
Z3: An Efficient SMT Solver

Leonardo de Moura and Nikolaj Bjørner

Microsoft Research, One Microsoft Way, Redmond, WA, 98074, USA
{leonardo, nbjorner}@microsoft.com

Abstract. Satisfiability Modulo Theories (SMT) problem is a decision
problem for logical first order formulas with respect to combinations of
background theories such as: arithmetic, bit-vectors, arrays, and unin-
terpreted functions. Z3 is a new and efficient SMT Solver freely available
from Microsoft Research. It is used in various software verification and
analysis applications.

1 Introduction

Satisfiability modulo theories (SMT) generalizes boolean satisfiability (SAT) by
adding equality reasoning, arithmetic, fixed-size bit-vectors, arrays, quantifiers,
and other useful first-order theories. An SMT solver is a tool for deciding the
satisfiability (or dually the validity) of formulas in these theories. SMT solvers
enable applications such as extended static checking, predicate abstraction, test
case generation, and bounded model checking over infinite domains, to mention
a few.

Z3 is a new SMT solver from Microsoft Research. It is targeted at solving
problems that arise in software verification and software analysis. Consequently,
it integrates support for a variety of theories. A prototype of Z3 participated
in SMT-COMP’07, where it won 4 first places, and 7 second places. Z3 uses
novel algorithms for quantifier instantiation [4] and theory combination [5]. The
first external release of Z3 was in September 2007. More information, including
instructions for downloading and installing the tool, is available at the Z3 web
page: http://research.microsoft.com/projects/z3.

Currently, Z3 is used in Spec#/Boogie [2, 7], Pex [13], HAVOC [11], Vigi-
lante [3], a verifying C compiler (VCC), and Yogi [10]. It is being integrated with
other projects, including SLAM/SDV [1].

2 Clients

Before describing the inner workings of Z3, two selected uses are briefly de-
scribed. Front-ends interact with Z3 by using either a textual format or a binary
API. Three textual input-formats are supported: The SMT-LIB [12] format, the
Simplify [8] format, and a low-level native format in the spirit of the DIMACS
format for propositional SAT formulas. One can also call Z3 procedurally by
using either an ANSI C API, an API for the .NET managed common language
runtime, or an OCaml API.



Spec#/Boogie generates logical verification conditions from a Spec# pro-
gram (an extension of C#). Internally, it uses Z3 to analyze the verification
conditions, to prove the correctness of programs, or to find errors on them. The
formulas produced by Spec#/Boogie contain universal quantifiers, and also use
linear integer arithmetic. Spec# replaced the Simplify theorem prover by Z3 as
the default reasoning engine in May 2007, resulting in substantial performance
improvements during theorem proving.

Pex (Program EXploration) is an intelligent assistant to the programmer. By
automatically generating unit tests, it allows to find bugs early. In addition, it
suggests to the programmer how to fix the bugs. Pex learns the program behavior
from the execution traces, and Z3 is used to produce new test cases with different
behavior. The result is a minimal test suite with maximal code coverage. The
formulas produced by Pex contains fixed-sized bit-vectors, tuples, arrays, and
quantifiers.

3 System Architecture

Z3 integrates a modern DPLL-based SAT solver, a core theory solver that han-
dles equalities and uninterpreted functions, satellite solvers (for arithmetic, ar-
rays, etc.), and an E-matching abstract machine (for quantifiers). Z3 is imple-
mented in C++. A schematic overview of Z3 is shown in the following figure.

SMT-LIB Simplify Native text

OCaml

C .NET

Simplifier

Compiler

Congruence closure core

literal assignments

SAT solver

Theory Solvers

Linear arithmetic

Bit-vectors

Arrays

Tuples

E-matching engine

equalities
assignments

new atoms

equalities

clauses



Simplifier Input formulas are first processed using an incomplete, but efficient
simplification. The simplifier applies standard algebraic reduction rules, such as
p∧true "→ p, but also performs limited contextual simplification, as it identifies
equational definitions within a context and reduces the remaining formula using
the definition, so for instance x = 4 ∧ q(x) "→ x = 4 ∧ q(4). The trivially
satisfiable conjunct x = 4 is not compiled into the core, but kept aside in the
case the client requires a model to evaluate x.

Compiler The simplified abstract syntax tree representation of the formula
is converted into a different data-structure comprising of a set of clauses and
congruence-closure nodes.

Congruence Closure Core The congruence closure core receives truth assign-
ments to atoms from the SAT solver. Atoms range over equalities and theory
specific atomic formulas, such as arithmetical inequalities. Equalities asserted
by the SAT solver are propagated by the congruence closure core using a data
structure that we will call an E-graph following [8]. Nodes in the E-graph may
point to one or more theory solvers. When two nodes are merged, the set of
theory solver references are merged, and the merge is propagated as an equality
to the theory solvers in the intersection of the two sets of solver references. The
core also propagates the effects of the theory solvers, such as inferred equalities
that are produced and atoms assigned to true or false. The theory solvers may
also produce fresh atoms in the case of non-convex theories. These atoms are
subsequently owned and assigned by the SAT solver.

Theory Combination: Traditional methods for combining theory solvers rely
on capabilities of the solvers to produce all implied equalities or a pre-processing
step that introduces additional literals into the search space. Z3 uses a new
theory combination method that incrementally reconciles models maintained by
each theory [5].

SAT Solver Boolean case splits are controlled using a state-of-the art SAT
solver. The SAT solver integrates standard search pruning methods, such as
two-watch literals for efficient Boolean constraint propagation, lemma learning
using conflict clauses, phase caching for guiding case splits, and performs non-
chronological backtracking.

Deleting clauses: Quantifier instantiation has a side-effect of producing new
clauses containing new atoms into the search space. Z3 garbage collects clauses,
together with their atoms and terms, that were useless in closing branches. Con-
flict clauses, and literals used in them, are on the other hand not deleted, so
quantifier instantiations that were useful in producing conflicts are retained as
a side-effect.

Relevancy propagation: DPLL(T) based solvers assign a Boolean value to
potentially all atoms appearing in a goal. In practice, several of these atoms are
don’t cares. Z3 ignores these atoms for expensive theories, such as bit-vectors,
and inference rules, such as quantifier instantiation. The algorithm used for
discriminating relevant atoms from don’t cares is described in [6].

Quantifier instantiation using E-matching Z3 uses a well known approach
for quantifier reasoning that works over an E-graph to instantiate quantified vari-



ables. Z3 uses new algorithms that identify matches on E-graphs incrementally
and efficiently. Experimental results show substantial performance improvements
over existing state-of-the-art SMT solvers [4].
Theory Solvers Z3 uses a linear arithmetic solver based on the algorithm
used in Yices [9]. The array theory uses lazy instantiation of array axioms. The
fixed-sized bit-vectors theory applies bit-blasting to all bit-vector operations, but
equality.
Model generation Z3 has the ability to produce models as part of the output.
Models assign values to the constants in the input and generate partial function
graphs for predicates and function symbols.

4 Conclusion

Z3 is being used in several projects at Microsoft since February 2007. Its main
applications are extended static checking, test case generation, and predicate
abstraction.

References

1. T. Ball and S. K. Rajamani. The SLAM project: debugging system software via
static analysis. SIGPLAN Not., 37(1):1–3, 2002.

2. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system:
An overview. In CASSIS 2004, LNCS 3362, pages 49–69. Springer, 2005.

3. M. Costa, J. Crowcroft, M. Castro, A. I. T. Rowstron, L. Zhou, L. Zhang, and
P. Barham. Vigilante: end-to-end containment of internet worms. In A. Herbert
and K. P. Birman, editors, SOSP, pages 133–147. ACM, 2005.

4. L. de Moura and N. Bjørner. Efficient E-matching for SMT Solvers. In CADE’07.
Springer-Verlag, 2007.

5. L. de Moura and N. Bjørner. Model-based Theory Combination. In SMT’07, 2007.
6. L. de Moura and N. Bjørner. Relevancy Propagation. Technical Report MSR-TR-

2007-140, Microsoft Research, 2007.
7. R. DeLine and K. R. M. Leino. BoogiePL: A typed procedural language for check-

ing object-oriented programs. Technical Report 2005-70, Microsoft Research, 2005.
8. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program

checking. J. ACM, 52(3):365–473, 2005.
9. B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In

CAV’06, LNCS 4144, pages 81–94. Springer-Verlag, 2006.
10. B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K. Rajamani. Syn-

ergy: a new algorithm for property checking. In Michal Young and Premkumar T.
Devanbu, editors, SIGSOFT FSE, pages 117–127. ACM, 2006.

11. S. K. Lahiri and S. Qadeer. Back to the Future: Revisiting Precise Program Veri-
fication using SMT Solvers. In POPL’2008, 2008.

12. S. Ranise and C. Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org, 2006.

13. N. Tillmann and W. Schulte. Unit Tests Reloaded: Parameterized Unit Testing
with Symbolic Execution. IEEE software, 23:38–47, 2006.


