of the SPI test flow is to utilize the extracted information to
guide further TPG in order to reach a test closure.

We develop the experiments to study the effectiveness
of the proposed methodologies. Among the top 100 speed
paths identified through our framework, roughly 65-80%
are the actual top 100 speed paths. For these paths, their
silicon-based rankings usually correlate well to their true
rankings. These results show the effectiveness of our ap-
proach.

Depending on the application, set closure usually is good
enough, which allows the SPI test flow to stop at an earlier
iteration. To minimize the number of required SPI test iter-
ations, as many patterns as possible should be generated for
each selected path in each iteration. This strategy has a sig-
nificant impact on the number of required iterations to reach
SPI test closure. Moreover, this strategy can deliver better
results in terms of path coverage Cov and path ranking.

In our experiments, set closure is reached if 100% of the
top C silicon-based ranked paths are the same in two con-
secutive iterations. If the number of required iterations to
reach this set closure is of concern, further reduction in the
number of iterations can be achieved by relaxing the 100%
constraint.

The current experiments over-simplify the role of logical
diagnosis by using ISCAS benchmark circuits with struc-
tural tests. In practice, logical diagnosis will be important
if the proposed framework is to be applied in the functional
domain. In that case, we need to develop an effective logi-
cal diagnosis methodology to be used with the proposed SPI
test flow. Moreover, we will need an effective functional
TPG approach to minimize the overhead of producing addi-
tional patterns in each iteration of the SPI flow.

References
[1] Angela Krstic, et. al. Delay Defect Diagnosis Based Upon

Statistical Timing Models – The First Step. in Proc. DATE,
2003, pp. 328-323

[2] Agarwal, A.; Dartu, F.; Blaauw, D. Statistical gate delay
model considering multiple input switching in Proc. DAC,
2004 pp. 658-663

[3] Cory, B.D.; Kapur, R.; Underwood, B. Speed binning with
path delay test in 150-nm technology. IEEE D&T, Vol 20,
No 5, 2003, pp. 41- 45

[4] Leonard Lee, Li-C. Wang, T.M. Mak, and Kwang-Ting
Cheng. A Path-Based Methodology for Post-Silicon Tim-
ing Validation. in Proc. ICCAD, 2004.

[5] Li-C. Wang. Regression Simulation: applying path-based
learning in delay test and post-silicon validation in Proc.
DATE, March 2004, pp. 692-693.

[6] Li-C. Wang, et. al. On Path-based Learning and Its Applica-
tions in Delay Test and Diagnosis in Proc. ACM/IEEE DAC,
June 2004,

[7] Kai Yang, et. al. TranGen: A SAT-Based ATPG for Path-
Oriented Transition Faults. in Proc. ASP-DAC, Jan 2004.

[8] Anacad. Eldo v4.4.x User’s Manual. 1996.

Proceedings of the 23rd IEEE VLSI Test Symposium (VTS’05)
1093-0167/05 $ 20.00 IEEE

