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Abstract The NEURON simulation environment has been
extended to support parallel network simulations. Each pro-
cessor integrates the equations for its subnet over an inter-
val equal to the minimum (interprocessor) presynaptic spike
generation to postsynaptic spike delivery connection delay.
The performance of three published network models with
very different spike patterns exhibits superlinear speedup on
Beowulf clusters and demonstrates that spike communica-
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tion overhead is often less than the benefit of an increased
fraction of the entire problem fitting into high speed cache.
On the EPFL IBM Blue Gene, almost linear speedup was
obtained up to 100 processors. Increasing one model from
500 to 40,000 realistic cells exhibited almost linear speedup
on 2000 processors, with an integration time of 9.8 seconds
and communication time of 1.3 seconds. The potential for
speed-ups of several orders of magnitude makes practical
the running of large network simulations that could other-
wise not be explored.
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Introduction

The growing availability of multi-processor systems has led
to increasing interest in enhancing neuronal network sim-
ulation performance by utilizing these machines. With a
few exceptions such as pGENESIS (Goddard and Hood,
1998), which has been used for several large biologically
realistic network models, including a large scale model of
the cerebellar cortex running on a 128-processor Cray T3E
(Howell et al., 2000), simulators that have been adapted to
these supercomputers generally utilize simplified integrate-
and-fire neuron models in order to permit maximal network
size, e.g. NEST, NCS, NEOSIM and SpikeNET (Wilson
et al., 2001; Morrison et al., 2005; Delorme and Thorpe,
2003; Goddard et al., 2001; Hammarlund et al., 1996).
Although complex single neuron models can be inserted
into these discrete-event algorithms, optimal simulation of
networks of realistic multi-compartment neurons presents
additional difficulties and opportunities that cannot be
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directly addressed in this type of hybrid model (Lytton and
Hines, 2005).

As of 1994, the NEURON simulation environment has
provided a simple LINDA-like persistent message bulletin
board (Carriero and Gelernter, 1989) to help with the man-
agement of “embarassingly parallel” simulations, e.g. pa-
rameter sensitivity or similar simulations which can be split
into several independent runs. However, there has been in-
creasing demand for parallelization of networks of realistic
neurons. In preliminary simulations, we found that even the
apparently very inefficient bulletin board system could be
used to implement a spike-exchange mechanism that resulted
in superlinear speed-up. These preliminary positive results
with such wildly out-of-design usage strongly suggested ex-
tending native NEURON to support distributed simulations
of networks.

In approaching the problem of extending NEURON to
the parallel environment, we kept several factors in mind.
We were interested in providing a useable environment
both for the average NEURON user who has access to
relatively small clusters of 10–50 processors as well as
for users of the state-of-the-art Blue Gene supercomputer,
whose 8000 processors are proposed for simulations of
the order of 10,000 morphologically complex neurons in
a cortical microcircuit (Markram, 2006). As part of this,
we wanted to provide an easy transition from the single-
CPU to multi-CPU environment so that previously de-
veloped simulations could be scaled and ported with a
minimum of error-prone code-rewriting. Moreover, we
wanted to allow parallel simulations to run without change
on a single CPU in cases where the size did not preclude
this. Because of this emphasis on practical mid-scale prob-
lems, we tested the system on existing network simulations
derived from experimental findings (all available from Mod-
elDB, http://senselab.med.yale.edu/senselab/ModelDB). We
optimized for ease of use and applicability to simulations
from the literature rather than for the massive simulations
that will be the subject of future reports.

In this paper, we describe an extension to NEURON’s Par-
allelContext class, built on the standard and widely available
Message Passing Interface (MPI), and now included in the
standard NEURON distribution. The simple spike distribu-
tion mechanism (MPI Allgather) distributes all spike times
to all processors. This provides a baseline for future compar-
ison with more sophisticated point-to-point routing methods
(MPI Send/MPI Receive). However, some architectures pro-
vide an optimized vendor implementation of MPI Allgather
that may give it advantages that would be hard to match
without extensive programming and testing (Almási et al.,
2005).

We have applied this method to three published network
models involving neurons composed of several compart-
ments that include realistic active properties and connectiv-

ity. This porting process suggested additional functions that
were then added to further simplify network specification in
the parallel environment. Superlinear speedup was achieved
with increasing CPU number in all three models.

Methods

All the simulations were carried out with the NEURON v5.8
simulation program (Hines and Carnevale 1997). Parallel
network management services are available when NEURON
is configured with the - with-mpi option, which requires pre-
installation of an implementation of the Message Passing
Interface (MPI). On those machines that did not already
have an MPI installation, we used MPICH (http://www-
unix.mcs.anl.gov/mpi/mpich). Performance tests were car-
ried out on one or more of the following multiprocessor
systems:

– 2 processor 2 GHz Power Mac G5, with 512 KB L2 cache
for each processor

– 12 64-bit processor Beowulf cluster, 3.2 GHz Intel Xeon
with 1024 KB cache

– 25 32-bit processor Beowulf cluster, 2.4 GHz Intel Xeon
with 512 KB cache

– 1024 processor CINECA IBM Linux cluster, 2.8 GHz
Xeon with 512 KB cache

– 8196 processor EPFL IBM Blue Gene

Neuron morphology, electrophysiology, and network
connectivity

To illustrate the general behavior and efficiency of the im-
plementation scheme used in this paper, we used a simple
test network composed of identical conductance based neu-
rons (see below). In addition, we assessed parallel perfor-
mance using three published neuronal network models (Bush
et al., 1999; Davison et al., 2003; Santhakumar et al., 2005),
exhibiting very different spiking patterns. These were down-
loaded from the ModelDB model repository (http:// sense-
lab.med.yale.edu) and transformed into parallel models using
the methods described below. All the parallel simulation files,
which also work on serial machines without MPI installed,
are available for public download under the ModelDB sec-
tion of the Senselab database (accession number 64229).

The test network consists of a variable number of neu-
rons. Each neuron is implemented with a variable number
of compartments (10–200), modeling a stretch of membrane
1000 µm long with a 2 µm diam, and uniform passive and
active (Na and KDR) properties that results in regular firing
behavior. Kinetics for the Na, and KDR conductances were
from CA1 hippocampal neurons (Migliore et al., 1999), with
a peak density of 80 and 70 pS/ µm2, respectively. Unless
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otherwise noted, neurons in this model were connected in a
ring. Excitatory synaptic conductances were modeled with a
double exponential time course (2 and 5 ms for rise and de-
cay time, respectively) and a reversal potential of 0 mV.
Network activity was initiated by activating the synaptic
input of one neuron, and simulations were carried out for
200 or 1000 ms. Suprathreshold excitatory synaptic conduc-
tance (3 nS) was activated after a 3 ms delay whenever the
corresponding presynaptic compartment crossed a threshold
of − 10 mV. To test the communication-limited-domain we
used a scalable version of the Bush et al. (1999) model with
sizes ranging from 10,000 to 160,000 cells, and networks
of 65,536 and 262,144 integrate-and-fire cells where each
cell was randomly connected to 1000 and 10000 other cells
respectively with 1 ms connection delay and each cell in-
trinsically fired with a uniform random interval between 10
and 20 ms. In the artificial networks, to eliminate connection
dependent response behavior, all connection weights were
set to 0, but this does not affect, or at least does not increase,
cell computation time with respect to interprocessor spike
exchange or intraprocessor spike distribution time.

Parallel model specification

On a single processor, source cell to target synapse connec-
tions are instantiated in NEURON through the creation of a
NetCon object

nc = new NetCon (source, target synapse)

in which the first argument identifies a discrete event source
and the second argument identifies the synapse object it con-
nects to (Hines and Carnevale, 2004). Setup of a parallel
network model uses NetCon as much as possible. Only a few
additional parallel specific functions are required—globally
identify a cell even though the cell actually exists only on
one processor; create a NetCon that connects the globally
identified cell to a specific synapse—and those are provided
by NEURON’s extended ParallelContext class. In what fol-
lows, we use the object reference pc to refer to an instance
of this class.

The critical notion which distinguishes a parallel network
implementation from the serial implementation is the in-
troduction of an integer global identifier (gid) to identify a
spiking cell. It is unnecessary to introduce the correspond-
ing notion of target gid because NEURON takes a synapse-
centric view of the network, in which the network connection
with synaptic weight and axonal delay is made to exist on
the processor where the synapse exists. That is,

nc = pc.gid connect (gid, target synapse)

returns a NetCon object and can only be executed on the
processor where the target cell exists. At the source end of
the connection, on a different processor than the target, it is
necessary to unambiguously identify some location on the
cell at which action potentials are detected and this is done
by creating a temporary NetCon with the idiom

nc = new NetCon (source, nil)

that in the past was only used as the first step in record-
ing spikes from output cells. That NetCon is then used to
associate the gid with spike source via

pc.cell(gid, nc)
In normal simulations, a gid can be considered to represent
an entire cell, and for simplicity we will restrict ourselves
to that situation. However, it is certainly possible for a cell
simulation to have multiple threshold detection sites as, for
example, is required for olfactory bulb Mitral to Granule cell
dendrodendritic reciprocal synapses.

The above, though incomplete, provides a sufficient con-
ceptual framework. For further programming details the
reader is referred to the documentation for the Parallel-
NetManager and ParallelContext class at http://www. neu-
ron.yale.edu.

Parallel model execution

A schematic representation of the flow of information in a
parallel system is shown in Fig. 1. As can be seen, there is
no master, and all the processors execute exactly the same
program (on different subsets of neurons). Every processor
integrates the equations for its subnet over an interval equal
to the minimum (interprocessor) presynaptic spike gener-
ation to postsynaptic spike delivery connection delay. One
MPI Allgather collective operation is used to exchange, with
all other processors, all the (gid, spiketime) pairs for spikes
generated in that interval; occasional spike buffer overflow
is handled by a second MPI Allgatherv. After a processor
has received all the (gid, spiketime) pairs from all other pro-
cessors, it uses a very fast, O(1), hash table with binary tree
buckets (Myers, 2000) to find the NetCon list associated with
each gid and sends it the spiketime. Note that this spiketime
is less than the current integration time, but the delivery time
is guaranteed to be in the future since the NetCon delay is
greater than the just completed integration interval.

Results

Figure 2 shows runtime results for a simple ring network in
which we could control cell number, and cell complexity. In
Fig. 2(A), the fixed size 128-neuron network with 50 com-
partments per neuron exhibits a dramatic, more than linear,
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Fig. 1 Schematic representation of the algorithm used to implement
a network of realistic neurons on a parallel system using NEURON

reduction in runtime with increasing numbers of processors.
On the other hand, in the same panel, a network with size
proportional to the number of processors is slightly less than
perfect with respect to the constant runtime ideal. Morrison
et al. (2005) observe similar performance improvements and
attribute it to the reduction in the overall memory require-
ments for each processor when a fixed size network runs on
a greater number of processors, with a consequent better use
of the faster cache memory. There is no such effect for net-
works of increasing size (Fig. 2(A), triangles), since memory
used per processor is constant. In this case, one notices that
using many processors results in a slight loss of performance
due to extra work required for an MPI Allgather.

We studied the cache effect in more detail by running dif-
ferent size networks with varying compartments/neuron on
a single processor (Fig. 2(B)). The runtime for a 2-neuron
network of 50 compartments/neuron (a total number of 100
compartments) was chosen as reference value to compare
the scalability as a function of neuron and network size.
The reference lines in Fig. 2(B) represent the ideal runtime
(twice as long for twice the size) for single processor simula-
tions. On the upper line, measured run times begin to depart
from linearity at a total size of between 400 and 800 com-
partments and eventually return to linearity at a vertically
translated (approximately a factor of 2) line after 6400 total

Fig. 2 Performance of the parallel implementation. (A) Simulation
time for different networks as a function of the number of proces-
sors. Dashed lines represent ideal scaling for each case. Circles: sim-
ulation time for a network of 128 neuron, 50 compartments/neuron
(comp/neuron), running on different numbers of processors; Triangles:
simulation time for networks with an increasing number of neurons
running on an increasing number of processors (1 neuron/processor).
(B) Simulation time on a single processor as a function of the number of
neurons in a network (circles) using different numbers of comp/neuron.
The dashed lines represent the case of ideal scaling and the filled tri-
angles indicate the simulation times for a 4 neuron network with the
neurons having a correspondingly larger number of comp/neuron

compartments (not shown). This is consistent with the no-
tion that main memory transfer has become the rate-limiting
step. Departure from the ideal in the upper part of the curves
showing measured runtime for 5 and 1 compartment/neuron
networks is roughly a constant factor and can be attributed
to constant per cell overhead that is independent of neu-
ron size. Further, nonlinear departure from the ideal on the
lower part of the measured runtimes (relatively small for
5 compartments/neuron but quite dramatic for lightweight
1 compartment cells) is attributed to constant interpreter
and integrator overhead which is independent of the number
of equations being solved. Runtime measurements with 4
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Fig. 3 (A) Efficiency of the parallel implementation for 128 neu-
ron networks having different numbers of compartments/neuron
(comp/neuron), as a function of the number of processors (left), or
fraction of simulated time, Tstop (right). (B) Efficiency of networks of
increasing size and different number of comp/neuron; the number of

processors used in each simulation (np) was the same as the number
of neurons in the network. Ts, simulation time on a single processor;
np, number of processors; Tp, simulation time on np processors. In all
cases the simulated time was 0.5 s

neuron networks but a larger number of compart-
ments/neuron so that total size is equivalent to the 64 and 128
neuron networks are shown as filled triangles in Fig. 2(B).
Clearly, the constant per cell overhead is negligible in the
two lower curves but the main memory transfer limitation
remains. These results suggest that relatively large networks
could benefit the most from a parallel implementation if they
could be distributed among several processors in such a way
that each processor operates on a portion of the network
that is small enough to be entirely contained in the (faster)
cache memory. Superlinear efficiency could be obtained in
this case.

The efficiency for networks of realistic neurons of dif-
ferent complexity is plotted in Fig. 3, as a function of the
number of processors used. As can be seen, superlinear (>1)
efficiency (up to ∼2) can be obtained in most cases with an
appropriate choice of neuronal network and computer system
size. These results suggest that, with the active properties of
our model neurons, networks of ∼100 neurons composed of
10–50 comp/neuron could be run with superlinear efficiency
using a cluster of 4 to 64 processors (Fig. 3, left), whereas
more complex morphologies require larger clusters to reach
the same efficiency. To further show that there is an optimal
range of neuron complexity and computer system size that
maximizes the efficiency for a given neuronal network, in
Fig. 3(B) we plot the efficiency as a function of the run-
time. Very low or relatively large runtime (corresponding
to biophysically simple or complex neurons, respectively)
results in low efficiency because of the minimum overhead
or cache memory effects, respectively, as discussed above
(Fig. 2). Smaller networks (Fig. 3, right) require more com-

plex morphologies (more than ∼200 comp/neuron) to run
with a superlinear efficiency of 1.5–2.

In order to test for the effects of network connectivity or
spiking activity, the ring connectivity was replaced by all-
to-all connectivity and the simulations were repeated. No
qualitative differences were found in the simulation times in
all cases (data not shown).

To test the implementation on a broader set of realis-
tic examples, three (serial) published network models were
downloaded from the ModelDB database, and adapted to
run on parallel systems using the schema described in this
work. For each model, a representative raster plot and the
simulation times as a function of the number of processors
used are presented in Fig. 4. Table 1 shows some of the
model properties and size statistics. Runtime exhibits a sub-
stantial superlinear cache effect on the Beowulf and IBM
Linux clusters, although the overall speed-up depended on
the particular model. For the Davison et al. (2003) model the
last two points at 500 and 505 processors show an abrupt
runtime difference due to the fact that the 25 mitral cells and
2500 granule cells give better, though not perfect, balance in
the 505 processor case. In all cases, setup time scaled with
number of CPUs except for a small fixed overhead per CPU
(data not shown).

In general, using a larger number of processors, the size
of subnet on each processor becomes small and the commu-
nication overhead for MPI Allgather calls larger. Communi-
cation time thus begins to dominate the runtime. This effect
could be seen in most of our models when using more than 64
processors. Models with larger or more complex individual
cells would reduce this effect (see Fig. 2) and in the extreme
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Table 1 Properties and
statistics for the parallel
implementation of models
downloaded from ModelDB

Santhakumar et al. (2005) Davison et al. (2003) Bush et al. (1999)

527 cells 2525 cells 500 cells
500 Granule, 9 comp., 7 mech 25 Mitral, 7 comp., 7 mech 100 Pyramidal, 9 comp., 5 mech
6 Basket, 17 comp., 7 mech 2500 Granule, 5 comp., 4 mech 300 Pyramidal2, 8 comp., 6 mech
15 Mossy, 17 comp., 8 mech 48,476 States 100 Basket, 7 comp., 3 mech
6 HIPP, 13 comp., 8 mech 21,874 States

15,000 connections
11,293 connections, 4875 syn 2550 AMPA, 2500 NMDA syn 41,380 connections

1500 stim., 1700 AMPA, 1200
NMDA

2,861 spikes generated 6,267 spikes generated 1500 GABA-A, 1200 GABA-B
50,136 spikes delivered 47,838 spikes delivered

3,493 spikes generated
275,385 spikes delivered

case of networks of 3-d reconstructed neurons, one can
expect almost linear speedup with substantially larger
numbers of processors. Of more interest, though, is the
behavior of larger networks on large resource machines such
as the EPFL IBM Blue Gene where a network simulation
can be distributed on up to 8196 CPUs.

Figure 5 shows the performance results for the Bush et al.
(1999) model scaled from 500 cells to various sizes between
10,000 and 160,000 cells. Scaling was carried out by keep-
ing population projection probabilities constant but reducing
the (random) weights by the fractional increase in number
of cells. Network size statistics are shown in Table 2. Note
that number of connections is proportional to the square of
the number of cells. Also, networks of different size differ
considerably in the details of their overall spike patterns.
The 160 k cell network spike pattern is shown in Fig. 5(A).
Simulations with model sizes 10, 20, and 40 k cells exhibit
the expected overall doubling of runtime as size was doubled
(Fig. 5(B)). Notice also that the (10 k, 500 cpu) runtime is
similar to the (20 k, 1000 cpu) and (40 k, 2000 cpu) cases.
However, for model sizes above 20 k cells, the increase in
computation time for each cpu number is accompanied by
almost the same factor increase in interprocessor spike ex-
change time. The spike exchange time has become propor-
tional to the number of spikes generated. Thus, this model
cannot efficiently use more than 2000 to 4000 CPUs regard-
less of how large it is.

The 80k and 160k models exhibit computation time in-
creases of factors of 3 and 3.25 instead of the expected factor
of 2. A substantial portion of the computation time, there-
fore, must be attributed to the handling of the respective 4.7
and 10.6 fold increase in number of delivered spikes. Never-
theless, the computation time vs number of CPUs in Fig. 5
scales ideally for all sizes of the Bush model. It is not possi-
ble at present to to do execution profiling on the BlueGene
and so we are unable to precisely measure the interleaved
cell integration time, event queue processing, and synaptic
event computation time. However, since all delays are ran-
dom, the queue size is related to the number of delivered
events instead of generated events and so it is not surprising
that queue time would scale with cell number.

Figure 6 shows that the same cannot be said of NEURON’s
present method of simulating artificial cell models. Networks
of artificial spiking cells have no integration overhead and a
delivered spike results in very little non-queue related com-
putation. Because all delays were defined to be the same for
this model, only the generated spikes are managed on the
event queue. At delivery time the spike is removed from the
queue and then distributed to the appropriate target cells.
Note that the number of delivered spikes scales with number
of CPUs. However, up to a number of CPUs that approaches
the number of connections per cell, almost every spike that
is generated must be delivered to at least one cell on every
CPU and consequently, every spike must be placed on every

Table 2 Statistics for the
parallel implementation of the
Bush et al. (1999) model, and
two examples of a large network
of integrate and fire (I&F) cells

# cells # states # connections # spikes generated # spikes delivered

500 21,874 41,380 3,493 275,385
10,000 444,664 17,167,785 31,118 52,040,794
20,000 888,664 68,655,566 33,960 110,634,002
40,000 1,777,664 274,591,128 69,529 452,987,907
80,000 3,553,664 1,098,302,267 294,974 2,147,483,647
160,000 7,107,664 4,393,084,577 844,175 22,847,784,937
65,536 I&F 0 65,536,000 842,423 838,080,022
262,144 I&F 0 2,621,440,000 3,369,556 33,522,955,857
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Fig. 4 Parallel implementation of published network models from the ModelDB database. (left) Spike raster plot for each model; (right) Runtime
for each model using different parallel systems. In all cases, the dashed lines represent the case of ideal scaling

queue. NEURON’s use of one queue for events on each CPU
implemented as a splay tree (Lytton and Hines, 2005) is thus
inefficient in this domain.

Discussion

The NEURON simulation environment has been extended
to support distributed simulations of networks. In this paper,
we focused on the performance of the parallel implementa-

tion in a test case and for three realistic network models from
ModelDB originally published as serial simulations. There is
a great variety of cell complexity, network size, and connec-
tivity but these published models are typical of a common
problem in computational neuroscience: a relatively small
network of about 100–1000 neurons with more than nearest
neighbour but less than all to all connectivity, composed of
from 10 to 100 compartments, with realistic channel prop-
erties and distributions, to be run on departmental machines
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Fig. 5 Simulations of large
networks on the EPFL IBM
Blue Gene. (A) Spike raster plot
of the parallel implementation
of an extended version (160,000
cells) of the Bush et al. (1999)
model; (B) Runtime (filled
symbols) and processor
computation time (open
symbols) as a function of the
number of processors used for
the model scaled up to various
sizes; In all cases, the simulated
time was 200 ms. Dashed lines
represent the ideal scaling for
each model size. (Note: the
160 k cell simulation was too
large to run with 2000 CPUs
since only 512 MB are available
for each CPU)

with a few tens of processors. From this point of view, a
major result of this work is that superlinear efficiency, up to
≈ 2, can be reached with an appropriate choice of network
size, neuron biophysical properties, and computer system
size.

For machines with fewer than 200 CPUs, the performance
results over a range of network size, neuron complexity,
and number of processors, are explained by the dominance
of cache memory effects over the small extra time needed
for interprocessor spike exchange. Clearly, efficient use of
a parallel system is obtainable by distributing the neurons
among the available processors in such a way that the sub-
net assigned to each processor: (i) is biophysically complex
enough so that integration times are both very similar on all
processors and are much larger than an MPI Allgather call,

and (ii) it can be run entirely in its cache or with little use
of main memory. The superlinear speedup is due to more ef-
fective use of a processor’s high-speed cache memory. Each
processor’s subnet problem size reduces with the number of
available processors, and so a greater proportion of that prob-
lem fits into the processor’s cache memory where memory
access is more evenly matched to the cpu speed. Eventually,
the problem size becomes small enough on each processor
so that it fits entirely into the cache and increasing spike
communication overhead then results in decreasing speed-
up. This cache effect is not seen on the EPFL IBM Blue
Gene since its low power consumption cpu speed, cache,
and 512 MByte main memory are balanced so that every
memory location has approximately the same access time by
the cpu.
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Fig. 6 Runtime (filled circles) as a function of the number of pro-
cessors used for 65,536 or 262,144 integrate and fire cells (I&F) using
1000 or 10,000 connections/cell, respectively. The dashed lines repre-
sent ideal scaling

It is reasonable to take the view that superlinear speedup
reflects an inefficient use of memory resources because of
the excessive pointer distance between successively accessed
memory. We intend to look at this issue in more detail
in order to permit an increase in problem size before en-
countering this cache effect. Previously, in the early 90’s,
NEURON underwent a memory pointer vectorization code
transformation in order to efficiently use the Cray YMP
SIMD pipeline and those idioms remain available. How-
ever, with the use of object-oriented programming to support
conceptual clarity and incremental evolution of NEURON,
dynamic object creation has caused a loss of efficiency in
memory access patterns. A promising performance trans-
formation might be to reorganize the memory allocation
process for a size N vector of membrane mechanism ob-
jects each having M data fields, into M data vectors of size
N.

The most important performance determinant is the de-
cision of how to distribute gids (cells) on the processors. It
is extremely important that each processor is given approxi-
mately the same amount of work to do. Each processor has
to wait for all the others when spikes are exchanged so if one
processor takes twice as long as the others to do a maximum
integration interval, that slows the other processors down
by a factor of two (idle half the time). For this reason we
generally chose the number of processors to be an integer
fraction of the number of cells in our tests. For examples with
multiple types of cells we chose, if possible, the number of
processors to be an integer fraction of each type. Our tests
always obtained good balancing by using the round robin or
“card dealing” algorithm:

for (i = pc.id; i < ncell; i += pc.nhost) {
pc.set gid2node (i, pc.id)

}

and we did not attempt any improvement in those cases
where the count of a particular cell type was not an integer
multiple of the number of available processors. A distant
second in terms of likely benefit for performance optimiza-
tion is the arrangement of gids that minimizes the number
of spikes that have to be communicated (i.e. cell groups that
are densely interconnected should as much as possible be
on the same machine). The METIS (Karypis and Kumar,
1998) graph partitioning program can be used to define a
ngid on nhost partition that optimizes balance and mini-
mizes communication. In the performance tests of the three
published models, communication overhead is such a small
portion of the total simulation time that we have not tried to
optimize the buffer size of the initial MPI Allgather where
there is a balance between almost always sending a too large
buffer and occasionally having to do an MPI Allgatherv to
send the overflow. Presently, the default configuration value
for the number of (gid, spiketime) pairs that can be sent
along with the number of pairs is nrn spikebuf size = 0. i.e.
only the number of spikes is sent. At CPU numbers where
interprocessor spike exchange begins to affect the runtime,
the subnets are so small that the most common maximum
number of spikes generated in an integration interval is 1.

Interprocessor spike exchange time using MPI Allgather
for a constant number of CPUs can be approximated, at least
for our family of scaled Bush models, as the sum of a fixed
overhead and a term proportional to the number of spikes
exchanged. On the EPFL IBM BlueGene, the fixed over-
head seems to be effectively constant between 50 and 500
CPUs and then begins to double as the number of CPUs
doubles from 1000 to 8000 CPUs. In this latter CPU range
the proportionality factor increases less than linearly with
number of CPUs. The lesson to be drawn from the Bush
model scaling results is straightforward. Since it is gener-
ally the case that number of spikes generated is proportional
to number of cells, there is a certain number of CPUs at
which the spike exchange time is of the same order as the
computation time and this number is independent of further
increases in network size. In this regime, further improve-
ment in communication time, if possible, will necessitate
MPI Send/MPI Receive methods that take advantage of net-
work connection topology.

A simulation domain where processor computation time
no longer scales ideally with increasing number of CPUs is
one involving a very large number of spikes with constant
synaptic delay. Large nets with fast spiking artificial cells
(Fig. 6) make this point dramatically. The problem is that
every spike generated must be delivered to at least one cell
on every CPU. Thus queue handling is essentially the same
on every CPU regardless of the number of CPUs. Ironically,
this effect would not have been seen in a model with random
delays since NEURON would not have been able to use the
optimization of only putting generated spikes on the queue
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and instead would have filled the queue with the 1000/ncpu or
10000/ncpu fold greater number of “to be delivered” spikes,
and so queue time would have scaled ideally just as it did
with the random delay Bush et al. (1999) model. However,
the computation time would have been much larger. So this
optimization gives greatest benefit on a serial machine. There
are a number of further queue optimizations one can imag-
ine which use special model properties (e.g. A small set of
FIFO queues handling a small set of delays, (Mattia and Del
Giudice, 2000)) or are limited to fixed step integration meth-
ods (e.g. a ring buffer equal in size to the maxdelay/dt).
However, it should be noted that eliminating queue handling
as a runtime factor still leaves a 17 Seconds spike exchange
time above the ideal runtime at 8196 CPUs with the large
artificial net in Fig. 6. To reduce that in an MPI Allgather
context would require spike compression techniques such as
implemented in the NEST simulator (Morrison et al. 2005).

We do not anticipate spike exchange limited performance
for the Blue Brain neocortical simulations. Those will use
multi-hundred compartment 3D reconstructed morphologies
for each cell. Thus communication overhead is potentially
only a few percent or less on full 8196 processor simu-
lations. On the other hand, cell heterogeneity will reduce
performance by making it impossible for each CPU to have
identical problem size. It is presently unclear whether the
benefits of finer grained load balance by means of paral-
lel distributed simulations of individual cells will justify the
much greater communication costs of exchanging tightly
coupled membrane potentials at each integration time step.
Note that NEURON’s variable step integrators (Hindmarsh
and Serban, 2002) already support parallel equation solving.
We are continuing research in this direction and it will be
necessary to design convenient-to-use ParallelContext meth-
ods to separate user-level cell specification from the details
of cell compartment distribution.

Although standard NEURON methods can be used to
save any specific state trajectories to files and normal Par-
allelContext methods can be used to transfer data between
any group of CPUs for further processing, it is most useful,
and fastest, to save the entire network (gid, spiketime) pat-
tern into a file, as was done for the raster plots in Figs. 4
and 5. This allows the subsequent playback of the spiketime
pattern using the PatternStim class, into any subnet or single
cell simulation run on a serial machine. The serial simula-
tion is then a quantitatively exact replica of that portion of
the full parallel simulation. This gives full GUI exploration
capabilities and retroactive plotting capabilities for any state
variable trajectory.

It should be noted that NEURON can be also configured
at build time with the options - with-neosim or - with-ncs
in which spike distribution is managed respectively by the
NEOSIM program (Goddard et al., 2001; http://neosim.org)
or the NeoCortical Simulator (NCS) (Wilson et al., 2003).

In both cases NEURON is linked as a library and the overall
network construction (i.e the distribution of cells and con-
nectivity), simulation management, and spike distribution,
is controlled by the NEOSIM or NCS core. The interface
to NEURON’s simulation engine is conceptually the same
in both cases, involving just three operations. (1) The con-
trolling program can tell NEURON on a specific processor
to integrate to a specific time. (2) The controlling program
can send NEURON spike information consisting of pairs of
NetCon index or pointer and delivery time, with the only
constraint being that the delivery time cannot be earlier than
the current integration time. (3) When a NEURON cell fires
(within the current integration request interval), NEURON
sends the cell pointer or index along with the precise firing
time to the controlling program. The spike distribution algo-
rithms for NEOSIM and NCS are more carefully tailored to
the actual processor to processor connectivity patterns and
make use of individualized MPI Send/MPI Receive pairs.
The increased (or decreased) performance compared to the
naive MPI Allgather approach is an experimental question
that is machine and problem dependent.

Acknowledgments We thank the Yale University Computer Science
Department (New Haven, CT, USA) and the CINECA consortium
(Bologna, Italy) for granting access to their parallel systems. We also
thank Christian Clemencon of EPFL for providing essential technical
assistance, and Felix Schuermann of EPFL for his feedback regarding
the parallel interface. This work was supported by NIH grants NS11613,
NS045612, and the Blue Brain Project.

References

Almási G, Heidelberger P, Archer CJ, Martorell X, Erway CC,
Moreira JE, Steinmacher-Burow B, Zheng Y (2005) Optimiza-
tion of MPI collective communication on BlueGene/L systems,
Proc. 19th annual international conference on Supercomputing,
Cambridge MA, pp. 253–262.

Bush PC, Prince DA, Miller KD (1999) Increased pyramidal excitability
and NMDA conductance can explain posttraumatic epileptogene-
sis without disinhibition a model. J. Neurophysiol. 82:1748–1758.

Carriero N, Gelernter D (1989) Linda in context. Communications of
the ACM, April 1989.

Delorme A, Thorpe SJ (2003) SpikeNET: an event-driven simulation
package for modelling large networks of spiking neurons. Network
14: 613–627.

Davison AP, Feng J, Brown D (2003) Dendrodendritic inhibition and
simulated odor responses in a detailed olfactory bulb network
model. J. Neurophysiol 90: 1921–1935.

Goddard NH, Hood G (1998) Large-scale simulation using parallel
GENESIS. In: JM Bower, D Beeman eds. The Book of GENESIS,
2nd edn. Springer-Verlag.

Goddard N, Hood G, Howell F, Hines M, De Schutter E (2001)
NEOSIM: Portable large-scale plug and play modelling. Neuro-
computing 38–40: 1657–1661
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