

Simplification of Non-Deterministic Multi-Valued Networks

 Alan Mishchenko Robert Brayton
 ECE Dept. EECS Dept.
 Portland State University, Portland, OR University of California, Berkeley, CA
 alanmi@ee.pdx.edu brayton@eecs.berkeley.edu

Abstract1

We discuss the simplification of non-deterministic MV
networks and their internal nodes using internal flexibilities.
Given the network structure and its external specification, the
flexibility at a node is derived as a non-deterministic MV
relation. This flexibility is used to simplify the node
representation and enhance the effect of Boolean resubstitution.
We show that the flexibility derived is maximum. The proposed
approach has been implemented and tested in MVSIS [16].
Experimental results show that it performs well on a variety of
MV and binary benchmarks.

1 Introduction

The simplification of multi-valued (MV) logic networks is an
important step in solving problems formulated in terms of MV
logic. These include MV logic synthesis [9], software-hardware
co-design [6][8], asynchronous circuit synthesis [10], and data
mining [5].

Optimization of MV networks is achieved by applying a
number of logic simplification and restructuring operations. One
such method consists of deriving internal don’t-cares for the
logic functions of the nodes based on the particular network
structure. These don’t-cares are used to simplify the nodes’
representations. A version of don’t-care simplification for
binary networks, developed in [17], uses a combination of
satisfiability don’t-cares (SDCs) and compatible observability
don’t-cares (CODCs). It was implemented as command
full_simplify in SIS [1], with several improvements reported in
[18]. Recently, it was shown that a CODC can be computed
independently of a node’s implementation [2]. The concept of
CODCs was generalized for MV networks and successfully
implemented [7] (fullsimp in MVSIS) and applied to MV
network optimization. Like SIS, MVSIS can be applied to
sequential circuits, FSMs and automata.

We provide a new scheme to compute the flexibility of a node
in an MV network. The flexibility computed is complete
(maximum) but not compatible. Hence, it must be used, to
simplify the node, before any other nodes are changed. Because
the flexibility is complete, it allows for a more thorough
simplification compared to compatible or partial flexibility

1 The first author was partially supported by a research grant from Intel
Corporation. The second author acknowledges the generous support of the SRC
under contract 683.004, the GSRC and the California Micro program with our
industrial sponsors, Cadence and Synplicity.

derived by other methods, which are subsets of the complete
flexibility.

Although complete (or maximum) flexibility has been derived
for Boolean networks where each node has a single binary
output [19] and even for networks with multi-output binary
nodes (Boolean relations) [20], no result existed for MV
networks.

The present work differs from [7] in the following ways:
• the node representation before and after simplification

can be non-deterministic;
• flexibility is derived as a non-deterministic relation;
• maximum (not compatible) flexibilities are used;
• “partial cares” are used for minimization;
• new methods for MV-SOP minimization, including a

minimum non-deterministic cover, are developed.
These ideas have been implemented as a new MVSIS

command, complete_simplify, which is more effective than
other network simplification options in MVSIS [16], such as
fullsimp [7].

The rest of the paper is organized as follows. Section 2
supplies necessary background in multi-valued logic. Section 3
presents an algorithm to compute the complete flexibility for a
MV node in the MV network. Section 4 discusses the
simplification of the nodes using this flexibility. Section 4.4
addresses fast computation of MV irredundant sums-of-product
(MV-ISOP). Section 5 gives some experimental results. Section
6 concludes the paper.

2 Background

2.1 Multi-Valued Relations
Definition. Let the domain of a multi-valued variable ai be

denoted as Dai. An MV relation R with MV input variables {ai}
and an MV output variable z relates input minterms to output
values:

R(a1, a2,…,an, z): Da1×Da2×…×Dan×Dz→ {0,1}.
Definition. The set of minterms of the combined input

domains of relation R, where the output takes only one value,
is the care set of R. The set of minterms, where the output is the
set of all possible values, is the don’t-care set of R. The set of
other minterms is the partial care set of R.

Definition. If the total domain of R is the care set, R is a
completely specified MV function. If the total domain of R
consists of the care set and the don’t-care set, R is an
incompletely specified MV function. If the domain of R contains

0-7803-7607-2/02/$17.00 ©2002 IEEE

557

as least one partial care minterm, R is a partially specified (non-
deterministic) MV relation.2

Example. Figure 1 shows three ternary MV relations
depending on binary variable a and ternary variable b. Relation
R1 is completely specified; R2 is incompletely specified; R3 is
partially specified, or non-deterministic.

 R1 R2 R3
 b\a 0 1 b\a 0 1 b\a 0 1
 0 0 2 0 0,1,2 2 0 0,1 1,2
 1 0 0 1 0 0 1 0,1 0
 2 1 0 2 0,1,2 0 2 0,1,2 0,1

Figure 1. Example illustrating types of MV relations.

Definition. The i-th on-set (called i-set) of MV relation R is
the MV-input binary-output function Fj defined over the input
domain of R and taking value 1 for those minterms where the
set of output values of R contains value i. The essential i-set
consists of those minterms where the output value set consists
of only value i.

Note that the i-sets of a completely specified MV function are
pair-wise disjoint. The i-sets of an incompletely specified
relation or partially specified relation can overlap. The essential
i-sets are always disjoint.

Definition. MV relation R1 is contained in (or implies) MV
relation R2 (denoted R1 ⇒ R2) if they have the same input
domain and for each such minterm, the output values of R1 are a
subset of the output values of R2.

Example. In Figure 1, R1 ⇒ R3 is true, but R2 ⇒ R3 does not
hold because for the minterm (0,0), the value set of R2, {0,1,2},
is not a subset of the value set of R3, {0,1}.

Definition. A multi-valued sum-of-products (MV-SOP) is a
representation of an MV function, in which each i-set of the MV
function is represented by a set of MV cubes.

To reduce the total number of cubes needed to represent the
MV-SOP, one i-set is selected as the default one and is not
stored but is computed on demand by complementing the sum
of the cubes belonging to the other i-sets.3
2.2 Multi-Valued Networks

Definition. An MV network N is a directed acyclic graph with
nodes represented by MV relations.4 The sources of the graph
are the primary inputs of the network. There is one dummy sink
whose inputs are the primary outputs.

Typically, the nodes and their output signals are named the
same. The output of a node may be an input to other nodes
called its fanouts. The inputs of a node are called its fanins.

Definition. An MV network is non-deterministic if any of its
outputs is non-deterministic as a function of the primary inputs.
If all internal nodes are deterministic, then the network is
deterministic.

Actually, there are two notions of what constitutes a non-
deterministic function of the primary inputs of a network. The
first is what can be simulated when a ND node randomly selects
one of a possible set of output values. Then, a network is ND if

2 In the binary domain, incompletely and partially specified are the same.
3 In general, to be able to represent non-determinism at a node, all i-sets have to
be represented.
4 Normally, a network is represented by functions at the internal nodes.

there exists a primary input minterm, which can cause different
output values at one of the outputs. The second notion is similar,
except at each internal node, the set of all possible values are
propagated to its fanouts. In effect, on a fanout net, different
values can propagate to different fanouts at the same time. This
is similar to what is done in 3-valued simulation.

We use this second notion in this paper. The set of global
relations obtained at the outputs is called the behavior of the
network. The first notion is not used because it is not invariant
under node elimination and collapsing. For example, if a non-
deterministic node has several fanouts, and it is eliminated, the
effect is as if several copies are made and then each is inserted
into a fanout. After this there is no correlation between the
values that these copies produce.

Definition. The Cartesian product of the MV domains of the
fanin variables is the local space of a node. The MV relations of
the nodes expressed in the local space are the local relations.
The Cartesian product of the MV domains of the primary input
variables is the primary input space. The MV relations of the
nodes expressed in the primary input space are the global
relations.

To compute the global relations, the network is traversed in a
depth-first order and each local relation of a node is composed
with the global relations of its fanins. The global relation of a
primary input is the single-variable function of that input.5

Example. Consider the network given by the i-sets of its
nodes:

x{0} = a{0}b{0}
x{1} = a{1}b{1} + a{0}b{1}
x{2} = a{1}b{1} + a{1}b{0}
m{0} = x{0}
m{1} = x{1}
m{2} = x{2}
n{0} = x{0}
n{1} = x{1}
n{2} = x{2}
{y}{0} = m{0}n{1,2} + m{0,1}n{2} + m{2}n{0,1} + m{1,2}n{0}
{y}{1} = m{0}n{0} + m{1}n{1} + m{2}n{2}

Node y is the PO; a and b are the PIs. Node x is non-
deterministic. Two buffers, m and n, create two equivalent
copies of the output of node x. The buffers feed into an
equivalence detector y. Under the first notion of a non-
deterministic network, the network is deterministic, since x=1
and x=2 have an identical effect on the output y if only one of
them occurs at any time. However, collapsing the network in
depth-first order gives:

{y}{0} = a{1}b{1}
{y}{1} = a{1}b{1}+ a{1}b{0} + a{0}b{1} + a{0}b{0}

which is non-deterministic. The reason is that during collapsing
we substituted two independent copies of node x into node y,
which allow for x=1 and x=2 to occur at the same time.

Definition. A transformation changes the functionality of the
MV network if the global relation of at least one primary output
is not contained in the original specification. Note that this
definition does allow the set of behaviors represented by the
network to decrease, as long as all the behaviors of the new
network are contained in the original set of behaviors.

5 This procedure computes all behaviours of the network as defined by the
second notion of non-deterministic networks.

558

In this paper, transformations are not allowed to change the
functionality of the network. In general, it would be possible to
consider transformations that do change the functionality if later
they are followed by a transformation, which brings the network
back into conformity, but this is not considered in this paper.
2.3 Flexibility at a Node

Definition. A flexibility at node y of an MV network N is an
MV relation Rf

y such that replacing the current relation Ry of
node y by any deterministic relation contained in Rf

y does not
change the functionality of N. A flexibility Rf

y at a node y is
complete if it is impossible to add another output value to any
input minterm while preserving the flexibility property of Rf

y.
Definition. A set of flexibilities at a set of nodes is compatible

if performing simultaneous replacement of the node relations by
any set of relations contained in the respective flexibilities does
not change the functionality of the network.

Any compatible flexibility at a node is a subset of the
complete flexibility at that node. The flexibilities introduced and
computed in [7] are compatible. They can be pre-computed and
used independently at each node, but they are not complete and
therefore may result in sub-optimal networks.

3 Flexibility Computations

The function at a node can be changed without adding to the
behavior of the network by deriving the node’s complete
flexibility (CF) and replacing the current relation at the node by
any deterministic function contained in this flexibility.

The computation of CF is done in two steps: first the CF is
computed as a relation, R(X,y), between the PI and the output of
the node; second, it is computed as a relation between the inputs
of the node, Y, and the output of the node, � (,)R Y y .

Theorem 1. Let N be a MV network and yN be N clipped at
node y. Let (,)i

jR X y be the global function of the i-set i of the
primary output j, 1 ≤ j ≤ m, of network yN , expressed in terms
of the PI X and the additional primary input y. Let ()i

jR X be
the global function of i-set i at primary output j as derived from
the initial specification of N, and let Dj be the domain of output
j. The flexibility at node y in network N,

1

(,) [(,) ()]
j

m
i i
j j

j i D
R X y R X y R X

= ∈

= ⇒∏∏ 6,

where the additional primary input y plays the role of the output
variable of node y, is maximum.
Theorem 2. Given the maximum flexibility, R(X, y), at node y
computed in the primary input space, and relation M(X, Y)
relating the primary input space to the local input space of y,7
the flexibility in the local space,
 � (,) [(,) (,)]XR Y y M X Y R X y= ∀ ⇒
is maximum.

6 This formula could be written in terms of relations instead of i-set functions
using the correspondence

(, ,) [(,) ()]
j

i
j j j

i D
R X y z R X y z i

∈
= ⇒ =∑

but the use of i-set functions seems simpler.
7 It is important that M(X, Y) be computed by eliminating internal nodes in
topological order.

(,)R X y is called the observability partial care (OPC). (,)CR Y y
adds satisfiability don’t cares to this. (,)M X Y can be computed
by an image computation using output co-factoring [7].
3.1 Resubstitution

Resubstitution is used to optimize an MV network by re-
expressing a node’s MV relation using additional inputs. The
new representation of the node is accepted if the cost function of
the node is reduced. As a result, the support size of F can
change. Nodes that only fanned out to F but no longer do so,
can be completely eliminated from the network.

Example. Let a, b, and c be ternary variables. Consider
ternary functions F and G represented by MV-SOPs of their i-
sets:

F0 = a{0,1}b{2}c{2}+ a{2}c{2}; F1 = a{0}b{0}; F2= default
G0 = a{0,1}b{2}; G1 = a{2}; G2 = default.

The representation of F can be modified without changing its
functionality by incorporating G into the support of F:

F0 = G{0,1}c{2}; F1 = a{0}b{0}; F2= default.
Even though the support of F has increased as a result of this
resubstitution, the number of MV cubes and literals in the MV-
SOP are both reduced.

To limit the amount of computation required for re-
substitution at a node, we only consider those nodes, whose
fanins are a subset of the fanins of the given node (subset
support filter). In the above example, the support of G, is a
subset of the support of F, and thus G is a candidate for re-
substitution into F.

Resubstitution can be performed as an independent
transformation without using flexibility due to the network
structure. However, if a flexibility is available, the chances of
finding improvement during re-substitution are enhanced.
Therefore, in our implementation, similarly to [19],
resubstitution is built into the node simplification process.

Theorem 3. Let F and G be nodes with supports Y and B
where B is contained in A. Let a flexibility of F in its local space
be � (,)FR Y y , and the relation at node G in its local space
be � (,)GR B g , where g is the MV variable of the output of G. The
flexibility of F in the extended space, Yg = Y ∪ g, is:

 � � �(,) (,) (,)= +F F GgR Y y R Y y R B g
Theorem 3 is stated for one node, G, but for several nodes the

flexibility is extended by summing the complements of the
relations of these nodes.

After node simplification using the extended flexibility, the
resulting MV relation may not depend on some of the input
variables but may depend on some of the re-substituted
variables. The choice to preserve or remove the dependence on
a particular node is given to the node simplification procedure,
which can make decisions motivated by the optimization
criteria.

4 Node Simplification

We measure an MV-SOP by the total number of cubes in all
of its i-sets. We present algorithms for computing small
deterministic and non-deterministic MV-SOPs of an ND

559

relation and a method for computing the exact minimum non-
deterministic MV-SOP of an ND relation.
4.1 Deterministic MV-SOP Minimization

The computation starts by ordering the i-sets heuristically.
Typically, the current default value is ordered first. Then for
each i, we extract the remaining minterms of its i-set not yet
covered by i-set covers already computed. The minimized SOP
for the i-set is computed by a call to an SOP minimizer using
the remaining minterms that can’t be covered by subsequent i-
sets as the on-set and the rest of the remaining uncovered terms
in the i-set as the don’t-care set.

Since the remaining i-sets computed in each step do not
overlap with the covers selected for the previous i-sets, the
resulting MV-SOP is disjoint and, therefore, deterministic.
4.2 Heuristic ND MV-SOP Minimization

The computation proceeds in two steps. First, the essential
part of each i-set is minimized using the rest of that i-set as
don’t-care. Computed this way, the i-sets are allowed to overlap
resulting in a non-deterministic cover. This cover cannot be
larger than the deterministic cover if we use the same ordering
of the i-sets.

If at this point, all minterms are covered, the algorithm has
computed the exact minimum cover (provided that the MV-
input binary-output covers for each i-set have been minimized
exactly). Surprisingly, in our experience, this is the case for
about 90% of MV-SOP minimization problems that arise in the
simplification of non-deterministic networks.

If there are remaining uncovered minterms, each must be
associated with more than one output value. At this point, the
algorithm determines if there is at least one output value
common to all remaining minterms. In this case, all these are
added to the common value, and if this i-set has the largest
cover, it is made the default. This situation occurs in about 9%
of the cases, leaving only about 1% to be processed further.

Finally, a simple greedy approach is taken. Considering values
one by one in some heuristic order, as many minterms as
possible are added to each of the successive i-sets.
4.3 Exact ND MV-SOP Minimization

Surprisingly, it is relatively easy to obtain an exact non-
deterministic minimum cover. We first consider the case where
there is no default value and the goal is to find a set of covers
for all the i-sets which has the minimum total number of cubes.
A minimum cover of a relation can be found as follows.

For each i-set, generate its set of primes. Form a global unate
covering problem with the minterms to be covered being the
entire input space and the union of all primes of all i-sets as the
covering cubes. Solve for a minimum cover. Each prime chosen
in the minimum cover is put into its appropriate i-set to form the
minimum i-set covers.

Theorem 4: The above procedure gives a set of i-set covers
which has the minimum number of cubes. Each i-set cover is
prime and irredundant.

Note that the new relation is never larger than the current one.

When the default i-set is used, it is never represented since it
can be obtained by complementing all other i-sets.8 The
minimization problem is to choose the default in such a way that
the remaining i-sets can be covered with the minimum number
of cubes. This can be solved exactly as follows.

For each i, solve the covering problem as in Theorem 4
defined for all minterms of the input space that do not have
value i in their value set. The measure of the solution obtained is
the number of cubes in the cover, which does not contain the i-
th set. Do this for each i and choose the solution that has the
smallest measure.

Theorem 5: The above procedure leads to the minimum set
of covers when the default cover is not counted.

4.4 Minimization Based on MV-ISOP
Runtime considerations in the first two algorithms (the exact

algorithm has not been implemented yet) led us to experiment
with other heuristic minimization options. A promising
alternative was found in the Irredundant Sums-of-Product
(ISOP) method of Minato-Morreale [14] using ZDDs [15].

This computation is applied to a binary-encoded MDD when
an i-set is minimized with its don’t-care. The result of the ISOP
computation is the ZDD representation of the binary cover,
which can be decoded back into MV cubes. This algorithm is
fast but may not result in a prime or irredundant cover. For
example, if one or more input variables have an odd number of
values, then the binary ISOP is not prime and irredundant in the
MV domain.

Binary ISOP can be used also as a preprocessing step to
reduce the cube covers used in initial calls to Espresso-MV. Fast
binary ISOP computation proved to be helpful when the initial
specification had many cubes.

5 Experimental Results

The flexibility computation and simplification algorithms
(except for the exact algorithm of Section 4.3) have been
implemented in the MVSIS environment as the command
complete_simplify. The comparison of complete_simplify with
fullsimp [7] on the MV benchmarks was done on a 933MHz
Pentium III PC under MS Windows 2000. MVSIS used less
than 30Mb of RAM.

Benchmark in out lat node ival oval BDD
4-arbit-cell.mv 4 3 5 190 2.4 2.3 158
bakery-proc.mv 9 3 3 258 2.8 3.5 219

coherence-cch.mv 10 4 6 240 2.4 2.8 399
coh-dir.mv 6 8 11 653 2.5 2.2 327
comp.mv 4 2 0 11 2.0 2.0 53

ele-ctr-det.mv 14 4 12 1446 2.0 2.0 276
eisenberg-proc.mv 5 2 2 284 4.3 5.8 206

matmul.mv 8 4 0 4 3.0 3.0 117
slider-nsf.mv 9 9 0 316 9.0 9.0 526

sort.mv 8 8 0 24 3.0 3.0 304

Table 1. Benchmark statistics.

8 In binary logic synthesis, we usually only implement the onset of a node; if the
offset is required, it is produced by an invertor.

560

Table 1 lists statistics of the benchmarks tested. The columns
“in”, “out”, “lat”, and “node” list the number of primary inputs,
primary outputs, latches, and nodes in the network. Columns
“ival” and “oval” give the average number of values in the
domains of the primary input and output variables (including
also the latch inputs and outputs). Column “BDD” shows the
number of BDD nodes in the shared BEMDD computed for all
nodes in the network after reading in the benchmark, building
all global functions, and performing BDD variable reordering.

Table 2 illustrates the performance of complete_simplify on
the benchmarks. Column “orig” lists the number of literals in
the SOP after sweeping. Columns “fs”, “mfsi”, and “mfs” give
the number of literals in the SOP after running, respectively,
fullsimp [7], complete_simplify using ISOP, and
complete_simplify using Espresso-MV as the MV-SOP
minimizers. The runtimes compare fullsimp and
complete_simplify, when both programs use Espresso-MV. The
non-deterministic option in complete_simplify is used. In light
of these observations, the runtime is surprisingly small.
Although Espresso always gives better results than ISOP when
minimizing a node, the overall minimization with ISOP is more
efficient because ESPRESSO times out more often.

Literal count in SOP Runtime, sBenchmark
orig fs mfsi mfs fs mfs

4-arbit-cell.mv 136 82 86 84 0.2 0.4
bakery-proc.mv 540 256 231 234 0.9 1.5

coherence-cch.mv 755 356 302 291 0.9 1.9
coh-dir.mv 774 368 335 371 0.8 1.6
comp.mv 289 18 8 8 0.2 0.1

ele-ctr-det.mv 664 231 243 238 0.9 1.2
eisenberg-proc.mv 746 462 286 322 7.7 6.0

matmut.mv 480 320 320 320 0.1 0.1
slider-nsf.mv 312 312 306 306 0.3 1.0

sort.mv 2296 174 174 174 6.6 1.3
Total 6992 2579 2291 2348 18.6 15.1

Ratio, % 100 36.9 32.8 33.6

Table 2. Literal count and runtime comparison.

Literal count in SOP Runtime, s Benchmark
orig ss ssmi ssm ss ssmi ssm

4-arbit-cell.mv 136 54 55 57 0.9 1.5 1.8
bakery-proc.mv 540 160 154 157 38.2 4.6 10.3

coherence-cch.mv 755 152 141 139 2.4 2.9 8.3
coh-dir.mv 774 211 176 171 5.6 7.6 9.1
comp.mv 289 8 6 6 2.1 0.6 0.6

ele-ctr-det.mv 664 188 179 181 10.1 10.0 10.4
eisenberg-proc.mv 746 126 141 141 8.0 1.4 8.3

matmut.mv 480 96 112 112 0.4 0.7 0.7
slider-nsf.mv 312 216 222 222 5.1 1.6 2.9

sort.mv 2296 - 202 202 - 7.2 11.8
Total 6992 1211 1186 1186 72.8 30.9 52.4

Ratio, % 100 17.3 16.9 16.9

Table 3. Comparison as part of optimization script.

Table 3 compares the performance (in terms of runtime and
literal count) of fullsimp, complete_simplify with the ISOP
option, and complete_simplify with the Espresso-MV option
when these are used as part of an MVSIS optimization script
script.mvsis [16] similar to script.rugged used with SIS. Column

“orig” shows the original number of SOP literals after
sweeping. Columns “ss”, “ssmi”, and “ssm” show the number
of literals after running the script with fullsimp,
complete_simplify using ISOP, and complete_simplify using
Espresso-MV as MV-SOP minimization procedures. The dash
in Table 3 indicates the script did not complete in five minutes.
The average parameters have been computed without
considering the last line. All final results were formally verified
by comparing against the original circuits.

Table 2 shows that using complete flexibilities compared to
CODCs (complete_simplify vs. fullsimp) enhances the quality of
the final result. However, Table 3 shows this advantage is
diminished when run inside a standard script. On the other hand,
runtimes are improved by using complete flexibilities, and this
seems to lead to a more rugged script. The runtime reduction is
possibly explained by complete_simplify achieving a significant
reduction early, allowing later procedures to run faster.

Table 4 shows the relative amount of flexibility due to SDC,
CODC and CF measured as follows:

 100%
(1)

T MP
M V

−= ×
−

,

where T is the sum total of the numbers of output values for all
the input minterms of the relation, M is the number of the input
minterms, and V is the number of values in the output range.
The amount of flexibility is equal to 0% for completely
specified functions and 100% for relations that can take all
values for any minterm.

To illustrate how the amount of flexibility is measured
consider Figure 1, where M = 6 and V = 3. The ternary function
on the left has T = 6, which yields P = 0%. The relation in the
center and on the right have T = 10 and T = 12, which yields the
amount of flexibility P = 33% and P = 50%, respectively.

Global space, % Local space, % Benchmark
CODC CF SDC SDC

+CODC
CF

4-arbit-cell.mv 7 38 7 7 15
bakery-proc.mv 12 68 17 20 36

coherence-cch.mv 6 64 17 17 26
coh-dir.mv 2 61 18 18 31
comp.mv 0 3 17 17 19

ele-ctr-det.mv 12 42 7 7 15
eisenberg-proc.mv 1 57 38 38 53

matmul.mv 0 0 0 0 0
slider-nsf.mv 0 2 0 0 0

sort.mv 0 0 49 49 49
Total 40 335 170 173 244

Ratio, % 12 100 70 71 100

Table 4. Comparison of the amount of flexibility.

The numbers in Table 4 are averaged over all nodes in the MV
network. Note that SDCs can only be measured in the local
space. All initial circuits are deterministic, so the initial
flexibilities are zero. Table 4 shows CODCs give little
additional flexibility in the local space compared to SDCs,
while the complete flexibility (CF) contributes 29% on top of
SDCs + CODCs. It is not clear why CODCs adds so little
compared to SDCs. The contribution of CODCs is different for
binary benchmarks [11].

561

Table 5 compares full_simplify in SIS (columns “FS”) with
complete_simplify re-implemented in the SIS environment
(columns “CS”) using MCNC benchmarks. Column
“Benchmark” gives the benchmark name. Column “Statistics”
gives the number of inputs and outputs. Performance is
measured using the sum of literals in all factored forms as
reported by SIS. Column “Orig” gives the literals in the original
benchmarks. Runtime in seconds is reported in the last section.
Since SIS timed out for “alu4.blif”, this was not included in the
rows “Total” and “Ratio” of the table.

Table 5 shows that complete_simplify yields 11% less literals
compared to full_simplify in SIS, while the runtime of the SIS-
based re-implementation of complete_simplify is comparable to
that of full_simplify in SIS. We are currently working on
specialized techniques to speed-up the most time-consuming
part of complete_simplify: repeated computation of the global
BDDs. Preliminary experiments show that the new
implementation will be approximately three times faster than
the one reported in Table 5. This will make it applicable to
circuits beyond the scope of SIS.

Statistics Literals in FF Runtime
Benchmark Ins Outs Orig FS CS FS CS
9symml.blif 9 1 277 270 190 1.2 1.8

alu2.blif 10 6 453 374 415 1.9 2.4
alu4.blif 14 8 855 t/o 796 t/o 6.4
dalu.blif 75 16 3067 2331 1701 145.9 4.5
des.blif 256 245 6101 5677 4676 16.2 110.9
frg2.blif 143 139 2010 1522 1396 9.5 11.0
pair.blif 173 137 2420 2203 2131 6.5 25.9

c1908.blif 33 25 1497 1406 761 68.1 96.7
c432.blif 36 7 372 335 288 4.6 3.7
c880.blif 60 26 703 687 624 2.3 3.6

Total 16900 14805 12978 256 266.9
Ratio, % 100 88 77 100 104

Table 5. Comparison of full_simplify and complete_simplify.

We have not given the results where complete_simplify forces
each MV-SOP to be deterministic since this option leads to
significantly inferior quality. This is not a problem in binary
networks; all relations are deterministic since at each node, only
one i-set is represented, while the other is implied as the
complement of the first.

6 Conclusions

The main distinctive aspect of this work is the use of full
flexibility in minimizing nodes in an MV network.
Experimental results demonstrate that the new approach is
practical and produces compact representations when compared
with other methods. Used as part of a standard MV logic
optimization script, the new complete_simplify procedure leads
to faster and more rugged processing. In general, our experience
is that the use of MV networks helps reveal alternatives and
generalizations, allowing for better understanding, even in the
case of binary networks [12].

These methods are based on computing global BDDs. Beyond
that, a possibility is to use partitioning so that only a part of the
circuit is optimized at any one time [4]. Future work will try
partitioning in the context of MV networks.

References
[1] R. K. Brayton, G. D. Hachtel, C. T. McMullen,

A. L. Sangiovanni-Vincentelli. Logic Minimization Algorithms for
VLSI Synthesis. Kluwer Academic Publishers, Dordrecht, 1984.

[2] R. K. Brayton. Compatible Observability Don’t-Cares Revisited.
Proc. of IWLS’01. pp. 121-126.

[3] R. E. Bryant, "Graph-Based Algorithms for Boolean Function
Manipulation", IEEE Trans. on Comp, Vol. C-35, No. 8 (August,
1986), pp. 677-691.

[4] J. Cong, Y. Lin, W. Long. SPFD-Based Global Rewiring. Prog.
FPGA, 2002.

[5] C. M. Files, M. A Perkowski. Multi-Valued Functional
Decomposition as a Machine Learning Method. Proc. of ISMVL
'98, pp. 173 -178.

[6] J.-H. Jiang, Y. Jiang, and R. Brayton. An Implicit Method for
Multi-Valued Network Encoding. Proc. of IWLS’01, pp. 127-131.

[7] Y. Jiang and R. Brayton. Don’t-Cares and Multi-Valued Logic
Network Optimization. Proc. ICCAD’00. pp. 520-525.

[8] Y. Jiang and R. Brayton. Logic Optimization and Code
Generation for Embedded Control Applications. Proc. of CODES’
01, pp. 225-229.

[9] T. Hanyu, M. Kameyama. A 200 MHz Pipelined Multiplier Using
1.5 V-Supply Multiple-Valued MOS Current-Mode Circuits with
Dual-Rail Source-Coupled Logic. IEEE J.Solid State Circuits, vol.
30, no 11, pp. 1239-1245, Nov. 1995.

[10] A. Kondratyev. Design of Delay-Insensitive Combinational Logic
through MV-Synthesis. Unpublished manuscript.

[11] A. Mishchenko. An Experimental Evaluation of Algorithms for
Computation of Internal Don’t-Cares in Boolean Networks.
Technical Report. Sept. 2001.
http://www.ee.pdx.edu/~alanmi/research/net/DCcomparison.pdf

[12] A. Mishchenko, R. K. Brayton. A Boolean Paradigm in Multi-
Valued Logic Synthesis. Proc. IWLS ‘02, June 2002.

[13] A. A. Malik, R. Brayton, A. R. Newton and A. Sangiovanni-
Vincentelli. Reduced Offsets for Two-Level Multi-Valued Logic
Minimization. Proc. of DAC’ 90, pp. 290-296.

[14] S. Minato. Fast Generation of Irredundant Sum-of-Products Forms
from Binary Decision Diagrams. Proc. of SASIMI'92 (Synthesis
and Simulation Meeting and International Interchange), Kobe,
Japan, pp. 64-73.

[15] S. Minato. Zero-Suppressed BDDs for Set Manipulation in
Combinatorial Problems. Proc. of DAC ‘93, pp. 272-277.

[16] MVSIS Group. MVSIS. UC Berkeley.
http://www-cad.eecs.berkeley.edu/mvsis/

[17] H. Savoj. R. K. Brayton. The Use of Observability and External
Don’t-Cares for the Simplification of Multi-Level Networks.
Proc. of DAC’ 90. pp. 297-301.

[18] H. Savoj. Improvements in Technology Independent Optimization
of Logic Circuits. Proc. of IWLS’97.

[19] H. Savoj. Don't Cares in Multi-Level Network Optimization.
Ph.D. dissertation, UC Berkeley, May 1992.

[20] E. Sentovich, et al. “SIS: A System for Sequential Circuit
Synthesis”, Tech. Rep. UCB/ERI, M92/41, ERL, Dept. of EECS,
Univ. of California, Berkeley, 1992.

[21] Y. Watanabe, L. Guerra and R. K. Brayton. Logic Optimization
with Multi-Output Gates. Proc. ICCD ‘93, pp. 416-420.

562

