
Optimization of Multi-Valued Multi-Level Networks

M. Gao, J-H. Jiang, Y. Jiang, Y. Li, A. Mishchenko*, S. Sinha, T. Villa**, and R. Brayton
Electrical Engineering and Computer Sciences Dept.

University of California, Berkeley CA 94720
* Portland State University, Portland OR

** Parades, Rome Italy
(mvsis-devel@ic.eecs.berkeley.edu)

Abstract

A program called MVSIS has been developed which op-
timizes multi-level multi-valued networks (MV networks).
We describe what such a network is and the capabilities
contained in MVSIS. MVSIS is modeled after SIS, which
synthesizes binary multi-level networks, but the logic net-
work of MVSIS is such that all variables can be multi-
valued each with its own range. Included in MVSIS are
almost all the technology-independent transformations of
SIS for combinational and sequential logic synthesis as
well as transformations specific to multi-valued nodes such
as merge, pair decode, encode. MVSIS can read
and write BLIF-MV and BLIF files which describe MV-
networks and binary networks respectively.

1 Introduction

Multi-level multi-valued (MV) logic synthesis can have
many applications including:

1. Logic synthesis for multi-valued hardware devices
such as current-mode circuits [7].

2. Initial manipulation of a hardware description before
it is encoded into binary and processed by standard bi-
nary logic synthesis programs [8]; MV is a natural way
to describe procedures at a higher level.

3. A front end to a software compiler, since software
lends itself naturally to the evaluation of multi-valued
variables in a single cycle [10]. Strong logic synthesis
transformations can be applied to compilers aimed at
embedded applications.

4. Asynchronous synthesis of delay insensitive (DI) cir-
cuits [11].

5. Data mining, where the objective is a simple descrip-
tion that summarizes the content of some data [4].

We have developed and included techniques for opti-
mization of MV networks. MVSIS [2] is an interactive tool,
and has been made similar to SIS [19]. In the sequel, the
components of MVSIS that are specific to a multi-valued
environment and are different from their binary counterparts
are described. Although details of the MV operations are
beyond the scope of this paper, we include several exam-
ples illustrating the use of MVSIS for optimizing networks
in order to present its main capabilities and to give ideas for
its uses.

2 Network Specification

2.1 MV-Networks

An MV-network is a network of nodes; each node rep-
resents an MV-function with a single multi-valued output.
The functions associated with each value (value-functions)
of a node are stored in SOP form. We call these i-sets, e.g.
the 0-set is the onset of the function where the node has
value 0. There is one MV variable associated with the out-
put of each node. A directed edge connects from node i to
node j if any of the i-sets at node j depends explicitly on
the variable associated with node i. The network has a set
of primary inputs (all of which may be multi-valued) and a
set of nodes, designated as the outputs of the network. An
important distinction with other MV methods, is that each
variable can have its own range, which can in particular con-
tain two values. For each node, one of its i-sets is designated
as the default value and is not stored. It can be recovered by
complementing the sum of all the other i-sets.

In the initial specification, we allow non-deterministic
relations at the nodes. This is done by allowing a minterm
to be part of several i-sets. This may result in one or more
of the primary outputs to be non-deterministic as functions

Proceedings of the 32nd IEEE International Symposium on Multiple-Valued Logic (ISMVL�02)
0195-623X/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: INESC. Downloaded on December 14, 2009 at 12:30 from IEEE Xplore. Restrictions apply.

of the primary inputs. In this case, the result of synthesis
may be a subset of the initial relation specified.
MVSIS supports sequential MV-networks with multi-

valued latches, i.e. storage devices that can hold any of a
set of values.

2.2 External Don’t Cares

External don’t cares can be specified as a separate com-
binational network, called EXDC. The inputs of EXDC are
the primary inputs plus the latch outputs; the outputs of the
EXDC can be a subset of the primary outputs. The outputs
of the EXDC are matched by name with those of the orig-
inal network. They are binary variables, even though the
original outputs may be multi-valued. Given an output func-
tion f , its companion external don’t care function defines a
Boolean function, such that for any of its onset minterms,
the output of f can have any value (universal don’t care
minterms).

For any primary output, if all its i-sets are specified and
their sum does not cover all the minterms in the input space,
it is incompletely specified. In this case, the unspecified
minterms are assumed to be able to take any value at the out-
put, namely they are don’t cares. In some applications, like
data mining, the unspecified minterms can consume a large
space. MVSIS provides a way of automatically extracting
incomplete specification as external don’t cares. In the cur-
rent implementation, if an incompletely specified table in
the network is (i) a primary output, and (ii) all its fanins are
primary inputs, then an EXDC network is extracted for that
node.

External don’t cares are a form of non-determinism, but
are restricted to the case when either an input minterm as-
sumes a unique output value or any output value is allowed
(universe of the output variable). MVSIS supports specifi-
cation of partial cares, where an input minterm may assume
any value from a proper subset of the universe of the out-
put values. This is done by specifying a node whose i-set
functions intersect. Also, we derive partial cares from the
network structure and use them at internal nodes as part of
a new minimization procedure.

External sequential don’t cares can be derived from the
network by extracting states that can’t be reached from the
specified initial state. These are combined with any already
existing don’t care network.

3 Combinational Optimization

3.1 Node Simplification

The i-sets (one for each output value) at an MV-node
can be simplified using various simplify commands. Gener-
ally these use a two-level logic minimizer like ESPRESSO-

MV [17], which minimizes MV-input, binary-output func-
tions. The objective of a general two-level minimization is
to find a logic representation with a minimum number of
implicants (cubes) and literals while preserving function-
ality. Don’t cares derived from the surrounding network
structure can be used in the minimization process. Each of
the i-sets, except the default, is simplified and replaced with
simplified versions if the new functions have been improved
according to the cost function in use. Recently, we imple-
mented a multi-valued version of ISOP minimization [12]
and found that it can be particularly effective when mini-
mizing functions with large don’t care sets. It is also helpful
as a preprocessing step to ESPRESSO-MV.

For each node, an i-set is selected as the default. For
example, for a binary output function, the offset is usually
the default. The default i-set is never looked at unless a
particular command requires it. For example, if the output
x of a binary function is used in the complemented form x

in a fanout, and the node producingx is eliminated, then the
SOP for x must be computed and substituted in that fanout.

A powerful node simplification called fullsimp and
is the direct generalization of the one in SIS. The notion of
compatible observability don’t cares (CODC) used in SIS
[18] has been generalized to take MV-nodes into account
[9]. Given these, MV-image computation techniques are
used to map them to the local space of each node. In ad-
dition, a SDC of those nodes in the network whose support
is a subset of the support of the node being simplified is
added to the local don’t care set thus derived. This allows a
form of Boolean substitution when fullsimp is executed.
Each node is then simplified by ESPRESSO-MV using this
local don’t care set.

A more powerful node simplification method [14],
called fullsimp complete performs the same steps as
fullsimp (deriving flexibility and simplifying the nodes)
but does it with the following differences:

1. The flexibility at a node is represented as a relation1

between the node’s fanins and its output (generally
multi-valued). This relation gives all possible combi-
nations of inputs and outputs of the node, which, when
they appear at the node, will not change the overall net-
work behavior at the primary outputs. It is a complete
description of a node’s flexibility.

2. The flexibility computation and node simplification are
interleaved. The reason for this is that the complete
flexibility is not compatible; thus a node must be op-
timized immediately after the flexibility is computed.

1In the multi-valued output case, this relation can describe ”partial
cares” which state that for a given minterm, the node output can be any
of a subset of values. Note that for the binary output case, a partial care
is the same as a don’t care since any subset of values with more than one
value is the full set, and hence a don’t care.

Proceedings of the 32nd IEEE International Symposium on Multiple-Valued Logic (ISMVL�02)
0195-623X/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: INESC. Downloaded on December 14, 2009 at 12:30 from IEEE Xplore. Restrictions apply.

When a node is modified, the changes are introduced
into the network before the complete flexibility of the
next node is computed.

3. Node representations before and after simplification
are allowed to be non-deterministic. Having a non-
deterministic node before simplification is not a prob-
lem because the flexibility relation computed at a node
always contains the node representation, which can
also be a relation. Allowing for a non-deterministic
representation after simplification can reduce the lit-
eral count in the node representation.

4. The default value may be changed if this improves the
cost function of the network. In the binary case, chang-
ing the default corresponds to a phase assignment step
at the node, which is not performed in SIS.

5. New heuristic MV-SOP minimization methods, which
allow for non-determinism of the resulting representa-
tions, have been developed for use with this new pro-
cedure.

3.2 Algebraic MV Methods

An important step in network optimization uses alge-
braic methods for extracting new nodes representing logic
functions that are common factors of other nodes. Sev-
eral techniques based on algebraic decomposition are part
of SIS. Similarly, we have developed new algebraic tech-
niques for MV-logic [1, 5, 6] which treat binary and multi-
valued variables uniformly. These include methods for find-
ing common sub-expressions, semi-algebraic division, de-
composing a multi-valued network, and factoring a SOP
form. Brief descriptions of these are listed below.

1. Algebraic substitution of one node into another is
performed in MVSIS using semi-algebraic division
[6]. This method attempts to divide or substitute one
function into another. All i-sets of the divisor are tried.
There are two modes for this. If the divisor is a two-
cube divisor, then a fast method based on matching is
used; otherwise, a slower branch and bound method
(called the satisfiability-matrix method) is used.

2. Node extraction looks at all the nodes in the network
and tries to extract good common factors and create
new nodes in the network, re-expressing other nodes
in terms of these newly introduced nodes. It is one of
the transforms used to break down large functions into
smaller pieces.

Generally, the method works by generating candidate
two-cube divisors by making each pair of cubes in a
node’s SOP i-set, cube-free. These candidate two-cube
divisors are made canonical and hashed into a table. A

count is kept on the number of hits for each entry, to
obtain the value of a divisor. Complements of candi-
dates are also kept if they are two-cube expressions.
The divisor with the largest value is extracted as a new
node and substituted (divided) into all functions where
applicable. For efficiency, the candidate divisor table
is only incrementally updated after each substitution.

3. Factorization creates a factored form for each i-set.
The following is an example of a resulting factored
form.

a{2,3}b{0,1} + a{0,3}b{1,2}
+ a{1,2}b{0,3} + a{0,1}b{2,3} =
(a{0,2,3}b{0,1,2} + a{0,1,2}b{0,2,3})
(a{1,2,3}b{0,1,3} + a{0,1,3}b{1,2,3})

Factored forms of i-sets are used in evaluating the com-
plexity of an i-set in some network cost functions.

Decomposition uses factoring of each i-set of a node,
but instead of creating a factored form for each, creates
new nodes according to its factorization. Such inter-
mediate nodes may not have been produced by node
extraction, so there is a possibility of finding better
common factors as well. After decomposition, a resub-
stitution followed by an elimination of useless nodes is
done to eliminate duplicate factors.

3.3 Network Manipulations

1. Collapsing converts the entire multi-level network so
that the SOP forms for each output are in terms of the
primary inputs only. Thus the number of nodes in the
network will be exactly the number of primary out-
puts. A new version of collapse is based on building
the MDDs of the outputs, and deriving an ISOP [12]
for each value. Generally, this is very fast if the MDDs
can be built efficiently. In addition the use of ISOPs
gives a result that is partially minimized.

2. Merging is an operation unique to the multi-valued do-
main. It takes a list of nodes and forces a merge of
them into a single multi-valued node by building one
i-set for each combination of values of the nodes being
merged. In the worst case, if for example, there are k

binary nodes in the list, it will create a single node with
2
k values. However, some new i-sets may be empty, in

which case they are not created. In addition, if a pair
of values always appears together in all the fanouts,
then their functions will be combined into a single i-
set. Merging can be made automatic by asking MVSIS
to find good combinations of nodes to merge. Merging
is one of the methods for creating MV intermediate
nodes. Note that node extraction and decomposition

Proceedings of the 32nd IEEE International Symposium on Multiple-Valued Logic (ISMVL�02)
0195-623X/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: INESC. Downloaded on December 14, 2009 at 12:30 from IEEE Xplore. Restrictions apply.

discussed in the previous sub-section only create bi-
nary output nodes, since these methods are based on
AND/OR factoring.

3. Encode is like the inverse of the merge of binary func-
tions. It tries to find a good binary encoding for each
multivalued variable in the network, including primary
inputs and outputs. At the end, each signal is en-
coded as a binary signal. Then a binary file can be
written. However, often we want to keep the I/Os the
same (e.g. for verification purposes), so as an option,
encoders and decoders can be put at the inputs and
outputs which keep the network in its original multi-
valued I/O form.

The encoding has two phases. The first starts at the in-
puts and for each node, determines if one of its fanins
can be used to partially encode the node [15]. To
achieve this, we test how many values are in each of the
cofactors with respect to the chosen fanin (which can
be multi-valued). If the number of values is reduced
enough, the node is broken down into two functions,
the chosen fanin (a node which already exists) and a
new function that has fewer values. The effect after the
first phase is a partially encoded network which has the
same number of nodes, but fewer values at some of the
nodes. The second phase starts from the outputs and
in reverse topological order works back to the primary
inputs. At each node, its outputs are encoded using the
information on how its fanouts are used [8].

4. Pair decoding is a type of node extraction operation
which does ”bit” pairing to create a new multi-valued
node. It is similar to merging, except for the criteria for
choosing when to pair (or merge) two nodes. It looks
for the ”best” pair of signals to merge together, based
on how these signals are used in the fanouts. Then
like merging it creates a new node with values equal
to all the decodes of the pair. The new node created is
algebraically substituted into other nodes. Finally, any
set of values of the new node, which always appear
together in the fanouts, are merged into a single value
of the new node. After this step, a simplify operation
should be executed to effect the full substitution.

5. Bi-decomposition is another operation in MVSIS that
creates multi-valued intermediate nodes [16]. It takes a
flattened or partially flattened MV-network and gener-
ates another one composed of two-input multi-valued
MAX and MIN gates and multi-valued literals. Both
the incompleteness of the initial specification and the
flexibilities generated in the decomposition process are
exploited. Bi-decompositoin can be viewed as a map-
ping technique resulting in a network of multi-valued
primitives analogous to NAND and NOR gate net-

works used in binary synthesis. This method is par-
ticularly suited for data mining because the maximum
and minimum relations are easily understood by the
humans.

4 Sequential Optimization

Similar to SIS, MVSIS performs all combinational opti-
mizations on the combinational part of the sequential net-
work. For a network with latches, MVSIS can compute the
set of states which can be reached from an initial state. The
set of unreachable states is then stored in the external don’t
care network (EXDC) and used in node minimization. In
the case where there exists an EXDC network already, the
unreachable state don’t cares are ORed with the existing
ones.

5 Other Operations

The usual operations which read and write BLIF-MV
files, and print statistics about the network are part of MV-
SIS. One that is special to the multi-valued environment is
print range which lists all the nodes by name and the
number of values for each signal.

6 Verification

MV-networks can be verified in MVSIS by either simu-
lation or by formal methods. Validation refers to checking
the equivalence of two networks by simulation. Formal ver-
ification computes the global function for each output using
an MDD representation and compares the MDD structure;
for sequential networks, it performs the same computation
for each latch input as well. If a match cannot be found
among the latch variables of the two networks to be verified,
no verification is claimed by this method. MVSIS supports
optimization of non-deterministic networks [14]. In these
cases formal verification checks for containment instead of
equivalence.

Sometimes it is important to know if a network is non-
deterministic. MVSIS has a built-in incomplete test for
non-determinism at the primary outputs which uses random
simulation. If a network is non-deterministic and this non-
determinism is detected by one of the random vectors, the
network is declared non-deterministic; however, absence of
a message does not imply that the network is deterministic.

7 Examples

A good way to understand MVSIS and what it might be
used for is through examples. We include examples that
illustrate various operations previously discussed.

Proceedings of the 32nd IEEE International Symposium on Multiple-Valued Logic (ISMVL�02)
0195-623X/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: INESC. Downloaded on December 14, 2009 at 12:30 from IEEE Xplore. Restrictions apply.

7.1 Example 1

The specification of the example matmul is given below
in the BLIF-MV format (see BLIF-MV documentation in
VIS).

#2 X 2 matrix multiply over the ring Z_3
.model matmul
.inputs a11 a12 a21 a22
.inputs b11 b12 b21 b22
.outputs c11 c12 c21 c22
.mv a11, a12, a21, a22 3
.mv b11, b12, b21, b22 3
.mv c11, c12, c21, c22 3
.table a11 a12 b11 b21 c11
0 0 - - 0
0 1 - - =b21
0 2 - 0 0
0 2 - 1 2
0 2 - 2 1
1 0 - - =b11
1 1 0 0 0
1 1 0 1 1
1 1 0 2 2
1 1 1 0 1
1 1 1 1 2
1 1 1 2 0
1 1 2 0 2
1 1 2 1 0
1 1 2 2 1
1 2 0 0 0
1 2 0 1 2
1 2 0 2 1
1 2 1 0 1
1 2 1 1 0
1 2 1 2 2
1 2 2 0 2
1 2 2 1 1
1 2 2 2 0
2 0 0 - 0
2 0 1 - 2
2 0 2 - 1
2 1 0 0 0
2 1 0 1 1
2 1 0 2 2
2 1 1 0 2
2 1 1 1 0
2 1 1 2 1
2 1 2 0 1
2 1 2 1 2
2 1 2 2 0
2 2 0 0 0
2 2 0 1 2
2 2 0 2 1
2 2 1 0 2
2 2 1 1 1
2 2 1 2 0
2 2 2 0 1

2 2 2 1 0
2 2 2 2 2
.table a11 a12 b12 b22 c12
0 0 - - 0
0 1 - - =b22
0 2 - 0 0
0 2 - 1 2
0 2 - 2 1
1 0 - - =b12
:
:
:
.table a21 a22 b11 b21 c21
0 0 - - 0
0 1 - - =b21
0 2 - 0 0
0 2 - 1 2
0 2 - 2 1
1 0 - - =b11
:
:
:
.table a21 a22 b12 b22 c22
0 0 - - 0
0 1 - - =b22
0 2 - 0 0
0 2 - 1 2
0 2 - 2 1
1 0 - - =b12
:
:
:
.end

The above example is stored in a file called matmul. We
start MVSIS with the command mvsis. The following
aliases are used:

rl read_blifmv
saf set autoexec print_stats -f
fs fullsimp
pr print_range
s simplify -t 2
pf print_factor
pr print_range
pio print_io
pd pair_decode

mvsis
UC Berkeley, MVSIS 1.2
changing to short-name mode
mvsis> rl matmul
mvsis> pr
{i}: 3
{j}: 3
{k}: 3
{l}: 3
a: 3
b: 3

Proceedings of the 32nd IEEE International Symposium on Multiple-Valued Logic (ISMVL�02)
0195-623X/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: INESC. Downloaded on December 14, 2009 at 12:30 from IEEE Xplore. Restrictions apply.

c: 3
d: 3
e: 3
f: 3
g: 3
h: 3
mvsis> pio
primary inputs: a b c d e f g h
primary outputs: {i} {j} {k} {l}
mvsis> saf
matmul: 4 nodes, 4 POs, 128 cubes(sop),

480 lits(sop), 216 lits(fact.)
mvsis> s
matmul: 4 nodes, 4 POs, 96 cubes(sop),

320 lits(sop), 160 lits(fact.)
mvsis> pd 1
m{0} = a{0}e{2} + e{0}
m{1} = a{0}e{1}
m{3} = a{1}e{2} + a{2}e{1}
n{0} = a{0}f{2} + f{0}
n{1} = a{0}f{1}
n{3} = a{1}f{2} + a{2}f{1}
o{0} = e{0}c{2} + c{0}
o{1} = e{0}c{1}
o{3} = e{1}c{2} + e{2}c{1}
p{0} = f{0}c{2} + c{0}
p{1} = f{0}c{1}
p{3} = f{1}c{2} + f{2}c{1}
q{0} = b{0}g{2} + g{0}
q{1} = b{0}g{1}
q{3} = b{1}g{2} + b{2}g{1}
r{0} = b{0}h{2} + h{0}
r{1} = b{0}h{1}
r{3} = b{1}h{2} + b{2}h{1}
s{0} = g{0}d{2} + d{0}
s{1} = g{0}d{1}
s{3} = g{1}d{2} + g{2}d{1}
t{0} = h{0}d{2} + d{0}
t{1} = h{0}d{1}
t{3} = h{1}d{2} + h{2}d{1}
matmul: 12 nodes, 4 POs, 64 cubes(sop),

184 lits(sop), 160 lits(fact.)
mvsis> s
matmul: 12 nodes, 4 POs, 56 cubes(sop),

96 lits(sop), 96 lits(fact.)
mvsis> pf
{i}{1} = p{2}t{2} + p{1}t{0} + p{0}t{1}
{i}{2} = p{2}t{0} + p{1}t{1} + p{0}t{2}
{j}{1} = m{2}q{2} + m{1}q{0} + m{0}q{1}
{j}{2} = m{2}q{0} + m{1}q{1} + m{0}q{2}
{k}{1} = n{2}r{2} + n{1}r{0} + n{0}r{1}
{k}{2} = n{2}r{0} + n{1}r{1} + n{0}r{2}
{l}{1} = o{2}s{2} + o{1}s{0} + o{0}s{1}
{l}{2} = o{2}s{0} + o{1}s{1} + o{0}s{2}
m{0} = a{0} + f{0}
m{2} = a{2}f{1} + a{1}f{2}
n{0} = c{0} + e{0}
n{2} = c{2}e{1} + c{1}e{2}

o{0} = c{0} + f{0}
o{2} = c{2}f{1} + c{1}f{2}
p{0} = b{0} + g{0}
p{2} = b{2}g{1} + b{1}g{2}
q{0} = b{0} + h{0}
q{2} = b{2}h{1} + b{1}h{2}
r{0} = d{0} + g{0}
r{2} = d{2}g{1} + d{1}g{2}
s{0} = d{0} + h{0}
s{2} = d{2}h{1} + d{1}h{2}
t{0} = a{0} + e{0}
t{2} = a{2}e{1} + a{1}e{2}
matmul: 12 nodes, 4 POs, 56 cubes(sop),

96 lits(sop), 96 lits(fact.)
mvsis> pr
{i}: 3
{j}: 3
{k}: 3
{l}: 3
a: 3
b: 3
c: 3
d: 3
e: 3
f: 3
g: 3
h: 3
m: 3
n: 3
o: 3
p: 3
q: 3
r: 3
s: 3
t: 3

7.2 Example 2

The second example is a 4-valued ALU and is one
(aluack.mv) of the set of benchmarks distributed with
MVSIS [2]. It also has a 4-valued control variable which
determines which operation is done by the ALU.

The following additional aliases are used in this example.
Note that encode -i does a binary encoding, but inserts
encoders and decoders at the inputs and outputs to keep the
inputs and outputs multi-valued. This allows a later verifi-
cation (vl against the original network.

enm encode -i
u undo
m merge
vl validate -n 1000
fx fast_extract
el eliminate

mvsis> rl aluack.mv
alu: 7 nodes, 2 POs, 68 cubes(sop),

140 lits(sop), 128 lits(fact.)

Proceedings of the 32nd IEEE International Symposium on Multiple-Valued Logic (ISMVL�02)
0195-623X/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: INESC. Downloaded on December 14, 2009 at 12:30 from IEEE Xplore. Restrictions apply.

mvsis> fs
alu: 7 nodes, 2 POs, 48 cubes(sop),

98 lits(sop), 96 lits(fact.)
mvsis> m
alu: 6 nodes, 2 POs, 41 cubes(sop),

80 lits(sop), 80 lits(fact.)
mvsis> vl aluack.mv
Networks are combinationally equivalent

according to simulation.
alu: 6 nodes, 2 POs, 41 cubes(sop),

80 lits(sop), 80 lits(fact.)
mvsis> pr
{e}: 4
{f}: 2
a: 4
b: 4
c: 2
d: 4
h: 4
j: 4
k: 4
l: 9
alu: 6 nodes, 2 POs, 41 cubes(sop),

80 lits(sop), 80 lits(fact.)
mvsis> pf
{e}{1} = d{3}j{1} + d{2}l{2,6} +

d{1}h{1} + d{0}l{1,2}
{e}{2} = d{3}j{2} + d{2}l{4,7} +

d{1}h{2} + d{0}l{3,4}
{e}{3} = l{5,6,7,8}(d{2}l{8} + d{0})

+ d{3}j{3} + d{1}h{3}
{f}{1} = c{1}j{0,3}k{0,1,3} +

h{1,2,3}l{0,3,4,5,6,7,8}
h{1} = b{1}l{0,1,3,5} + l{7}
h{2} = b{2}l{0,1,3,5} + l{6}
h{3} = a{3}b{3}l{0,1,3,5}
j{1} = c{1}k{0} + c{0}k{1}
j{2} = c{1}k{1} + c{0}k{2}
j{3} = c{1}k{2} + c{0}k{3}
k{1} = l{2,6}
k{2} = h{3}l{5} + h{0,1}l{1,3,4}
k{3} = l{8}
l{0} = a{0}b{0}
l{1} = a{1}b{1}
l{2} = a{1}b{0} + a{0}b{1}
l{3} = a{2}b{2}
l{4} = a{2}b{0} + a{0}b{2}
l{5} = a{3}b{3}
l{6} = a{3}b{2} + a{2}b{3}
l{7} = a{3}b{1} + a{1}b{3}
alu: 6 nodes, 2 POs, 41 cubes(sop),

80 lits(sop), 80 lits(fact.)
mvsis> enm
alu: 22 nodes, 2 POs, 87 cubes(sop),

338 lits(sop), 199 lits(fact.)
mvsis> fs
alu: 14 nodes, 2 POs, 36 cubes(sop),

81 lits(sop), 77 lits(fact.)

mvsis> fx
alu: 16 nodes, 2 POs, 37 cubes(sop),

78 lits(sop), 75 lits(fact.)
mvsis> el 0
alu: 14 nodes, 2 POs, 35 cubes(sop),

79 lits(sop), 74 lits(fact.)
mvsis> pr
{e}: 4
{f}: 2
a: 4
b: 4
c: 2
d: 4
d0: 2
e0: 2
h0: 2
j0: 2
k0: 2
l0: 2
m0: 2
n0: 2
o0: 2
p0: 2
q0: 2
w0: 2
alu: 14 nodes, 2 POs, 35 cubes(sop),

79 lits(sop), 74 lits(fact.)
mvsis> pf
{e}{0} = d0{0}e0{0}
{e}{1} = d0{1}e0{1}
{e}{2} = d0{0}e0{1}
{f}{0} = l0{0}m0{0}(c{0} + h0{1}) + q0{1}
d0{1} = d{3}h0{1} + d{0,2}j0{1} + d{0,1}l0{1}
e0{1} = d{3}(k0{1}w0{0} + k0{0}w0{1}) +

m0{1}(d{1,2}p0{0} + d{0,1}p0{1})
+ d{0,2}k0{1}l0{0}m0{0}

h0{1} = c{0}j0{1} + w0{1}
j0{1} = n0{1}o0{0}
k0{1} = j0{1}p0{0} + l0{1}p0{1} + m0{0}o0{1}
l0{1} = a{1,3}j0{0}
m0{1} = n0{0}o0{1} + p0{0}q0{0}
n0{1} = (a{0,2,3}b{0,1,2} + a{0,1,2}b{0,2,3})

(a{1,2,3}b{0,1,3} + a{0,1,3}b{1,2,3})
o0{1} = q0{0}(a{1,3}b{1,3}n0{1} +

a{0,2}b{0,2}) + a{1,2}n0{0}
p0{1} = a{1,2}b{1,2} + a{0,3}b{0,3}

+ b{0,2}o0{1}
q0{1} = a{0,1}b{0,1}
w0{1} = c{1}j0{0}
mvsis> vl aluack.mv
Networks are combinationally equivalent

according to simulation.

7.3 Example 3

The following example is an FSM where an EXDC is
extracted due to the initial specification being incomplete.

Proceedings of the 32nd IEEE International Symposium on Multiple-Valued Logic (ISMVL�02)
0195-623X/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: INESC. Downloaded on December 14, 2009 at 12:30 from IEEE Xplore. Restrictions apply.

.model lion9

.inputs i0 i1

.outputs ns o0

.mv i0 2

.mv i1 2

.mv o0 2

.mv ps, ns 9 st0 st1 st2 st3 st4 st5 st6 st7 st8

.latch ns ps

.reset ps
st0
.table i0 i1 ps -> ns o0
1 0 st0 st1 0
0 0 st0 st0 0
0 0 st1 st0 0
1 0 st1 st1 0
1 1 st1 st2 0
1 0 st2 st1 0
1 1 st2 st2 0
0 1 st2 st3 0
1 1 st3 st2 1
0 1 st3 st3 1
0 0 st3 st4 1
0 1 st4 st3 1
0 0 st4 st4 1
1 0 st4 st5 1
0 0 st5 st4 1
1 0 st5 st5 1
1 1 st5 st6 1
1 0 st6 st5 1
1 1 st6 st6 1
0 1 st6 st7 1
1 1 st7 st6 1
0 1 st7 st7 1
0 0 st7 st8 1
0 1 st8 st7 1
0 0 st8 st8 1
.end

The following external don’t care network is produced, due
to the incomplete specification of the above table:

.exdc

.inputs i0 i1 ps

.outputs ns o0

.mv ps 9

.table i0 i1 ps ->o0

.default 0
1 0 (3,{7-8}) 1
0 1 ({0-1},5) 1
1 - 8 1
0 0 (2,6) 1
- 1 0 1
1 1 4 1
.table i0 i1 ps ->ns
.default 0
1 0 (3,{7-8}) 1
0 1 ({0-1},5) 1
1 - 8 1
0 0 (2,6) 1

- 1 0 1
1 1 4 1

7.4 Example 4

The following example demonstrates ex-
tract seq dc that computes sequential don’t cares
(unreachable states) and merges them with the EXDC
network. The example has multi-valued sequential don’t
cares (states st5 and st6 are unreachable from the initial
state st1), to which additional don’t cares are added after
encoding because there is an unused code (101). The alias
wl stands for write blifmv.

mvsis> rl lb2.mv
node ns is incompletely specified

(exdc extracted)
node o0 is incompletely specified

(exdc extracted)
mvsis> wl
.
.
we omit the regular part of the network
.
.
.exdc
.inputs i0 i1 ps
.outputs ns o0
.mv ps 6 st1 st2 st3 st4 st5 st6
.table i0 i1 ps ->o0
.default 0
0 0 (st4,st5) 1
1 0 (st1,st3) 1
- 1 st2 1
0 1 st6 1
.table i0 i1 ps ->ns
.default 0
0 0 (st4,st5) 1
1 0 (st1,st3) 1
- 1 st2 1
0 1 st6 1
.end

mvsis> enm -v
node inf_ns is encoded as: value 0 - 001

value 1 - 010 value 2 - 000
value 3 - 011 value 4 - 100
value 5 - 110

mvsis> extract_seq_dc
external don’t care network has been created
mvsis> wl
.
.
.
.exdc
.inputs i0 i1 ps_b0 ps_b1 ps_b2
.outputs inf_ns_b2 o0 inf_ns_b1 inf_ns_b0 ns
.table ps_b0 ps_b1 ps_b2 i0 i1 ->o0

Proceedings of the 32nd IEEE International Symposium on Multiple-Valued Logic (ISMVL�02)
0195-623X/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: INESC. Downloaded on December 14, 2009 at 12:30 from IEEE Xplore. Restrictions apply.

.default 0
1 - - - - 1
- 1 0 - 1 1
0 0 - 1 0 1
- 1 1 0 0 1
.table ps_b0 ->inf_ns_b2
.default 0
1 1
.table ps_b0 ->inf_ns_b1
.default 0
1 1
.table ps_b0 ->inf_ns_b0
.default 0
1 1
.table ps_b0 ps_b1 ps_b2 i0 i1 ->ns
.default 0
1 - - - - 1
- 1 0 - 1 1
0 0 - 1 0 1
- 1 1 0 0 1
.end

8 Comments

1. MVSIS can work correctly on non-deterministic net-
works, i.e. ones where some primary output has more
than one value for some primary input minterm. If a
network is non-deterministic, it can result in a new net-
work that is not equivalent to the original but has a be-
havior that is contained in the original. The command
verify checks that the containment is maintained.

2. MVSIS can be applied to binary files specified in
BLIF. The results can be compared to those obtained
by SIS. Currently, MVSIS compares favorably with
SIS, when applied to the same binary file, both in
terms of speed and quality of results. The quality is
possibly due to some proceedures that are not part of
SIS, such as fullsimp complete which uses the
complete set of don’t cares to do the node minimiza-
tions. At the same time, it does ”phase assignment” if
the minimized complement has a simpler form.

3. MVSIS is available as executables running under either
LINUX or WINDOWS [2].

4. A BLIF-MV file can be generated from Verilog using
vl2mv which is available as part of VIS [3].

9 Conclusions and Further Remarks

The program MVSIS embodies a lot of work done by
many people through the years on multi-valued synthesis. It
can manipulate and optimize multi-valued multi-level net-
works and is the natural generalization of SIS which does

binary network optimization. Our goal is to make MVSIS
the system of choice for multi-level network optimization,
be it binary or multi-valued, similar to how ESPRESSO-MV
has replacedESPRESSO-IIC in two-level logic minimiza-
tion.

Applications of MVSIS are increasing and will increase
further as this new capability is better understood and exper-
imented with. Current developments include improvement
of existing methods and experimentation with new ideas.
Some of these come from the fact that the domain of opti-
mization is expanded by opening up multi-valued possibil-
ities. For example, we have discovered new binary meth-
ods by transforming to the multi-valued domain, perform-
ing some operations, and transforming back [13]. These
possibly would not have been discovered by considering
only the binary case.

Acknowledgements

We gratefully acknowledge the support of the SRC in
funding this project under contract SRC-683.004. In addi-
tion, the logic synthesis class of Spring 1999 at Berkeley
started MVSIS as a combined class project under the guid-
ance of Subarnarekha Sinha, class TA. The class members
were Yunjian Jiang, Niraj Shah, Scott Weber, Heloise Hse,
Fernando De Bernardinis, David Chinnery, and Rupak Ma-
jumdar. The work of A. Mishchenko was supported by In-
tel, and T. Villa was partially supported by the GSRC.

References

[1] R. K. Brayton. Algebraic methods for multi-valued logic.
Technical Report UCB/ERL M99/62, Electronics Research
Laboratory, University of California, Berkeley, Dec. 1999.

[2] R. K. Brayton and et al. MVSIS.
http://www-cad.eecs.berkeley.edu/Respep/
Research/mvsis/.

[3] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli,
F. Somenzi, A. Aziz, S.-T. Cheng, S. Edwards, S. Khatri,
Y. Kukimoto, A. Pardo, S. Qadeer, R. K. Ranjan, S. Sarwary,
T. R. Shiple, G. Swamy, and T. Villa. VIS: A system for
verification and synthesis. In IEEE International Conference
on Computer-Aided Verification, 1996.

[4] C. Files and M. Perkowski. Multi-valued functional de-
composition as a machine learning method. IEEE Interna-
tional Symposium on Multi-Valued Logic, pages 173–178,
May 1998.

[5] M. Gao and R. K. Brayton. Semi-algebraic methods for
multi-valued logic. In Proc. of the Intl. Workshop on Logic
Synthesis, May. 2000.

[6] M. Gao and R. K. Brayton. Multi-valued multi-level net-
work decomposition. In Proc. of the Intl. Workshop on Logic
Synthesis, June 2001.

[7] T. Hanyu and M. Kameyama. A 200 mhz pipelined mul-
tiplier using 1.5v-supply multiple-valued mos current-mode

Proceedings of the 32nd IEEE International Symposium on Multiple-Valued Logic (ISMVL�02)
0195-623X/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: INESC. Downloaded on December 14, 2009 at 12:30 from IEEE Xplore. Restrictions apply.

circuits with dual-rail source-coupled logic. IEEE Journal
of Solid-State Circuits, 1995.

[8] J.-H. Jiang, Y. Jiang, and R. Brayton. An implicit method for
multi-valued network encoding. In International Workshop
on Logic Synthesis, June 2001.

[9] Y. Jiang and R. K. Brayton. Don’t cares and multi-valued
logic network minimization. In Proc. of the Intl. Conf. on
Computer-Aided Design, Nov. 2000.

[10] Y. Jiang and R. K. Brayton. Logic optimization and code
generation for embedded control applications. In Proc. of
the Intl. Symposium on Hardware/Software Co-Design, Apr.
2001.

[11] M. Ligthart, K. Fant, R. Smith, A. Taubin, and A. Kon-
dratyev. Asynchronous design using commercial hdl syn-
thesis tools. In International Symposium and Advanced Re-
search in Asynchronous Circuits and Systems, Apr. 2000.

[12] S. Minato. Fast generation of irredundant sum-of-products
forms from binary decision diagrams. In Proc. of SASIMI
(Synthesis and Simulation Meeting and International Inter-
change), pages 64–73, 1992.

[13] A. Mishchenko and R. Brayton. Boolean paradigm in multi-
valued logic synthesis. To be submitted to International
Workshop on Logic and Synthesis, June 2002.

[14] A. Mishchenko and R. Brayton. Simplification of non-
deterministic multi-valued networks. To be submitted to In-
ternational Workshop on Logic and Synthesis, June 2002.

[15] A. Mishchenko and T. Sasao. Encoding of boolean functions
and its application to lut cascade synthesis. To be submit-
ted to International Workshop on Logic and Synthesis, June
2002.

[16] A. Mishchenko, B. Steinbach, and M. Perkowski. Bi-
decomposition of multi-valued relations. In International
Workshop on Logic and Synthesis, pages 35–40, June 2001.

[17] R. Rudell and A. Sangiovanni-Vincentelli. Exact Minimiza-
tion of Multiple-Valued Functions. IEEE Trans. Comput.-
Aided Design Integrated Circuits, 5:727–750, 1987.

[18] H. Savoj and R. K. Brayton. The Use of Observability and
External Don’t Cares for the Simplification of Multi-Level
Networks. In Proc. of the Design Automation Conf., pages
297–301, June 1990.

[19] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Bray-
ton, and A. L. Sangiovanni-Vincentelli. SIS: A System for
Sequential Circuit Synthesis. Technical Report UCB/ERL
M92/41, Electronics Research Laboratory, Univ. of Califor-
nia, Berkeley, CA 94720, May 1992.

Proceedings of the 32nd IEEE International Symposium on Multiple-Valued Logic (ISMVL�02)
0195-623X/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: INESC. Downloaded on December 14, 2009 at 12:30 from IEEE Xplore. Restrictions apply.

