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Abstract Several methods have previously been proposed for mapping and enabling
the understanding of the brain’s organization. A widely used class of such methods
consists in reconstructing brain functional connectivity networks from imaging data,
such as fMRI data, which is then analysed with appropriate graph theory algorithms.
If the imaging datasets are acquired at high resolution, the complexity of the prob-
lem both in spatial as well as temporal terms becomes very high. In this work, brain
images were acquired using high-field scanners that produce very high resolution
fMRI datasets. In order to address the resulting complexity issues, we developed a
tool that is able to reconstruct the brain connectivity network from the high resolu-
tion images and analyse it in terms of the network’s information flowing efficiency
and also of the network’s organization in functional modules. We were able to see
that, although the networks are very complex, there is an apparent underlying orga-
nization. The corresponding structure allows the information to flow from one point
to another in a very efficient manner. We were also able to see that these networks
have a modular structure, which is in accordance with previous findings.
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1 Introduction

The human brain is known to be the most complex organ of the human body. Over
time its study has attracted considerable attention and researchers have come up with
multiple ways to analyse it. One possible way to do that is to build and analyse the
brain functional connectivity (BFC) network from the data provided by functional
Magnetic Resonance Imaging (fMRI). This BFC network allows to study the brain
using standard graph theory algorithms.

This work intends to address this analysis and mapping problem, by starting with
high resolution resting state fMRIs obtained from experimental 7T machine scans,
extracting from them the BFC network and applying network mining techniques
to analyse them. Having a high resolution image of the brain we hope will make
it possible to extract a more accurate and more detailed network. However, the in-
crease in data size is also a problem as the amount of data can easily be hundreds of
times larger than usual fMRI. Therefore one of the challenges of this work is to find
efficient ways to build, represent and analyse these networks.

fMRI

The fMRI is one of the most widely used brain imaging techniques. It relies on
the magnetic properties of the hemoglobin measuring the Blood-Oxygen Level-
Dependent (BOLD) signal. The brain activity is measured based on the changes
in the blood flow and on the fact that the blood flow in the brain is strongly corre-
lated with neuronal activity [1]. The BOLD signal will be more intense in the areas
of the brain that are active at a given time. Thus, the fMRI will provide a spatial
map of the 3D brain where each volume division (voxel) will have associated to it a
different BOLD signal fluctuation. This allows us to know how active that specific
volume unit of the brain was through the time course of the test.

Using a stronger magnetic field makes it possible to get higher quality spatial
resolution. That property is consequentially reflected on the size and number of
voxels, i.e., higher resolution yields more and smaller voxels.

Functional connectivity

The most commonly accepted definition of functional connectivity describes it as
the temporal correlation between spatially remote neurophysiological events [2, 3].
In other words the brain functional connectivity network will give us an insight on
how the different brain regions are functionally related. Several methods may be
used to evaluate functional connectivity. The evaluated functional connectivity may
differ depending on whether the complete time series is used or just part of it and
also on whether one uses the data from a single subject or the data obtained by aver-
aging across subjects. All these different approaches may yield different functional
connectivity networks even though the same datasets are being used. The basic el-
ements of this network will be the voxels the information about voxels functional
connectivity will determine if they are connected or not.
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Graph theory

To perform all the network mining analysis that are required to obtain the previously
described functional network, we resorted to graph theory. A generic graph G con-
sists of a set of nodes, or vertices, (V) connected to each other through a set of edges
(E), i.e., G = (V,E). These connections can either exist or not based on the pairwise
relation between the nodes.

Often a graph that models the brain functional network can have as vertices the
brain’s regions of interest (ROI), that are usually known from a brain atlas, which is
a three-dimensional map of the human brain. If a more detailed analysis is desired
the vertices can be the voxels that come directly from the fMRI.

In graph theory there are several metrics that can be computed for a given graph.
In order to understand them there are some baseline concepts that need to be defined
first. One simple concept is that of degree of a vertex, which is the number of edges
that are connected to it. Another important concept is that of a path, that is the
sequence of vertices and edges that are crossed to get from a vertex of the graph
to another. The length of a path can be measured by the number of edges that are
crossed and this yields the concept of distance between two vertices, as the shortest
of all paths that connect them.

2 Methods

In order to analyse the BFC networks using graph theory concepts several metrics
were used to give us an insight on the network’s structure such as the degree distri-
bution function, clustering coefficient, modularity and small world coefficient, that
are defined in [4, 5, 6, 7].

Building a network from fMRI data

In the BFC network each voxel will be a vertex and their pairwise functional con-
nectivity will be an edge. The most commonly used way to determine if there is an
edge between two vertices is to measure the correlation between them [8]. Having
the correlation between all pairs of voxels a threshold is set and only pairs with a
correlation above that level are accepted as functionally connected.

The amount of data that we are dealing with when we compute a matrix that cor-
relates every pair of voxels is a challenging problem, therefore we are going to do
some pre-processing before starting the computation. The most obvious step to do
first is, on each slice, to only consider the voxels that actually belong to the brain,
i.e., voxels that do not have any BOLD signal are no considered. Additionally, we
also want to avoid making the computation of the whole correlation matrix at once,
an instead do it in chunks. Each of those chunks is then processed to extract the
pairs of voxels whose correlation is above the chosen threshold. Those are stored
and all other data is discarded. The procedure is as follows: Initially the data matrix
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is divided in chunks of equal size where each matrix Yi has dimensions m×t, with m
being the number of voxels and t the number of different time points (Equation 1);
Then each of the chunks is correlated with all the other chunks yielding the corre-
lation matrix that is formed by the sub-matrices of the chunks pairwise correlations
(Equation 2). All of these sub-matrices will have the same size m×m, m being the
number of voxels that are present in each of the data chunks Yi.

Y =
[

Y1 Y2 ... Yn
]

(1) R =


R11 R12 ... R1n

R21
. . .

...
. . .

Rn1 Rn2 ... Rnn

 (2)

Community detection

We performed a modularity analysis that was intended to find separate modules on
the network. The best partition is the one that concentrates more edge density within
its modules. The optimization of modularity measure defined by Newman [5] is a
hard problem, thus we must rely on efficient greedy algorithms. Even though we are
not able to achieve optimal partitionings, we obtain reasonably good ones in linear
time. To do so we used a parallel algorithm developed by Boldi et al. [9] called
Layered Label Propagation (LLP) that is based on well known label propagation
algorithms but with the ability to tune the vertex resistance to change label lead-
ing to a hierarchical clustering. The conclusions regarding the different functional
modules drawn from these datasets were then compared with a different state of
the art analysis. The most commonly used approach to analyse resting state fMRI
is the Independent Component Analysis (ICA), and we will therefore be interested
in comparing with it. These Independent Components (ICs) can then be compared
with our results, to check for their validity. This validation was made by measuring
the overlap between the ICs and the modules found by the community detection al-
gorithm. The ICA analysis was conducted using FSL version 5.0.6 with MELODIC
version 3.14 [10] generating 20 ICs.

3 Results

The resting-state fMRI datasets were collected from a group of six healthy volun-
teers on a 7T Siemens machine yielding data with 1.1mm3 isotropic voxels. As the
size of the brain varies from one person to another, each of the subjects has a differ-
ent number of nodes in their BFC network. These are presented in Table 1.

For each subject, a different correlation threshold yields a different BFC network.
This difference can be easily observed when computing the number of edges. The
lower the threshold the more voxel pairs are considered as functionally connected
thus resulting in a higher number of edges for the lower thresholds.
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Subject Slices Number of nodes
1 144 1 365 082
2 120 1 080 702
3 133 1 282 836
4 138 1 305 160
5 145 1 365 120
6 135 1 262 244

Average 136 1 276 857

Table 1 Total number of nodes in the
BFC network of each subject

Edge average Edge density
0.40 668 989 847 8.2067e-04
0.45 302 385 481 3.7095e-04
0.50 136 909 022 1.6795e-04
0.55 61 017 717 7.4852e-05
0.60 26 350 364 3.2325e-05
0.65 10 887 184 1.3356e-05
0.70 4 263 328 5.2300e-06

Table 2 Number of created edges for
each subject using different thresholds

As one can observe from Table 2, for all the thresholds the edge density is very
low, which makes the network sparse. This was an expected result since in previous
state of the art works all the BFC networks were found to be sparse. [11, 7]

Connected components and degree distribution

In order to choose an appropriate threshold it is required to check how much infor-
mation about the network is lost when going from a low threshold to a higher one.
In order to evaluate this, the size of the giant connected component of the network
was computed and compared with the total number of nodes in the network. The
results regarding these computations are presented in Table 3.

Subject
T 1 2 3 4 5 6

0.40 100% 100% 100% 100% 100% 100%
0.45 98% 100% 99% 100% 99% 100%
0.50 77% 100% 91% 100% 88% 99%
0.55 53% 96% 58% 99% 58% 92%
0.60 37% 77% 44% 94% 35% 71%
0.65 26% 48% 32% 74% 23% 55%
0.70 16% 28% 22% 46% 14% 42%

Table 3 Percentage of the total nodes that are in the giant component of the network

From the results presented it is easy to conclude that if the threshold is too high
then the network loses its connectivity and the amount of information lost is also
too high. We could infer that, on average, for a correlation threshold between 0.4
and 0.5 little information seems to be lost, whereas above that we will start to have
is a significant loss of information.

Regarding the vertex degree distribution for the BFC networks it is also depen-
dent on the chosen correlation threshold. To check if our BFC networks exhibit
properties similar to the ones already studied in other state of the art works, their
degree distribution should follow a power law, with an exponent between 2 and 3.
For each subject and for each threshold the degree distribution function was com-
puted and fitted with a power law and the results of the power law exponent that fits
each degree distribution function are shown on Table 4.
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Subject
T 1 2 3 4 5 6

0.40 2.09 2.04 2.15 2.16 2.04 2.28
0.45 2.00 1.92 2.04 2.06 1.97 2.18
0.50 1.92 1.83 1.95 1.95 1.89 2.09
0.55 1.85 1.66 1.86 1.84 1.77 1.96
0.60 1.80 1.64 1.79 1.72 1.77 1.88
0.65 1.77 1.63 1.74 1.66 1.75 1.70
0.70 1.73 1.60 1.66 1.59 1.73 1.65

Table 4 Value of the exponent from the fitting function of the degree distribution

It is possible to see from Table 4 that the networks whose degree distribution is
closer to the ones reported in other state of the art works are the ones corresponding
to lower thresholds. This is expected as the edge density for the networks with higher
correlation thresholds is very low.

Small worldness

Based on the obtained results, the only networks that were considered for further
analysis were the ones obtained with a correlation threshold between 0.4 and 0.5.

To prove the small-world topology we need to compute the minimum average
path in all the BFC and respective random equivalent networks, and also the cluster-
ing coefficient for both cases. With this information we are now able to compute the
λ and γ coefficients as presented in [7]. All the results regarding these computations
are presented on Table 5 and Table 6.

T BFC rand λ

0.4 4.113 3.251 1.265
0.45 5.650 3.509 1.610
0.5 7.487 4.698 1.498

Table 5 Average characteristic path for
the BFC networks, their respective random
equivalents and value of the λ coefficient.

T BFC rand γ

0.4 0.213 0.053 4.102
0.45 0.197 0.042 4.690
0.5 0.173 0.039 4.436

Table 6 Average clustering coefficient of
the BFC networks, their respective random
equivalent networks and value of the γ coef-
ficient.

As one can see from Table 5 the minimum average path of all the BFC networks
is almost as low as the one from their random equivalents, which is exactly what
usually happens in small-world networks [4]. This is an important property of the
networks that have a small-world topology, it is possible to go from any vertex to
any other with a small number of steps. Regarding the clustering coefficient results,
presented in Table 6, we were able to see that these networks have a higher cluster
coefficient than its random equivalent. From the previous results it is possible to
estimate the σ coefficient, presented in [7] with the results shown in Table 7.

With these final results of the σ coefficient we are now able to postulate that all
the studied BFC networks have a small-world topology, since for all of them the σ

coefficient is higher than 1, which, as shown in the work of van den Heuvel et al.
[7], is enough to prove our assertion of small-worldness.
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T γ λ σ

0.4 4.102 1.265 3.243
0.45 4.690 1.610 2.913
0.5 4.436 1.498 2.961

Table 7 Average small-worldness coefficient of all the BFC networks

Community detection

For each of the three different BFC networks of all the subjects a community de-
tection algorithm was applied with the purpose of finding functional modules of the
brain. In order to validate these results, the found clusters were compared with the
resulting data provided by independent component analysis (ICA).

For the graph cluster analysis only the six major modules were represented be-
cause on average the other modules were very small when compared with the av-
erage size of the IC. There was some significant overlap between some modules
found by LLP and IC found by ICA, with some of these values up to 90%. This is
a very relevant result as it proves that our analysis made with the LLP algorithm
has very likely found relevant modules of the brain because it is supported by the
results of ICA. It was also possible to see that there is a significant overlap of the
modules with the ICs in almost every subjects’ networks at all three chosen thresh-
old levels; however some thresholds had better results than others. In Figure 1 three
modules from the BFC network of subject 3 are represented and also the ICs where
those modules are contained. As can be seen, both images are very similar, with the
modules that have a higher overlap with the IC being the ones that seem almost the
same.

Fig. 1 1 - Three modules found with LLP for subject 3 at a correlation threshold of 0.45; 2 - Three
IC found with ICA for subject 3 at a correlation threshold of 0.45

After measuring the overlap between the modules found with LLP and the ICA,
we computed their normalized mutual information (NMI). The results showed that
almost all the modules and ICs that were chosen have an NMI between 0.3 and 0.5.
This may seem an unexpected result because of the high percentage of vertices from
the modules that are contained in the ICs. However it is important to stress the fact
that the size of the modules sometimes is quite different from the size of the ICs,
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which means that although the majority of the vertices from the module overlaps the
IC there is still a number of vertices from the IC that is outside of that given module.

4 Conclusions and future work

The results of our work were very interesting, as far as reconstructing the BFC
network from high resolution fMRIs is concerned, because to the best of our knowl-
edge no tool has been presented that allows a reconstruction of such high resolution
networks. Furthermore, our results also showed that the structural properties of the
networks are similar to the ones found in low resolution networks. Thus, even at
high resolution, we found that there is an evident ability of the brain’s network to
flow information in a very efficient way.

Regarding the BFC network analysis, more advanced metrics can be computed
and more detailed modularity analysis can be made. For instance, for each clus-
ter that we found another modularity analysis can be performed and checked for
clusters within the clusters, i.e., check for some hierarchical information.

It is also important to stress that better and more advanced methods to pre-process
the data will yield more interesting and accurate the results. However, all these tech-
niques are also complex specially in datasets that cover areas such as the brainstem,
that are very exposed to noise.
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