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Effective Corner-Based Techniques
for Variation-Aware IC Timing Verification

Luis Guerra e Silva, Joel Phillips, and L. Miguel Silveira

Abstract—Traditional integrated circuit timing sign-off consists
of verifying a design for a set of carefully chosen combinations
of process and operating parameter extremes, referred to as
corners. Such corners are usually chosen based on the knowl-
edge of designers and process engineers, and are expected to
cover the worst-case fabrication and operating scenarios. With
increasingly more detailed attention to variability, the number
of potential conditions to examine can be exponentially large,
more than is possible to handle with straightforward exhaustive
analysis. This paper presents efficient yet exact techniques for
computing worst-delay and worst-slack corners of combinational
and sequential digital integrated circuits. Results show that the
proposed techniques enable efficient and accurate detection of
failing conditions while accounting for timing variability due to
process variations.

Index Terms—Corner, timing, variability, verification.

I. Introduction

Parametric performance models, where performance met-
rics, most commonly related to timing and power, are ex-
pressed as functions of parameter variations, have been intro-
duced for early prediction and detection of integrated circuit
(IC) performance issues due to process variability, inherent to
the latest nanometric IC technologies. New analysis techniques
that make use of these parametric models have likewise been
proposed. The most significant such example is statistical
static timing analysis (SSTA), where parameters are treated
as distributions rather than fixed numerical values. Several
promising SSTA modeling techniques have been proposed [1]–
[4], some of which are already implemented in commercially
available tools. However, SSTA is mostly used as an aid in
design optimization. Therefore, for the most part, the industry
golden standard methodology for timing sign-off still resorts
to traditional corner analysis techniques.

Even though SSTA techniques have received the most
attention in the literature, the parametric delay modeling
technologies they advocate have much wider applicability.
In particular, they can be used in reducing pessimism and
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automating well established timing verification methodologies.
Conventional IC timing sign-off consists in verifying a de-
sign for a set of carefully selected combinations of process
and operating parameter extremes, commonly referred to as
corners, that are expected to cover the worst-case scenarios.
However, there is no established systematic methodology for
picking such worst-case corners in a realistic manner, and this
task usually relies on the experience of design and process
engineers. Compounding the problem, for feature sizes in the
nanometric scale, the number of parameters to be considered
increases significantly. In an effort to overcome this limita-
tion of established timing sign-off methodologies, this paper
proposes an efficient automated methodology for computing
the worst-timing corners in a digital integrated circuit, when
parametric delay models are available. Specifically, we ad-
dress the computation of worst-delay corners of combinational
blocks and of worst-slack corners of sequential circuits. In this
approach, parameters only need to be characterized by their
respective value ranges. The proposed methodology casts the
computation of the worst-timing corners as a search problem,
which provides an intellectual paradigm that is more general
and useful than most previous approaches.

While it has become commonplace in the literature to argue
for a shift away from a corner-based analysis to a statistical
methodology, there are important reasons to improve the effi-
ciency of a corner-like methodology. First, such techniques are
easily integrated within currently used design and verification
paradigms. Second, they impose less stringent requirements
on parameter characterization. Finally, efficient worst-case
analysis can be a complementary technique to SSTA, by
providing insight into unusual circuit operating conditions.
This last setting is a primary motivator for our paper.

Recently, Onaissi and Najm [5] have proposed a linear-time
approach for timing analysis of combinational circuits that
computes a delay upper bound estimate, covering all process
corners. Such estimate is just a conservative approximation,
and the corresponding worst-delay corner cannot be inferred
from such estimate. Further, it is difficult, if not impossible,
to trace the corresponding critical path. The goal of our
paper is quite different, as we target the determination of the
exact worst-delay corner and associated paths. Additionally,
unlike [5] our paper covers the analysis of sequential circuits.

This paper is organized as follows. Section II introduces
a few basic concepts and notation. Section III formulates
the worst-delay corner problem and discusses exhaustive pro-
cedures for its solution. Section IV describes a worst-delay
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corner computation technique, proposed in [6]. Section V
proposes a novel technique for computing worst-slack corners
of sequential circuits. Section VI discusses the experimental
results and Section VII presents brief concluding remarks.

II. Background

This section introduces background information. We start by
reviewing the concept of timing graph, used to represent the
timing information of a circuit. Subsequently, we introduce the
parametric affine delay formulation used throughout the paper
and sometimes referred to as the canonical representation in
the SSTA literature [4].

A. Timing Graph

The timing information of a circuit is modeled by a timing
graph G = (V, E), where vertices, v ∈ V , correspond to pins in
the circuit, and directed edges, e ∈ E, correspond to pin-to-pin
delays in cells or interconnect. Each edge is annotated with the
corresponding delay. Further, some vertices are annotated with
timing constraints, such as required arrival times. The primary
inputs are vertices with no incoming edges. All vertices with
no outgoing edges are primary outputs, but there may also
be primary outputs with outgoing edges. The sets of primary
inputs and outputs of G are respectively PI(G) and PO(G).
A complete path is a sequence of edges, connecting a primary
input to a primary output. A partial path is a sequence of
edges connecting any two vertices. A complete path will be
referred to simply as a path.

Cell and interconnect delays are the result of a delay
calculation procedure, where slews are forward propagated
across the circuit and, using appropriate cell and interconnect
models, the delays and output slews for each component are
computed. Cell delays are annotated in the edges connecting
the vertices corresponding to input/output pins of the cell.
Interconnect delays are annotated in the edges connecting the
vertices corresponding to port/tap pins of interconnect nets.
It is out of the scope of this paper to discuss the delay
computation procedure [7] therefore, in the following, we will
assume that the timing information of any circuit is already
made available in the form of a timing graph.

B. Parametric Delay Formulation

This paper assumes delays to be described by affine func-
tions of process and operational parameter variations, corre-
sponding to a first-order linearization of every delay, d, around
a nominal point, λ0, in the parameter space. Considering the
parameter space to have size p, and representing d as a func-
tion of the incremental parameter variation vector, �λ = λ−λ0,
around a nominal value λ0, we obtain

d(�λ) = d0 +
p∑

i=1

di�λi = d0 + dT �λ (1)

where d0 = d(λ0) is the nominal value of d and di is the
sensitivity of d to parameter λi, i = 1, 2, . . . , p, computed at
the nominal point λ0. This representation is mathematically
equivalent to the canonical formulation prescribed in [4], but
the interpretation and subsequent treatment is, as we shall see,
quite different. Throughout this paper, and without loss of

generality, we will assume that all the parametric formulas
have been normalized such that �λ ∈ [0, 1]p.

When delays are given in the form of (1), arrival times
can be exactly represented by piecewise-affine functions, since
they are the result of a sequence of min/max and sum opera-
tions between piecewise-affine functions and affine functions.
An important property of affine functions is their convexity [8].
Both the min/max and sum operators produce convex functions
when operating on convex functions. In the context of timing
analysis, convexity implies that the smallest/largest delay or
arrival time is obtained by setting each parameter to one of
its extreme values. For the simple case of delays that are
represented by affine functions this value is fairly easy to
compute. Assuming that �λi ∈ [0, 1], if in (1) we set to 1 all
the parameter variations with positive sensitivities, and to 0
the remaining ones, we are maximizing the value of the affine
delay function over the parameter space, therefore obtaining
the maximum value

max
�λ

[d(�λ)] = d(�λ∗) = d0 +
p∑

i=1

di�λ∗
i (2)

where the maximizing parameter variation assignment is

�λ∗
i =

{
1 if di ≤ 0

0 if di > 0
, i = 1, 2, ..., p. (3)

The min can be computed by symmetry. For affine functions
this computation takes linear-time in the number of parame-
ters, however, for piecewise-affine functions this computation
is much more expensive, since it requires an implicit or explicit
enumeration of all the 2p possible solutions (corners), which
makes it exponential in the number of parameters.

III. Worst-Delay Corner

This section formulates the problem of computing the worst-
delay corner (WDC) of a combinational circuit, and discusses
exhaustive methods for its solution.

A. Problem Formulation

Consider the timing graph of a combinational block with
n inputs and m outputs. Assuming that delays, annotated in
edges, are affine functions of the process parameters, as in (1),
then any delay, di,j(�λ), from an input i to an output j can
be accurately represented by a piecewise-affine function.

The WDC problem, consists in computing an assignment,
�λ∗, to the parameter variation vector, �λ, that produces the
worst-delay, di,j(�λ), from any input i = 1, . . . , n to any
output j = 1, . . . , m.

In late mode, the worst-delay is the largest delay. Assuming
that dlate

i,j (�λ) is the piecewise-affine function of the delay in
late mode from input i to output j, then the WDC problem is
formulated as

max
�λ

{
max

j=1,...,m

[
max

i=1,...,n
dlate

i,j (�λ)

]}
. (4)

As we have seen, since arrival times are represented by
piecewise-affine functions which are convex, their largest value
is obtained by setting each parameter variation to one of
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its extreme values. Therefore, this problem can be cast as a
combinatorial optimization problem. The major difficulty with
this type of discrete problems, as opposed to continuous linear
problems, is that we do not have any optimality conditions to
check whether a given feasible solution is optimal or not. In
order to conclude that a feasible solution is optimal, we must
somehow compare its cost with the cost of all the other feasible
solutions. This amounts to always explore the entire solution
space, either explicitly or implicitly, by a complete or partial
enumeration of all the feasible solutions and their associated
costs.

B. Exhaustive Methods

The simplest exhaustive algorithm that can be conceived
for computing the WDC consists in evaluating the delay of the
circuit for each of the 2p possible parameter variation corners,
and verifying which corner produces the worst circuit delay,
which corresponds to the WDC. Clearly, this algorithm has
exponential run-time complexity in the number of parameters.

Another possible approach consists instead in computing
the WDC over all paths, rather than over all corners. Since
the number of paths can grow exponentially with the number
of vertices, and this procedure must be applied to every single
path, the overall procedure can have, in the worst-case, an
exponential run-time complexity.

As can easily be concluded, both exhaustive methods exhibit
exponential run-time complexity, either in the number of pa-
rameters or in the number of vertices. For very small circuits,
or when a small number of parameters is of interest, they may
constitute viable options. However, even average size circuits
will render both approaches unpractical, due to the excessive
run-time required for their successful completion.

IV. Dynamic Pruning

In this section, we propose an approach for computing
the WDC using branch-and-bound techniques [9], in order
to dynamically prune parts of the search space and therefore
avoid an explicit enumeration of all the possible solutions.

In the previous sections we did not make explicit the
meaning of worst, as it can represent the largest or smallest
value of a given timing estimate. For the sake of clarity, and
without loss of generality, in the following we will assume that
the worst value of a given estimate it is its maximum value.

Both parameter-based and path-based exhaustive search
algorithms described earlier can be improved by employing
branch-and-bound techniques. To understand how this can be
achieved, we detail a path-based search algorithm that is able
to efficiently compute the worst-delay corner, by finding one
path where it occurs. Considering one primary output at a
time, the algorithm performs an implicit search over all the
complete paths that end at that output, that we will designate
as the active primary output. The timing graph is traversed in a
backward fashion, starting at the active primary output, going
through the internal vertices, and eventually ending at the pri-
mary inputs (if no pruning is performed). The vertex being ex-
plored in a given step is designated by current vertex. The path
taken to reach that vertex from the active primary output is
designated by trail. When reconvergent fanouts exist, the same

vertex can be reached from the same primary output, through
distinct trails. The worst-delay (e.g., maximum delay), w∗,
among the delays of the complete paths already analyzed, is
continuously updated, as well as its originating parameter vari-
ation assignment, �λ∗. For each step, where the current vertex
is v, the algorithm relies on three parametric delay estimates.

1) din
v is an upper bound on the delay of all the partial paths

that start at a primary input and end in v (e.g., in the
fanin cone of v).

2) dout
v is the exact delay of the trail path, that starts in the

current vertex, v, and ends in the active primary output.
3) dpath

v = din
v + dout

v , which represents an upper bound on
the delay of all the complete paths that include the trail.

As v gets closer to the primary inputs, the upper bound given
by din

v gets tighter. If v is a primary input: din
v = 0 and dpath

v =
dout

v is the exact delay of the trail, rather than an upper bound.
The rationale underlying the proposed algorithm is that if

the worst-delay, among all the complete paths going through
v and including the trail, max�λ[dpath

v ], or an upper bound of
such delay, is not larger than the worst-delay already computed
for some other complete path, w∗, then it is useless to further
explore the fanin cone of v, as the worst-delay, w∗, cannot be
improved by such action.

The pseudocode of the algorithm is presented in function
WDC-PATH-BNB. It receives the timing graph, G, as the single
argument and returns a tuple, 〈w∗, �λ∗〉, with the worst-
delay value and its originating parameter variation assignment,
respectively.

The algorithm starts by invoking INITIALIZE on the timing
graph, G, which performs a forward levelized breadth-first
traversal of the timing graph and, for each vertex v, computes
the parametric formula for din

v . This formula, and delay
upper bounds in general, are computed by performing a max
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operation over the sum of the delay of each incoming edge
with the din estimate of the corresponding source vertex. The
upper bounds can either be constant values, affine functions
or piecewise-affine functions, depending on how the max
function is implemented.

After completing the initializations, the algorithm processes
the primary outputs, one at a time. For every primary output it
invokes the recursive function PROCESS-VERTEX, that performs
a backwards depth-first traversal of the timing graph toward
the primary inputs. In each step, a given vertex v is visited
(e.g., deemed the current vertex), and one of its fanins is
scheduled to be visited in the next step. Therefore, the current
vertex v is always connected to the active primary output by
the incomplete path used to reach v, that we already designated
by trail. All the vertices along the trail were visited before v.
For a given vertex v, the exact delay of the trail, dout

v , can
be computed by adding the delay of all the edges in the trail.
That computation is implicitly performed in Process-Vertex.
The value of dpath

v , computed by adding din
v and dout

v , is an
upper bound on the delay of any path that contains v, starts
at any primary input, and reaches the active primary output
trough the trail. dpath

v is an affine function of the parameter
variations. The worst value of dpath

v , that we designate by w,
and the corresponding corner, that we designate by �λ, can
be computed by applying (2) and (3).

If w is smaller than the largest (worst) known delay, w∗,
computed so far, then the worst-delay path cannot contain the
trail, and therefore we stop the traversal at this vertex, and
backtrace within the trail. If w is larger than w∗, and v is a
primary input, then there is a complete path with delay larger
than the largest known delay computed so far, and therefore the
largest known delay is updated, which corresponds to update
the value of w∗ with w. If we are not at a primary input, the
delay estimate is just an upper bound, and therefore it cannot
be used to update w∗. We proceed until all the paths in the
circuit are explicitly or implicitly explored. On termination, the
largest known delay w∗ and the corresponding corner, �λ∗,
are the worst-delay and the WDC of the circuit, respectively.

A similar set of branch-and-bound techniques can be applied
when searching in the parameter space (see [6] for details).

V. Worst-Slack Corner

Proper operation of a sequential circuit requires that the
input data line of any flip-flop must be stable for a specific
period of time before the capturing clock edge, designated by
setup time, tsetup. Let us assume that a flip-flop, with clock
latency (i.e., delay from clock source) lini , connected to the ith
primary input of the combinational block, is injecting data,
and another flip-flop, with clock latency lout

j , connected to the
jth primary output of the combinational block, is capturing
the result. Assuming that the clock edge is generated in the
clock source at time 0, then it will reach the injecting flip-
flop at time lini , making the data available at the primary input
of the combinational block. If the propagation delay in the
combinational block in late mode (i.e., considering that the
output of a cell is changed by the last input that changed),
from the ith primary input to the jth primary output, is dlate

i,j ,
then the results will be available in the output at most at time

lini +dlate
i,j . The next clock edge will reach the capturing flip-flop

at time T + lout
j . For a correct operation, the results must be

available at the jth primary output of the combinational block
tsetup time before the next clock edge reaches the capturing
flip-flop. Therefore, the setup time in the capturing flip-flop is
observed only if the following condition holds

lini + dlate
i,j ≤ T + lout

j − tsetup. (5)

This condition must hold for every 〈i, j〉 input/output flip-flop
pair. For a given output flip-flop j this set of constraints can
be compactly written as

max
i=1,...,n

(lini + dlate
i,j ) ≤ T + lout

j − tsetup. (6)

This expression induces a slack s
setup
j , defined as

s
setup
j = T + lout

j − tsetup − max
i=1,...,n

(lini + dlate
i,j ) (7)

that is nonnegative when the conditions are met and negative
otherwise. The worst-slack corner for s

setup
j is the corner where

its value is minimized, formally

max
�λ

(−s
setup
j ) = max

�λ

[
max

i=1,...,n
(lini + dlate

i,j ) − T − lout
j + tsetup

]
.

(8)

The corner, �λ∗, that maximizes the value of −s
setup
j among

all outputs j = 1, . . . , m is given by

max
�λ

{
max

j=1,...,m

[
max

i=1,...,n
(lini + dlate

i,j ) − T − lout
j + tsetup

]}
. (9)

Comparing (4) and (9) we can easily detect that they exhibit a
similar structure. For building (9), having (4) as a starting
point, we only need to add the clock latency, lini , inside
the max in i, corresponding to the inputs, and subtract the
required arrival time, T + lout

j − tsetup, inside the max in j,
corresponding to the outputs. Therefore, it can be concluded
that the worst setup slack corner problem can be cast as an
instance of the WDC problem, if the original timing graph of
the combinational block is modified by adding edges with the
input clock latency and required arrival time.

A similar formulation can be employed in the computation
of worst hold slacks, as well as slacks induced by other types
of parametric arrival times.

VI. Experimental Results

The proposed algorithms were coded in C++. Benchmark
circuits, selected from the ISCAS suite were synthesized
and mapped to a 90 nm industrial technology. As process
parameters, we considered the widths and thicknesses of the
eight metal layers needed to route each circuit, resulting in a
total of 16 parameters. For each circuit a timing graph was
generated having affine cell/interconnect delays annotated as
edge properties.

The experimental results for worst-delay corner computation
and worst-slack corner computation are presented in Table I.
All the experiments where conducted on a machine with an
AMD Opteron 850 processor at 2.4 GHz, and 32 GB of RAM.
For the benchmark circuits presented, the memory never
exceeded 600 MByte. “#C,” “#S,” and “#N” columns report
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TABLE I

Results for Worst-Delay and Worst-Slack Corner Computation

Design #C #N |V | |E| Path Exhaustive Path BnB Parameter Exhaustive Parameter BnB
#Search CPU(s) #Search CPU(s) #Search CPU(s) #Search CPU(s)

c432 88 124 415 575 1920392 3.4 561 <0.01 65536 27.45 1701 4.01
c1908 178 211 756 1065 3318560 6.22 1026 0.01 65536 67.88 2125 11.65
c3540 443 494 1882 2756 34153708 64.83 1052 <0.01 65536 299.31 2219 44.95
c5315 554 734 2644 3701 4218632 8.25 740 0.02 65536 417.06 701 23.94
c6288 1584 1653 5131 6998 >1571711079 >3000 2318098 8.62 65536 803.05 1339 133.18
c7552 820 1031 3483 4807 3788036 6.67 922 0.03 65536 550.29 1001 52.64

Design #C #S #N |V | |E|
Worst Setup Slack Worst Hold Slack

Path Exhaustive Path Bnb Path Exhaustive Path BnB
#Search CPU(s) #Search CPU(s) #Search CPU(s) #Search CPU(s)

s838 1 265 33 334 1002 1409 11526 0.01 176 <0.01 11526 0.03 64 <0.01
s1423 469 75 563 1829 2609 452286 0.85 334 0.03 452286 0.90 214 0.02
s9234 1 726 150 920 2999 4337 159966 0.30 402 0.03 159966 0.30 208 0.03
s5378 799 166 1058 3468 5049 67706 0.12 156 0.04 67706 0.16 70 0.03
s38584 5243 1187 6455 22863 34003 394194 0.81 138 0.43 394194 0.77 30 0.42
s38417 5517 1597 7153 25750 39948 15284978 29.28 298 0.61 15284978 30.51 34 0.63
s35932 6825 1763 8916 29305 43056 318414 1.01 222 0.70 318414 1.06 86 0.68

the number of combinational cells, the number of sequential
cells and the number of nets, respectively. “|V |” and “|E|”
report the number of vertices and edges in the corresponding
timing graph. For each analysis method, “#Search” and “CPU”
report the amount of search and the CPU time in seconds. For
path-based methods the amount of search is the number of
vertex visits, while for parameter-based methods the amount
of search is the number of decisions. The proposed branch-
and-bound-based algorithms are exact. The computed worst
corner/delay/slack results are the same as their corresponding
exhaustive versions. There are no errors or approximations in
the analysis. Therefore, due to space constraints we are not
showing the corner and delay/slack values.

Table I presents the results for WDC computation in
combinational circuits, using path-based and parameter-based
approaches. For each approach an exhaustive and a branch-
and-bound-based procedure were evaluated. Clearly, the
branch-and-bound techniques are quite effective in reducing
the amount of search. The computational overhead incurred
by the branch-and-bound approaches is largely compensated
by the CPU time saved during the search procedure. The
path-based approaches seem to be the most effective, even
in the exhaustive case. A exception is the design c6288 for
which the exhaustive path-based procedure does not terminate
after 3000 s, most likely due to the huge number of paths.
It is also in this design that the efficiency of the branch-
and-bound techniques is most noticeable, as the path-based
branch-and-bound procedure completes in less than 9 s.

Table I also presents the results for worst-slack corner
computation in sequential circuits, for setup and hold slacks,
obtained by applying path-based WDC computation proce-
dures. Once more the branch-and-bound procedure yields a
significant reduction in the amount of search, consequently
producing a significant reduction in the CPU time. Such
reduction is most noticeable for design s38417. Clearly, this
problem seems to be much easier to solve than the WDC
problem. This is not surprising, since the depth of the combina-
tional blocks in the sequential benchmark circuits is typically
much smaller than the depth of the combinational benchmark
circuits, and therefore the number of potential paths between

two registers it is also much smaller than the number of paths
in a combinational circuit.

VII. Conclusion

This paper proposes a set of efficient branch-and-bound-
based techniques for automating the computation of the exact
worst-timing corners of combinational and sequential circuits,
when delays are represented by affine functions of the process
parameters. These techniques are particularly adequate for
handling variability effects, that are of extreme relevance in
the latest nanometric IC technologies. Experimental evidence
demonstrates that such techniques are quite effective, outper-
forming exhaustive approaches by several orders of magnitude.
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for Variation-Aware IC Timing Verification

Luis Guerra e Silva, Joel Phillips, and L. Miguel Silveira

Abstract—Traditional integrated circuit timing sign-off consists
of verifying a design for a set of carefully chosen combinations
of process and operating parameter extremes, referred to as
corners. Such corners are usually chosen based on the knowl-
edge of designers and process engineers, and are expected to
cover the worst-case fabrication and operating scenarios. With
increasingly more detailed attention to variability, the number
of potential conditions to examine can be exponentially large,
more than is possible to handle with straightforward exhaustive
analysis. This paper presents efficient yet exact techniques for
computing worst-delay and worst-slack corners of combinational
and sequential digital integrated circuits. Results show that the
proposed techniques enable efficient and accurate detection of
failing conditions while accounting for timing variability due to
process variations.

Index Terms—Corner, timing, variability, verification.

I. Introduction

Parametric performance models, where performance met-
rics, most commonly related to timing and power, are ex-
pressed as functions of parameter variations, have been intro-
duced for early prediction and detection of integrated circuit
(IC) performance issues due to process variability, inherent to
the latest nanometric IC technologies. New analysis techniques
that make use of these parametric models have likewise been
proposed. The most significant such example is statistical
static timing analysis (SSTA), where parameters are treated
as distributions rather than fixed numerical values. Several
promising SSTA modeling techniques have been proposed [1]–
[4], some of which are already implemented in commercially
available tools. However, SSTA is mostly used as an aid in
design optimization. Therefore, for the most part, the industry
golden standard methodology for timing sign-off still resorts
to traditional corner analysis techniques.

Even though SSTA techniques have received the most
attention in the literature, the parametric delay modeling
technologies they advocate have much wider applicability.
In particular, they can be used in reducing pessimism and
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automating well established timing verification methodologies.
Conventional IC timing sign-off consists in verifying a de-
sign for a set of carefully selected combinations of process
and operating parameter extremes, commonly referred to as
corners, that are expected to cover the worst-case scenarios.
However, there is no established systematic methodology for
picking such worst-case corners in a realistic manner, and this
task usually relies on the experience of design and process
engineers. Compounding the problem, for feature sizes in the
nanometric scale, the number of parameters to be considered
increases significantly. In an effort to overcome this limita-
tion of established timing sign-off methodologies, this paper
proposes an efficient automated methodology for computing
the worst-timing corners in a digital integrated circuit, when
parametric delay models are available. Specifically, we ad-
dress the computation of worst-delay corners of combinational
blocks and of worst-slack corners of sequential circuits. In this
approach, parameters only need to be characterized by their
respective value ranges. The proposed methodology casts the
computation of the worst-timing corners as a search problem,
which provides an intellectual paradigm that is more general
and useful than most previous approaches.

While it has become commonplace in the literature to argue
for a shift away from a corner-based analysis to a statistical
methodology, there are important reasons to improve the effi-
ciency of a corner-like methodology. First, such techniques are
easily integrated within currently used design and verification
paradigms. Second, they impose less stringent requirements
on parameter characterization. Finally, efficient worst-case
analysis can be a complementary technique to SSTA, by
providing insight into unusual circuit operating conditions.
This last setting is a primary motivator for our paper.

Recently, Onaissi and Najm [5] have proposed a linear-time
approach for timing analysis of combinational circuits that
computes a delay upper bound estimate, covering all process
corners. Such estimate is just a conservative approximation,
and the corresponding worst-delay corner cannot be inferred
from such estimate. Further, it is difficult, if not impossible,
to trace the corresponding critical path. The goal of our
paper is quite different, as we target the determination of the
exact worst-delay corner and associated paths. Additionally,
unlike [5] our paper covers the analysis of sequential circuits.

This paper is organized as follows. Section II introduces
a few basic concepts and notation. Section III formulates
the worst-delay corner problem and discusses exhaustive pro-
cedures for its solution. Section IV describes a worst-delay

0278-0070/$26.00 c© 2010 IEEE
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corner computation technique, proposed in [6]. Section V
proposes a novel technique for computing worst-slack corners
of sequential circuits. Section VI discusses the experimental
results and Section VII presents brief concluding remarks.

II. Background

This section introduces background information. We start by
reviewing the concept of timing graph, used to represent the
timing information of a circuit. Subsequently, we introduce the
parametric affine delay formulation used throughout the paper
and sometimes referred to as the canonical representation in
the SSTA literature [4].

A. Timing Graph

The timing information of a circuit is modeled by a timing
graph G = (V, E), where vertices, v ∈ V , correspond to pins in
the circuit, and directed edges, e ∈ E, correspond to pin-to-pin
delays in cells or interconnect. Each edge is annotated with the
corresponding delay. Further, some vertices are annotated with
timing constraints, such as required arrival times. The primary
inputs are vertices with no incoming edges. All vertices with
no outgoing edges are primary outputs, but there may also
be primary outputs with outgoing edges. The sets of primary
inputs and outputs of G are respectively PI(G) and PO(G).
A complete path is a sequence of edges, connecting a primary
input to a primary output. A partial path is a sequence of
edges connecting any two vertices. A complete path will be
referred to simply as a path.

Cell and interconnect delays are the result of a delay
calculation procedure, where slews are forward propagated
across the circuit and, using appropriate cell and interconnect
models, the delays and output slews for each component are
computed. Cell delays are annotated in the edges connecting
the vertices corresponding to input/output pins of the cell.
Interconnect delays are annotated in the edges connecting the
vertices corresponding to port/tap pins of interconnect nets.
It is out of the scope of this paper to discuss the delay
computation procedure [7] therefore, in the following, we will
assume that the timing information of any circuit is already
made available in the form of a timing graph.

B. Parametric Delay Formulation

This paper assumes delays to be described by affine func-
tions of process and operational parameter variations, corre-
sponding to a first-order linearization of every delay, d, around
a nominal point, λ0, in the parameter space. Considering the
parameter space to have size p, and representing d as a func-
tion of the incremental parameter variation vector, �λ = λ−λ0,
around a nominal value λ0, we obtain

d(�λ) = d0 +
p∑

i=1

di�λi = d0 + dT �λ (1)

where d0 = d(λ0) is the nominal value of d and di is the
sensitivity of d to parameter λi, i = 1, 2, . . . , p, computed at
the nominal point λ0. This representation is mathematically
equivalent to the canonical formulation prescribed in [4], but
the interpretation and subsequent treatment is, as we shall see,
quite different. Throughout this paper, and without loss of

generality, we will assume that all the parametric formulas
have been normalized such that �λ ∈ [0, 1]p.

When delays are given in the form of (1), arrival times
can be exactly represented by piecewise-affine functions, since
they are the result of a sequence of min/max and sum opera-
tions between piecewise-affine functions and affine functions.
An important property of affine functions is their convexity [8].
Both the min/max and sum operators produce convex functions
when operating on convex functions. In the context of timing
analysis, convexity implies that the smallest/largest delay or
arrival time is obtained by setting each parameter to one of
its extreme values. For the simple case of delays that are
represented by affine functions this value is fairly easy to
compute. Assuming that �λi ∈ [0, 1], if in (1) we set to 1 all
the parameter variations with positive sensitivities, and to 0
the remaining ones, we are maximizing the value of the affine
delay function over the parameter space, therefore obtaining
the maximum value

max
�λ

[d(�λ)] = d(�λ∗) = d0 +
p∑

i=1

di�λ∗
i (2)

where the maximizing parameter variation assignment is

�λ∗
i =

{
1 if di ≤ 0

0 if di > 0
, i = 1, 2, ..., p. (3)

The min can be computed by symmetry. For affine functions
this computation takes linear-time in the number of parame-
ters, however, for piecewise-affine functions this computation
is much more expensive, since it requires an implicit or explicit
enumeration of all the 2p possible solutions (corners), which
makes it exponential in the number of parameters.

III. Worst-Delay Corner

This section formulates the problem of computing the worst-
delay corner (WDC) of a combinational circuit, and discusses
exhaustive methods for its solution.

A. Problem Formulation

Consider the timing graph of a combinational block with
n inputs and m outputs. Assuming that delays, annotated in
edges, are affine functions of the process parameters, as in (1),
then any delay, di,j(�λ), from an input i to an output j can
be accurately represented by a piecewise-affine function.

The WDC problem, consists in computing an assignment,
�λ∗, to the parameter variation vector, �λ, that produces the
worst-delay, di,j(�λ), from any input i = 1, . . . , n to any
output j = 1, . . . , m.

In late mode, the worst-delay is the largest delay. Assuming
that dlate

i,j (�λ) is the piecewise-affine function of the delay in
late mode from input i to output j, then the WDC problem is
formulated as

max
�λ

{
max

j=1,...,m

[
max

i=1,...,n
dlate

i,j (�λ)

]}
. (4)

As we have seen, since arrival times are represented by
piecewise-affine functions which are convex, their largest value
is obtained by setting each parameter variation to one of
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its extreme values. Therefore, this problem can be cast as a
combinatorial optimization problem. The major difficulty with
this type of discrete problems, as opposed to continuous linear
problems, is that we do not have any optimality conditions to
check whether a given feasible solution is optimal or not. In
order to conclude that a feasible solution is optimal, we must
somehow compare its cost with the cost of all the other feasible
solutions. This amounts to always explore the entire solution
space, either explicitly or implicitly, by a complete or partial
enumeration of all the feasible solutions and their associated
costs.

B. Exhaustive Methods

The simplest exhaustive algorithm that can be conceived
for computing the WDC consists in evaluating the delay of the
circuit for each of the 2p possible parameter variation corners,
and verifying which corner produces the worst circuit delay,
which corresponds to the WDC. Clearly, this algorithm has
exponential run-time complexity in the number of parameters.

Another possible approach consists instead in computing
the WDC over all paths, rather than over all corners. Since
the number of paths can grow exponentially with the number
of vertices, and this procedure must be applied to every single
path, the overall procedure can have, in the worst-case, an
exponential run-time complexity.

As can easily be concluded, both exhaustive methods exhibit
exponential run-time complexity, either in the number of pa-
rameters or in the number of vertices. For very small circuits,
or when a small number of parameters is of interest, they may
constitute viable options. However, even average size circuits
will render both approaches unpractical, due to the excessive
run-time required for their successful completion.

IV. Dynamic Pruning

In this section, we propose an approach for computing
the WDC using branch-and-bound techniques [9], in order
to dynamically prune parts of the search space and therefore
avoid an explicit enumeration of all the possible solutions.

In the previous sections we did not make explicit the
meaning of worst, as it can represent the largest or smallest
value of a given timing estimate. For the sake of clarity, and
without loss of generality, in the following we will assume that
the worst value of a given estimate it is its maximum value.

Both parameter-based and path-based exhaustive search
algorithms described earlier can be improved by employing
branch-and-bound techniques. To understand how this can be
achieved, we detail a path-based search algorithm that is able
to efficiently compute the worst-delay corner, by finding one
path where it occurs. Considering one primary output at a
time, the algorithm performs an implicit search over all the
complete paths that end at that output, that we will designate
as the active primary output. The timing graph is traversed in a
backward fashion, starting at the active primary output, going
through the internal vertices, and eventually ending at the pri-
mary inputs (if no pruning is performed). The vertex being ex-
plored in a given step is designated by current vertex. The path
taken to reach that vertex from the active primary output is
designated by trail. When reconvergent fanouts exist, the same

vertex can be reached from the same primary output, through
distinct trails. The worst-delay (e.g., maximum delay), w∗,
among the delays of the complete paths already analyzed, is
continuously updated, as well as its originating parameter vari-
ation assignment, �λ∗. For each step, where the current vertex
is v, the algorithm relies on three parametric delay estimates.

1) din
v is an upper bound on the delay of all the partial paths

that start at a primary input and end in v (e.g., in the
fanin cone of v).

2) dout
v is the exact delay of the trail path, that starts in the

current vertex, v, and ends in the active primary output.
3) dpath

v = din
v + dout

v , which represents an upper bound on
the delay of all the complete paths that include the trail.

As v gets closer to the primary inputs, the upper bound given
by din

v gets tighter. If v is a primary input: din
v = 0 and dpath

v =
dout

v is the exact delay of the trail, rather than an upper bound.
The rationale underlying the proposed algorithm is that if

the worst-delay, among all the complete paths going through
v and including the trail, max�λ[dpath

v ], or an upper bound of
such delay, is not larger than the worst-delay already computed
for some other complete path, w∗, then it is useless to further
explore the fanin cone of v, as the worst-delay, w∗, cannot be
improved by such action.

The pseudocode of the algorithm is presented in function
WDC-PATH-BNB. It receives the timing graph, G, as the single
argument and returns a tuple, 〈w∗, �λ∗〉, with the worst-
delay value and its originating parameter variation assignment,
respectively.

The algorithm starts by invoking INITIALIZE on the timing
graph, G, which performs a forward levelized breadth-first
traversal of the timing graph and, for each vertex v, computes
the parametric formula for din

v . This formula, and delay
upper bounds in general, are computed by performing a max
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operation over the sum of the delay of each incoming edge
with the din estimate of the corresponding source vertex. The
upper bounds can either be constant values, affine functions
or piecewise-affine functions, depending on how the max
function is implemented.

After completing the initializations, the algorithm processes
the primary outputs, one at a time. For every primary output it
invokes the recursive function PROCESS-VERTEX, that performs
a backwards depth-first traversal of the timing graph toward
the primary inputs. In each step, a given vertex v is visited
(e.g., deemed the current vertex), and one of its fanins is
scheduled to be visited in the next step. Therefore, the current
vertex v is always connected to the active primary output by
the incomplete path used to reach v, that we already designated
by trail. All the vertices along the trail were visited before v.
For a given vertex v, the exact delay of the trail, dout

v , can
be computed by adding the delay of all the edges in the trail.
That computation is implicitly performed in Process-Vertex.
The value of dpath

v , computed by adding din
v and dout

v , is an
upper bound on the delay of any path that contains v, starts
at any primary input, and reaches the active primary output
trough the trail. dpath

v is an affine function of the parameter
variations. The worst value of dpath

v , that we designate by w,
and the corresponding corner, that we designate by �λ, can
be computed by applying (2) and (3).

If w is smaller than the largest (worst) known delay, w∗,
computed so far, then the worst-delay path cannot contain the
trail, and therefore we stop the traversal at this vertex, and
backtrace within the trail. If w is larger than w∗, and v is a
primary input, then there is a complete path with delay larger
than the largest known delay computed so far, and therefore the
largest known delay is updated, which corresponds to update
the value of w∗ with w. If we are not at a primary input, the
delay estimate is just an upper bound, and therefore it cannot
be used to update w∗. We proceed until all the paths in the
circuit are explicitly or implicitly explored. On termination, the
largest known delay w∗ and the corresponding corner, �λ∗,
are the worst-delay and the WDC of the circuit, respectively.

A similar set of branch-and-bound techniques can be applied
when searching in the parameter space (see [6] for details).

V. Worst-Slack Corner

Proper operation of a sequential circuit requires that the
input data line of any flip-flop must be stable for a specific
period of time before the capturing clock edge, designated by
setup time, tsetup. Let us assume that a flip-flop, with clock
latency (i.e., delay from clock source) lini , connected to the ith
primary input of the combinational block, is injecting data,
and another flip-flop, with clock latency lout

j , connected to the
jth primary output of the combinational block, is capturing
the result. Assuming that the clock edge is generated in the
clock source at time 0, then it will reach the injecting flip-
flop at time lini , making the data available at the primary input
of the combinational block. If the propagation delay in the
combinational block in late mode (i.e., considering that the
output of a cell is changed by the last input that changed),
from the ith primary input to the jth primary output, is dlate

i,j ,
then the results will be available in the output at most at time

lini +dlate
i,j . The next clock edge will reach the capturing flip-flop

at time T + lout
j . For a correct operation, the results must be

available at the jth primary output of the combinational block
tsetup time before the next clock edge reaches the capturing
flip-flop. Therefore, the setup time in the capturing flip-flop is
observed only if the following condition holds

lini + dlate
i,j ≤ T + lout

j − tsetup. (5)

This condition must hold for every 〈i, j〉 input/output flip-flop
pair. For a given output flip-flop j this set of constraints can
be compactly written as

max
i=1,...,n

(lini + dlate
i,j ) ≤ T + lout

j − tsetup. (6)

This expression induces a slack s
setup
j , defined as

s
setup
j = T + lout

j − tsetup − max
i=1,...,n

(lini + dlate
i,j ) (7)

that is nonnegative when the conditions are met and negative
otherwise. The worst-slack corner for s

setup
j is the corner where

its value is minimized, formally

max
�λ

(−s
setup
j ) = max

�λ

[
max

i=1,...,n
(lini + dlate

i,j ) − T − lout
j + tsetup

]
.

(8)

The corner, �λ∗, that maximizes the value of −s
setup
j among

all outputs j = 1, . . . , m is given by

max
�λ

{
max

j=1,...,m

[
max

i=1,...,n
(lini + dlate

i,j ) − T − lout
j + tsetup

]}
. (9)

Comparing (4) and (9) we can easily detect that they exhibit a
similar structure. For building (9), having (4) as a starting
point, we only need to add the clock latency, lini , inside
the max in i, corresponding to the inputs, and subtract the
required arrival time, T + lout

j − tsetup, inside the max in j,
corresponding to the outputs. Therefore, it can be concluded
that the worst setup slack corner problem can be cast as an
instance of the WDC problem, if the original timing graph of
the combinational block is modified by adding edges with the
input clock latency and required arrival time.

A similar formulation can be employed in the computation
of worst hold slacks, as well as slacks induced by other types
of parametric arrival times.

VI. Experimental Results

The proposed algorithms were coded in C++. Benchmark
circuits, selected from the ISCAS suite were synthesized
and mapped to a 90 nm industrial technology. As process
parameters, we considered the widths and thicknesses of the
eight metal layers needed to route each circuit, resulting in a
total of 16 parameters. For each circuit a timing graph was
generated having affine cell/interconnect delays annotated as
edge properties.

The experimental results for worst-delay corner computation
and worst-slack corner computation are presented in Table I.
All the experiments where conducted on a machine with an
AMD Opteron 850 processor at 2.4 GHz, and 32 GB of RAM.
For the benchmark circuits presented, the memory never
exceeded 600 MByte. “#C,” “#S,” and “#N” columns report
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TABLE I

Results for Worst-Delay and Worst-Slack Corner Computation

Design #C #N |V | |E| Path Exhaustive Path BnB Parameter Exhaustive Parameter BnB
#Search CPU(s) #Search CPU(s) #Search CPU(s) #Search CPU(s)

c432 88 124 415 575 1920392 3.4 561 <0.01 65536 27.45 1701 4.01
c1908 178 211 756 1065 3318560 6.22 1026 0.01 65536 67.88 2125 11.65
c3540 443 494 1882 2756 34153708 64.83 1052 <0.01 65536 299.31 2219 44.95
c5315 554 734 2644 3701 4218632 8.25 740 0.02 65536 417.06 701 23.94
c6288 1584 1653 5131 6998 >1571711079 >3000 2318098 8.62 65536 803.05 1339 133.18
c7552 820 1031 3483 4807 3788036 6.67 922 0.03 65536 550.29 1001 52.64

Design #C #S #N |V | |E|
Worst Setup Slack Worst Hold Slack

Path Exhaustive Path Bnb Path Exhaustive Path BnB
#Search CPU(s) #Search CPU(s) #Search CPU(s) #Search CPU(s)

s838 1 265 33 334 1002 1409 11526 0.01 176 <0.01 11526 0.03 64 <0.01
s1423 469 75 563 1829 2609 452286 0.85 334 0.03 452286 0.90 214 0.02
s9234 1 726 150 920 2999 4337 159966 0.30 402 0.03 159966 0.30 208 0.03
s5378 799 166 1058 3468 5049 67706 0.12 156 0.04 67706 0.16 70 0.03
s38584 5243 1187 6455 22863 34003 394194 0.81 138 0.43 394194 0.77 30 0.42
s38417 5517 1597 7153 25750 39948 15284978 29.28 298 0.61 15284978 30.51 34 0.63
s35932 6825 1763 8916 29305 43056 318414 1.01 222 0.70 318414 1.06 86 0.68

the number of combinational cells, the number of sequential
cells and the number of nets, respectively. “|V |” and “|E|”
report the number of vertices and edges in the corresponding
timing graph. For each analysis method, “#Search” and “CPU”
report the amount of search and the CPU time in seconds. For
path-based methods the amount of search is the number of
vertex visits, while for parameter-based methods the amount
of search is the number of decisions. The proposed branch-
and-bound-based algorithms are exact. The computed worst
corner/delay/slack results are the same as their corresponding
exhaustive versions. There are no errors or approximations in
the analysis. Therefore, due to space constraints we are not
showing the corner and delay/slack values.

Table I presents the results for WDC computation in
combinational circuits, using path-based and parameter-based
approaches. For each approach an exhaustive and a branch-
and-bound-based procedure were evaluated. Clearly, the
branch-and-bound techniques are quite effective in reducing
the amount of search. The computational overhead incurred
by the branch-and-bound approaches is largely compensated
by the CPU time saved during the search procedure. The
path-based approaches seem to be the most effective, even
in the exhaustive case. A exception is the design c6288 for
which the exhaustive path-based procedure does not terminate
after 3000 s, most likely due to the huge number of paths.
It is also in this design that the efficiency of the branch-
and-bound techniques is most noticeable, as the path-based
branch-and-bound procedure completes in less than 9 s.

Table I also presents the results for worst-slack corner
computation in sequential circuits, for setup and hold slacks,
obtained by applying path-based WDC computation proce-
dures. Once more the branch-and-bound procedure yields a
significant reduction in the amount of search, consequently
producing a significant reduction in the CPU time. Such
reduction is most noticeable for design s38417. Clearly, this
problem seems to be much easier to solve than the WDC
problem. This is not surprising, since the depth of the combina-
tional blocks in the sequential benchmark circuits is typically
much smaller than the depth of the combinational benchmark
circuits, and therefore the number of potential paths between

two registers it is also much smaller than the number of paths
in a combinational circuit.

VII. Conclusion

This paper proposes a set of efficient branch-and-bound-
based techniques for automating the computation of the exact
worst-timing corners of combinational and sequential circuits,
when delays are represented by affine functions of the process
parameters. These techniques are particularly adequate for
handling variability effects, that are of extreme relevance in
the latest nanometric IC technologies. Experimental evidence
demonstrates that such techniques are quite effective, outper-
forming exhaustive approaches by several orders of magnitude.
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