
Multi-valued Logic Synthesis

Robert K Brayton Sunil P Khatri
University of California

Berkeley, CA 94720
fbrayton, linusg@ic.eecs.berkeley.edu

Abstract

We survey some of the methods used for manipulating,
representing, and optimizing multi-valued logic with the
view of both building a better understanding of the more
specialized binary-valued logic, as well as motivating re-
search towards a true multi-valued multi-level optimization
package.

1. Introduction

Logic design is normally thought of in terms of binary sig-
nals; however for higher level design it is natural to think of
variables with symbolic values. For example, it is easier to
conceive of a traffic light processor with a signallight tak-
ing on three valuesred;yellow; andgreenrather than deal-
ing with light0 = 1; light1 = 0 to stand for the light being
red. The process of converting these multi-valued variables
to binary signals is called encoding. In many cases the en-
coding is done initially, mostly arbitrarily, and then binary
valued logic synthesis is applied to the resulting circuit. An
alternative is to first manipulate and optimize the logic di-
rectly as multi-valued logic. Then the resulting form of the
network can be used (possibly) intelligently to select a good
encoding. Once the encoding is done, further optimizations,
not possible in the purely multi-valued form, can be applied
to the resulting binary network. The intelligent encoding
should take into account this additional optimization which
will depend on the final binary codes selected.

However, this alternative approach is not used often be-
cause:

� There is no good multi-valued multi-level logic op-
timization package for a multi-valued logic network
(such as SIS for binary networks).

� Although many of the algorithms in logic synthesis
have been generalized to multi-valued logic, a com-
plete suite of algorithms has not been developed

� The encoding problem is hard for large circuits since it
is difficult to see how an encoding decision ultimately
affects the logic that results after powerful logic opti-
mizations are applied.

Multi-valued logic is a generalization. One advantage in
dealing with generalizations is that it can lead to increased
insight into the specialized problem. A generalization helps
differentiate the special properties from the general ones.
Often a property that is known for the special case can be
a general property in disguise or a specialization of a more
general property. When this is understood, frequently there
is a sense of ”oh, is that what I was really doing”. Thus
the attempt to generalize helps understand the special case
better.

In this paper, we survey several of the concepts, algo-
rithms, and optimizations that have found extensions from
binary to multi-valued logic. We first deal with two-level
logic where most of the concepts directly generalize. Then
we look at several methods for representing multi-valued
logic; sum-of products (SOPs), multi-valued decision di-
agrams (MDDs), and multi-level multi-valued networks
(MV-networks). We look at algorithms for manipulating
Boolean networks (decomposition, factorization using ker-
nels, and extensions of don’t cares (SPFDs)) and see their
generalizations to MV-networks. We discuss extensions to
a popular RTL language (Verilog) to MV-variables, and use
this to build a front-end to VIS, an MV-logic optimization
and verification package. Finally, the state assignment prob-
lem is revisited and we conclude the paper with a discussion
of some open problems and work for the future.

2. Notation

Definition 1 A multi-valued variable Xi can take on val-
ues from Pi = fα0;α1; � � � ;αjPi j�1g.

Since each symbolic valueαi can be associated with
a unique integeri, we henceforth only consider multi-
valued variables with integer values, for uniformity, and
Pi = f0;1; � � � ; j Pi j �1g.

Authorized licensed use limited to: INESC. Downloaded on February 4, 2009 at 10:42 from IEEE Xplore. Restrictions apply.

0 0
0 1
1 0
1 1
2 0
2 1

1
2
1
1

2
0

X1 X2 F

Figure 1. A Multi-valued Function of 2 vari-
ables

Definition 2 A vertex is a point in the space P1� P2�
�� �� Pn

Definition 3 A multi-valued function F is a function
which maps vertices in P1�P2��� � �Pn to PF , formally,
F : P1�P2��� ��Pn 7! PF .

An example of a multi-valued function is shown in Fig-
ure 1. Assume thatP1 = f0;1;2g, P2 = f0;1g, andPF =
f0;1;2g.

If PF = f0;1;�g, F is a multi-valued function with a
binary-valued output. If a vertex (minterm) is mapped to the
1 value, it is said to be in theon-setof F , mapped to 0, in
theoff-set, and to�, in thedon’t-care set. The binary ideas
of implicants, prime implicants, covers,andprime covers
can be extended to multi-valued functions for functionsF
with binary valued outputs.

Definition 4 A multi-valued literal Xci
i is a logic function

of the form
Xci

i = (Xi = γ1)+ � � �+(Xi = γk), whereγ j 2 ci � Pi

Definition 5 A cube c= c1� c2��� �� cn can be written
as a product of MV-literals in the form:

Xc1
1 Xc2

2 � � �Xcn
n

Note that ifci = Pi, we can omitXPi
i from the expression

of the cube, sinceXPi
i = 1. If variableXi is binary valued,

the literal Xi can be written in the new notation asXf1g
i .

Similarly, the literalXi can be written asXf0g
i . If the variable

Xi takes on both its values (also written as a “-”), this is
written asXf0;1g

i .
The next four definitions apply specifically to binary val-

ued functions of multi-valued inputs.

Definition 6 An implicant is a cube c such that for all ver-
tices v2 c, F (v) 6= 0.

Definition 7 A prime implicant is an implicant c such that
there is no implicant d such that d� c.

Definition 8 A cover of F is a set of implicants whose
union contains every point in the onset ofF and no points
in the offset.

Definition 9 A prime cover of F is a cover, each of whose
elements is prime.

The multi-valued function in Figure 1 can be written in
the form of a sum of cubes for each of its values. One such
cover forF is,

Ff0g = Xf2g
1 Xf0g

2

Ff1g = Xf0;1g
1 Xf0g

2 +Xf1g
1 Xf0;1g

2

Ff2g = Xf0;2g
1 Xf1g

2
A convenient representation of literals and cubes utilizes

positional notation:

Definition 10 Positional Notation: A literal Xci
i is as-

signed positions (or columns) v0;v1; � � �vjPi j�1, such that

vj =

�
1 if j 2 ci � Pi

0 otherwise

For example, the multi-valued function in Figure 1 can
be written in positional notation as:

X1 X2 F
001 10 0

110 10 1

010 11 1

101 01 2

3. Generalizations

3.1. Boolean Algebra

A Boolean algebra is a set of objects on which there are
two operations defined. The operations obey a certain set
of rules. A Boolean algebra is often associated with binary
functions of binary variables. The Boolean algebra in this
case is the algebra of the manipulation of binary logic func-
tions. Each such function can be thought as a set of points,
its onset. It is just the characteristic function of its onset, i.e.
it is 1 when applied to a point in its onset and 0 otherwise.
Two functionsANDed together is the same as taking the in-
tersection of their onsets. SimilarlyORing corresponds to
taking the union. It is known that any Boolean algebra is
isomorphic to the Boolean algebra of sets where union and
intersection are the two operations. Note that nothing has
been said about the size of the domain space. In fact one
can use multi-valued variables to describe a point in some
space. For example, suppose we use two variables,x with 5
values, andy with 3 values. Then there are 15 points in the

Authorized licensed use limited to: INESC. Downloaded on February 4, 2009 at 10:42 from IEEE Xplore. Restrictions apply.

domain space. A point (or minterm) in the space is given
by assigning each of the variables a value from their do-
mains, e.g. (x= 3, y= 1). A function is just an arbitrary
subset of such minterms. Thus the mathematics of Boolean
algebras directly applies to binary functions of multi-valued
variables. Considering each output value as a separate func-
tion, one can treat the case where the range of the function
is also multi-valued. Thus for example, the set of points
where the signallight is red is the onset of one function, the
points wherelight is yellowanother function, etc.

3.2. One-Hot Encoding and Multi-valued Sig-
nals.

One of the first methods used to treat multi-valued variables
in logic was the use of a one-hot encoding for the signals,
with an associated set of don’t cares. For example, consider
the traffic light processor and signallight. A one-hot en-
coding would create three three signalslightr , lighty, lightg
with the set of don’t cares given by the logic expression,

lightr � lighty+ lightr � lightg+ lighty � lightg

which says that we don’t care for example that bothlightr
and lighty are 1, since it will never occur. This formula-
tion is fully equivalent to manipulating multi-valued signals
and its advantage is that it maps the problem back to the bi-
nary case and hence the fully developed binary algorithms
apply directly. Further, future developments in binary meth-
ods can be used when they develop. The disadvantages are
that many more signals are introduced and the associated
don’t cares can become very large. In the area of two-level
logic optimization, these latter reasons were enough to spur
the development of ESPRESSO-II, a package for two-level
multi-valued logic optimization. (However, in the multi-
level case, this motivation has not been sufficient so far). An
interesting footnote is that when ESPRESSO-II was com-
pleted and compared to the original ESPRESSO where both
were applied to purely binary functions, ESPRESSO-II was
faster. The explanation was that the generalization to multi-
valued logic led to a superior method of representation of
the functions for computer manipulations.

3.3. Multi-valued Logic Minimization in
ESPRESSO-II

For a multi-valued function with a binary-valued output,
most of the binary logic minimization theory can be gen-
eralized. As already discussed, the concepts ofimplicants,
prime implicants, coversand prime coversare easily ex-
tended to such functions. As in the binary case, the process
of logic minimization involves generating primes, generat-
ing a covering table, and solving this covering table. The

notions of cofactors and the Shannon expansion theorem
have also been generalized to the multi-valued case.

Definition 11 Thecofactor of a function f with respect to
a MV literal Xs, denoted fXs, is obtained by eliminating all
cubes of f that are disjoint to s, and expanding the remain-
ing cubes by unioning into the X position all values not in
s.

The cofactor with respect to a MV-cube is obtained by
taking the sucessive cofactors with respect to each MV-
literal in the cube.

Theorem 3.1 Multi-valued Shannon Expansion Theo-
rem: Let f be any function andfc1;c2; � � � ;ctg any set of
MV-cubes such that

t

∑
i=1

ci = 1

Then,

f =
t

∑
i=1

ci fci

It follows from the above that

f � 1 iff fci = 1 for each i:

An algorithm for multi-valued tautology can be devised
based on this, much like in the binary case, where typically
the cubesx, x are used.

Definition 12 A function f is said to beweakly unate in
Xi if there exists some value= j such that changing Xi from
value= j to any other value does not cause f to decrease,
i.e. f is not changed from 1 to 0.

Weak unateness is one multi-valued analog of unateness.
(There is another anlog, strong unateness, which for binary
valued functions is the same as weak unateness.) Theunate
reductiontheorem for tautology applies in the multi-valued
case as well. Generation of primes and the binary routines
of essential prime generation, reduceand irredundantre-
main essentially unchanged.

Based on the above, ESPRESSO-II handles binary val-
ued functions of multi-valued functions. Positional notation
is used to specify the multi-valued portion of the function.
Symbolic variables are supported as well. MV-applications
of ESPRESSO-II include state assignment [1] and PLAs
where inputs are paired and decoded to form MV-inputs.

3.4. Funtional Representation

We will review several methods for representing logic func-
tions in the MV domain.

Authorized licensed use limited to: INESC. Downloaded on February 4, 2009 at 10:42 from IEEE Xplore. Restrictions apply.

3.4.1 Sum-of-products

One of the earliest methods used for binary functions was
a two-level sum-of-product representation. Early logic syn-
thesis work was done on this type of representation. Al-
though it is inherently simple, there are certain functions
(like the odd or even parity function) which have exponen-
tial sized representations. As we have already seen, multi-
valued functions can be represented in a two-level sum-
of-product scheme. Logic minimization on such functions
can be performed in ESPRESSO-II. For certain functions,
this scheme has the drawback of giving rise to exponential-
sized SOPs.

3.4.2 MV-networks

Another powerful representation technique is the multi-
level boolean network, each of whose nodes are two-level
sum-of-products. This scheme has the ability to represent
implementable boolean functions very compactly. A good
deal of research on this type of representation has been per-
formed, fuelled by the introduction of SIS, a sequential op-
timization and synthesis tool. The multi-level network of
multi-valued nodes (called an MV-network) is a direct gen-
eralization of this. It is similar to a multi-level boolean net-
work except that each node is, in general, a multi-valued
function. VIS (Verification Interacting with Synthesis) is a
research tool whose input is such a network. The input for-
mat format of VIS is calledblif-mv. (VIS is discussed in
more detail in Section 4). It is hoped that tools like VIS will
result in increased research in synthesis for multi-valued
networks. The drawback of these network representations
(as well as sum-of-products) is that there are multiple ways
to represent a given function under these schemes.

3.4.3 MDDs

This drawback is eliminated in a boolean function repre-
sentation scheme called Reduced Ordered Binary Decision
Diagrams (henceforth abbreviated as BDD). BDDs have
the appealing property that they are canonical, and hence
the problem of checking for functional equivalence is triv-
ial. Yet, they also have the drawback that for some imple-
mentable circuits, the BDD is exponential in the number of
input variables.

BDDs have been generalized to the multi-valued case,
resulting in a Multi-valued Decision Diagram (MDDs).
MDDs apply to multi-valued functions with binary-valued
outputs. However, if a multi-valued function has ann-
valued output, wheren> 2, multi-valued functions (MVFs)
are created first. Essentially, we construct MDDs for each
value of the multi-valued output variable. So, for exam-
ple, if the multi-valued functionf has 3 values, then the
MVF(f) has 3 MDDs,fa, fb and fc.

Figure 2. An MDD Node and its Correspond-
ing BDD Nodes.

MDDs are a simple extension of BDDs. Each node in
an MDD hask children instead of just two, wherek is the
number of values the variable associated with the node can
take. The result is a DAG with the root node representing
the function, and the leaf nodes representing 0 and 1. A
pure MDD package was built and experimented with several
years ago in Berkeley [2].

Another option is to encode each multi-valued node with
k children usinglog2(k) binary variables. Thus for example
an MDD node with 6 children would be split into 3 binary
variables. In Figure 2, the MDD node on the left is trans-
formed to the group of nodes on the right. Note that in both
cases, the number of children is 6. Although with 3 binary
variables, it is possible to represent 8 children, the extra two
leaves are used as don’t cares in the process in a somewhat
arbitrary but specific way.

An MDD package was also developed at Berkeley based
on this conversion to binary variables. The MDD package
was constructed as a high level interface to a BDD package.
In fact any BDD package can easily be used. For the user,
only multi-valued variables are observable; the conversion
to binary variables is internal and transparent. The advan-
tages of this approach are:

� The continuing development of BDD packages can be
leveraged in the MDD package.

� Any newly developed BDD package that proves to be
superior can be easily slipped under the covers.

� The binary variables associated with a multi-valued
variable do not have to be kept adjacent in the binary
variable ordering, whereas with a purely multi-valued
version, the effect is as if the associated binary vari-
ables are constrained to be together in the ordering. In
some examples, this leads to a significant increase in
MDD size. Thus in this case the initial and arbitrary
binary encoding used does not seem to have any nega-
tive consequence.

Authorized licensed use limited to: INESC. Downloaded on February 4, 2009 at 10:42 from IEEE Xplore. Restrictions apply.

3.5. Multi-valued Redundancy Removal

Recent methods [3] [4] for binary redundancy removal
avoid the use of state traversal. Additionally, [4] finds mul-
tiple compatible redundancies simultaneously. These pow-
erful advances in the field of binary redundancy removal
were extended in [5] to perform redundancy removal for
multi-valued networks. This method works in the following
manner.

First a one-hot encoding of all the multi-valued variables
of the design is performed. Multi-valued variables are writ-
ten out as binary variables, using this one-hot encoding. The
binary network is equivalent to the multi-valued network
modulo encoding.

Next, binary redundancy removal is invoked on the re-
sulting network. We only check for signalsstuck-at-0in the
binary network. In case a binary signalsi feeding binary
gatet j is determined to bestuck-at-0 redundant, this means
that the multi-valued signals in its fanout to multi-valued
signalt is a don’t care for valuej. Hence we can choose to
remove theith value of variablesoccuring in any MV-cubes
of t with output j. Since each table has a default value, this
has the effect of making the output of such a cube restricted
to s= i equal to the default value. This simplifies the table
for t by reducing or removing cubes. We do not need to
worry aboutstuck-at-1redundancies in the binary network,
since because the signals are one-hot, astuck-at-1on a value
of s, has to be associated withstuck-at-0’s on all the other
values ofs.

All redundant binary signals are recorded in a file dur-
ing the binary redundancy processing of the binary net-
work. Then the original multi-valued network is modified
as above, based on the binary redundancies thus computed.

Initial experiments using this technique show a 10-20%
reduction in the size of the multi-valued description.

3.6. Multi-Valued Factorization

One of the more effective methods for treating multi-level
Boolean networks has been the use ofkernelsfor finding
common factors among several binary logic functions. The
common factor can then be removed as a separate function
and used to simplify some of the functions. To see how this
concept is extended to multi-valued functions, consider the
following two functions

f1 = Xf0;1g �a �k+Xf2g �b �k+c

f2 = Xf3;4g �a � j +Xf5g �b � j +d

We will show that the function

Xf0;1;3;4g �a+Xf2;5g �b

is a common factor of bothf1 and f2, and thus the network
can be rewritten as

f1 = Xf0;1;2g �k �y3+c

f2 = Xf3;4;5g � j �y3+d

y3 = Xf0;1;3;4g �a+Xf2;5g �b

The first step is to find all the kernels and co-kernels by
successive co-factoring by single binary literals. For this
example, we obtain the following table

Exp co-kernel kernel
f1 1 a �k �Xf0;1g+b �k �Xf2g+c
f1 k a �Xf0;1g+b �Xf2g

f2 1 a � j �Xf3;4g+b � j �Xf5g+d
f2 j a �Xf3;4g+b �Xf5g

We put this in aco-kernel cube matrix Mas follows

a b a�k b�k a� j b � j c d
1 0 0 Xf0;1g Xf2g 0 0 1 0
k Xf0;1g Xf2g 0 0 0 0 0 0
1 0 0 0 0 Xf3;4g Xf5g 0 1
j Xf3;4g Xf5g 0 0 0 0 0 0

Note that the binary parts of the cubes of the kernels are
extracted out at the top of each column. A rectangle of such
a matrix is a set of rows and a set of columns. For example
f(2;4);(1;2)g is a rectangle. Associated with a rectangle is
a matrix of MV entries, e.g.

Xf0;1g Xf2g

Xf3;4g Xf5g

Such a rectangle can give rise to a common factor provided
that the matrix issatisfiable, which means for every vari-
able, e.g.X, if a value occurs somewhere in rowi and the
same value occurs somewhere in columnj, then that value
must also occur in entryMi j . The above matrix is satisfi-
able. For a satisfiable rectangle, we can extract the common
factor as follows. For each row of the rectangle, the union
of row entries isANDed with the co-kernel associated with
that row. Similarly, for each column of the rectangle, the
union of all column entries isANDed with the binary cube
attached to the column. The kernel is then theOR of the
results for all the columns of the rectangle. In the above
example, this yields for column 1,a �Xf0;1;3;4g, and for col-
umn 2,b�Xf2;5g, and the kernela�Xf0;1;3;4g+b�Xf2;5g. For
row 2 we get,k �Xf0;1;2g and for row 4,j �Xf3;4;5g, yielding
a factorization

f1 = k �Xf0;1;2g(a �Xf0;1;3;4g+b �Xf2;5g)+c

f2 = j �Xf3;4;5g(a �Xf0;1;3;4g+b �Xf2;5g)+d

Authorized licensed use limited to: INESC. Downloaded on February 4, 2009 at 10:42 from IEEE Xplore. Restrictions apply.

It has been proved that ifκ is a kernel found by the usual
Boolean kerneling process for some encoding, then it will
be found by the above MV factoring process. In addition,
the MV process can find some “Boolean factors” for an en-
coding.

Matrices that are not satisfiable can be ”reduced” to sat-
isfiable matrices by considering for eachMi j a subset of val-
ues in order to remove any offending value in an entry. In
addition, don’t cares can be expressed asXf0;1;2g[6;7] if the
values ofX = 6 or 7 are don’t care for the function. Then
for a given entryMi j one has the option of including the
values 6,7 in order the make the matrix satisfiable.

See [6] for an extended discussion of these ideas.

3.7. SPFDs

A new method for specifying implementational flexibility
in boolean networks was introduced in [7]. This work was
generalized to MV-networks in [8]. SPFDs are like don’t
cares but are more powerful. Unlike don’t cares, which
compute the flexibility of a single node in a network, SPFDs
express the flexibility of a node in a network along with the
nodes in its fanin.

In general, SPFDs are a set of inter-related Incompletely
Specified Functions (ISFs). An ISF can be represented as a
complete bipartite graph on the minterms in the offsets and
onsets. An edge between minterms indicates that a function
that distinguishes the onset and offset minterms on that edge
is required. This kind of graph has exactly two minimum
colorings corresponding to implementing the onset or the
offset.

In the SPFD method, we first build the complete bipartite
graph of an ISFF . This gives pairs of minterms that need
to be distinguished. Figure 3(a) shows an example bipar-
tite graph with mintermsy1;y2; � � �y5 in the inputy space.
Assume that the inputs toF are y = (g1(x);g2(x);g3(x)),
as shown in Figure 3(b). Then, if mintermsf y1

;y2
;y3 g

are encoded differently fromf y4;y5 g by g(x), we have
enough information iny to build a valid implementation of
F. The task of distinguishing different pairs of minterms
can be distributed to different input wires, as shown in Fig-
ure 4. Note that even thoughF started out as an ISF (a
complete bipartite graph), the graphs forgi are not bipar-
tite, hence not ISFs. They are SPFDs. Any coloring of the
SPFDs of the 3 wires in Figure 4 is a valid implementation
of the functionsg1(x);g2(x) andg3(x). For example, input
1 has 4 possible two-colorings, corresponding to 4 possible
implementations ofg1. In general, SPFDs provide the flex-
ibility to change both the functionsg which implement the
SPFDs derived for these inputs, and also to re-implementF
to reflect the new encoding of the inputs.

The above discussion on binary valued SPFDs is easily
generalized [8], as follows.

F

g1 g2 g3

y2 y3y1

(b) Structure ofF.(a) Bipartite graph forF.

y4

y5

y1

y2

y3

Figure 3. SPFDs - an example

Input 1 Input 2 Input 3

y4

y5

y4

y5

y4

y5

y3

y2

y1 y1

y2

y3

y1

y2

y3

Figure 4. An implementation of F .

Definition 13 A SPFD F (y) on domain Y is an undirected
graph (V, E) where each v2 V is encoded as a minterm
v= (y1;y2; � � �yk) 2Y.

Definition 14 A function f(y)implements an SPFDF (y)
= (V, E) if f(y), y2 V is a valid coloring ofF , i.e.

f (y1) 6= f (y2);(y1;y2) 2 E.

Analogous to the binary case, each valid coloring of the
SPFD gives an implementation ofF . Thechromatic num-
ber of the graph is the minimum number of values that the
resulting function is required to have in its range. Thus if
this is greater than 2, multi-valued functions are required.
Each valid coloring of the graph gives rise to a MV-function.

3.8. Decomposition of Multi-valued Functions

In [9], the authors extend the extensive work on the decom-
position of binary functions to MV-functions. Consider set
functions of the formf : En!Dm, with n inputsx1;x2; � � �xn

and m outputsy1;y2; � � �ym which are partially specified.
HereE is a finite, nonempty set andD = 2E�f /0g; in gen-
eral, f assigns to any outputyi a nonempty set of elements
of E. The problem ofdecompositionof f (x1;x2; � � � ;xn)
in the form h(u1;u2; � � � ;ur ;g(v1;v2; � � � ;vs)) is addressed.
HereX = fx1;x2; � � � ;xng is the set of input variables, and
U = fu1;u2; � � � ;urg andV = fv1;= v2; � � � ;vsg are two sub-
sets ofX whose union isX. Figure 6 shows such a decom-
position.

The function f is represented as aset matrix
M, where each row consists of an + m-tuple t =
t1; � � � ; tn; tn+1; � � � tn+m. The input projectionof t is tin =
t1; � � � tn, and theoutput projectionof t is tout = tn+1; � � � tn+m.
The matrixM is required to beconsistent, which means that

Authorized licensed use limited to: INESC. Downloaded on February 4, 2009 at 10:42 from IEEE Xplore. Restrictions apply.

y6

y1

y3

y4y5

y2

Figure 5. A multi-valued SPFD.

...

...

X

Y Y

...

...

...

f h

g

VU

...

a) Original design b) Decomposed design

U [V = X

Figure 6. Multi-valued decomposition

if the input projections of a set of rows cover an input ver-
tex, then the corresponding output projections should have
a common value. The functionf is evaluated at vectoreby
taking the intersection of they values of all the rows that
covere. The decomposition proceeds by first finding setsU
andV, then finding ablanketβg from M. Fromβg, g andh
can be constructed.

Definition 15 Given a set S, ablanket β = fB1;B2; � � �Bkg
is a set of sets of nonempty, distinct but not necessarily dis-
joint subsets of S calledblocks, whose union is S.

For example, ifS= f1;2;3g, then a blanket ofS is β1 =
ff1;2g;f2;3g;f1gg:

Definition 16 Theblanket product of two blanketsβ and
β� is a blanket given by

β�β� = undup(nefBi\Bj jBi 2 β;= Bj 2 β�g),
where nefBig = fBig�f /0g. undup(β) removes the dupli-
cate entries inβ.

Consider β2 = ff1g;f1;3g;f2gg. Then β1 � β2 =
ff1g;f2g;f3gg:

Definition 17 β � β0

if for each Bi 2 β, there is a Bj 2 β0

such that Bi � Bj.

In the above examples,β1�β2� β1.
In the remainder of this section, we refer to blankets of

rows of set matrices.

1 f1g f0;1;2g f0g
2 f1g f1g f0;2g
3 f0;1;2g f0;1g f0g
4 f1g f0;1g f0g
5 f0g f0;1g f1;2g

Table 1. Set matrix to illustrate row blanket

Definition 18 Therow blanket β f of a set matrix M for f
having h rows and k columns is given by

β f = nefT�eg where
T�e= ft 2 Tjt � eg

where T is the set of rows of M, and e2 Ek.

Consider the set matrix M given in Table 1. Note
that T�000 = f3g and T�100 = f1;3;4g. Listing all
the unique blocks corresponding to the minterms of the
table, we get the row blanket for this matrixβ f =
ff3g;f5g;f1;3;4g;f1;2;3;4g;f2g;f1gg.

In the following,X =U [V and the variablesV corre-
spond to the support of the functiong in the decomposition.
sZ
in refers to the projection of tuplesin on theZ space.

Definition 19 For all tuples t and u, if there exist multi-
valued minterms d and e such that tV

in � d, and uVin � e, then
t and u appear in the same block ofβ f . In this case,β f is
said tocorrespond to g with respect to V.

Theorem 3.2 Let set function f(X) be specified by a consis-
tent set matrix T of tuples, and let U, V of X be such that U
[V = X. For every blanketβg satisfying

βV
f � βg andβU

f �βg� β f (1)

there exists a decomposition(g;h) of f such thatβg corre-
sponds to g with respect to V.

Consider the set matrix in Table 2. The setU = fx1g and
V = fx2;x3g. Hence

βU
f = ff1g;f2;4g;f3;4gg;

βV
f = ff1;3;4g;f1;4g;f2;3g;f2g;f2;3;4g;f2;4gg;

β f = ff1g;f2;4g;f4g;f3;4g;f2g;f3gg:

Note thatβg = ff1;2;4g;f2;3;4g;f1;3;4gg satisfies equa-
tion 1. Now encode these three blocks using a multi-valued
variable with values 0, 1, 2 respectively.

The construction ofg from βg proceeds as follows. For
each multi-valued minterm inV, we enumerate the rows of
T covering this minterm. Now all the blocksBi of βg are

Authorized licensed use limited to: INESC. Downloaded on February 4, 2009 at 10:42 from IEEE Xplore. Restrictions apply.

Row x1 x2 x3 f1 f2
1 f0g f0g f0;2g f0;1g f0g
2 f1g f1;2g f0;2g f0;2g f1g
3 f2g f0;1;2g f0g f1;2g f2g
4 f1;2g f0;2g f0;2g f0;1g f1;2g

Table 2. Example set matrix to illustrate de-
composition

x2 x3 βV � βg codes g
0 0 f1;3;4g f1;3;4g 2 2
0 2 f1;4g f1;2;4g;f1;3;4g 0, 2 2
1 0 f2;3g f2;3;4g 1 1
1 2 f2g f1;2;4g;f2;3;4g 0, 1 1
2 0 f2;3;4g f2;3;4g 1 1
2 2 f2;4g f1;2;4g;f2;3;4g 0, 1 0

Table 3. Construction of g from βg

listed such that these blocks contain the rows ofT cover-
ing the minterm. From the feasibleBi for this minterm, we
choose oneBi as the implementation ofg for that multi-
valued minterm. Finally theseBi are encoded.

An example of the construction ofg given βg is shown
Table 3.

Similarly, in the construction ofh from βg, we first list,
for each multi-valued minterm ofU , rows ofT that cover it
(see first two columns below in Table 4. For each minterm
of U , we list the possible multi-valued minterms ofg, along
with their implemented code from the step above. Inter-
secting the two sets gives us an elementBk. For each such
element, we list all elementsBj 2 β f such thatBk � Bj .
Choose one element as the implementation. The outputs are
chosen by intersecting the outputs of the rows correspond-
ing to the chosen implementation element.

An example of the construction ofh= (h1;h2) givenβg

is shown in Table 4. Note thath is kept as a set function for
maintaining flexibility for further decompositions.

Findingβg is not simple, but an algorithm for this starts

x1 βU g βg βU �βg � β f h1 h2
0 f1g 2 f1;3;4g f1g f1g 0, 1 0
1 f2;4g 2 f1;3;4g f4g f2;4g;f4g;f3;4g 0, 1 1, 2
1 f2;4g 0 f1;2;4g f2;4g f2;4g 0 1
1 f2;4g 1 f2;3;4g f2;4g f2;4g 0 1
2 f3;4g 2 f1;3;4g f3;4g f3;4g 1 2
2 f3;4g 0 f1;2;4g f4g f2;4g;f4g;f3;4g 0, 1 1, 2
2 f3;4g 1 f2;3;4g f3;4g f3;4g 1 2

Table 4. Construction of h from βg

with βV , and merges blocks to getβ0

such thatβV � β0

. Now
check ifβU �β0

� β f .

4. The VIS System

VIS (Verification Interacting with Synthesis) is a software
tool distributed by the University of California, Berkeley,
and the University of Colorado, Boulder. VIS is a tool inte-
grating verification, simulation and synthesis of finite-state
hardware systems. It has a Verilog front end, which gener-
ates ablif-mv description of the network.blif-mv is a for-
mat for representing MV-networks. VIS supports formal
verification (fair CTL model checking, language emptiness
checking and equivalence checking), hierarchical synthesis
from a multi-valued description, and cycle based simula-
tion of the multi-valued input. In this way, VIS provides
a strong platform for research in formal verification and in
the future, hierarchical multi-valued synthesis.

4.1 Multi-valued extensions to Verilog

Part of the VIS system is a Verilog translator (vl2mv) which
which supports a multi-valued extension to Verilog (as well
as nondeterminism). The user can declare that a variable is
of a particular type with its range of values given by refer-
ring to atypedefstatement. For example,

typedef color f red,yellow,green g
declarescolor as a type. Later,

signal light color
declares the variablelight to have typecolor. The Verilog
translator, translates the input into an MV-network repre-
sented in a file usingblif-mv.

4.2 Blif-mv

blif-mv is an intermediate format that is output by the Ver-
ilog translator. It represents an MV-network using tables
to represent multi-valued functions. Each table is a cover
of MV-cubes of the corresponding multi-valued function.
These tables arefully specified(all multi-valued vertices
are assigned some output value) anddeterministic(each
multi-valued vertex is assigned a unique output value).
blif-mv is a simple extension ofblif, the intermediate format
used in SIS.blif-mv includes for convenience some higher
level constructs not inblif. One such that is particularly
useful for multi-valued variables is the ”equal” construct.
Consider a multiplexor with a single binary control and two
multi-valued inputsa andb. In the pure table format, we
would have to say

Authorized licensed use limited to: INESC. Downloaded on February 4, 2009 at 10:42 from IEEE Xplore. Restrictions apply.

x a b output
0 0 - 0
0 1 - 1
0 2 - 2
0 3 - 3
...

...
...

...
1 - 0 0
1 - 1 1
...

...
...

...

With the equal construct, the table is compacted into
two lines, no matter how many values are in the range ofa
andb

x a b output
0 - - =a
1 - - =b

4.3 VIS internals

The MV-network in theblif-mv format is translated inside
VIS into a set of MVFs before any formal verification or
simulation is performed. A simple multi-valued simulation
in provided in VIS. It is performed by using the MDDs of
the MVFs of the functions to be simulated. Assume that
a function has an MVF withn MDDs, each corresponding
to then values of the function. For theith MDD, simula-
tion proceeds by cofactoring this with respect to the vector
corresponding to the system inputs. If the result is a “1”,
then the simulation output isi, and the remaining MDDs
are not evaluated, (since the multi-valued functions in VIS
are deterministic). If the result is a “0”, thei+1th MDD is
checked. Ifn� 1 MDDs return a “0”, then the simulation
output isn. (This is because the multi-valued function is
fully specified.)

Since an MV-network is fully represented in VIS, and
the VIS system allows the use of a popular RTL to specify
such networks, we have an excellent opportunity in VIS to
create a multi-valued optimization package. Further, VIS
allows and keeps hierarchy, so synthesis using hierarchy is
enabled. However, at this point, direct synthesis inside VIS
has not been developed since our first efforts were to take
advantage of the SIS system. The idea is that by convert-
ing all signals into theirone-hot(or even logarithmic en-
coded binary versions), we can experiment and make use of
the extensive developments in SIS for binary optimizations.
However, this has proved more difficult that we had first es-
timated and perhaps it is time to bite the bullet and do the
full development inside VIS.

5. State Assignment

As mentioned earlier, an alternative way of optimizing a
multi-valued logic function is to first do the manipulations
in the multi-valued domain, independent of any encoding,
and then to use the resulting structure to intelligently find
a good encoding. Perhaps the most successful example of
this is the KISS approach for state assignment of finite state
machines [1]. Here the state variable is multi-valued.

Consider all next state functions, one for each state
value, as many separate binary valued functions of one MV-
variable and perhaps several binary valued variables. The
approach taken in KISS is to minimize this set of functions
with ESPRESSO-II resulting in a minimized cover of MV-
cubes. Consider one such cube. In its state variable position
is a MV-literal, which is a set of values. Each such cube in
the cover gives such a set. The main idea in KISS is that if
it is possible to encode the state variable in such a way that
each set of values associated with any cube in the resulting
minimized SOP cover can be also described as a cube in the
space of binary encoding variables, then each MV-cube can
be replaced by the binary counterpart, and the size of the
cover is not increased.

This embedding of sets into faces of the cube of the
encoding variables is called theface embedding problem;
given a set of sets of points, encode each set with binary
variables so that each is precisely contained in a cube in
the binary space. This is always possible if enough binary
variables are used, so a side constraint is to use a small or
minimum number of binary variables. The above proce-
dure is known as the input encoding problem. Note that we
treated the next state function as separate binary functions.
Thus the fact that the next state variables will also be en-
coded was ignored. Once the next state output functions are
replaced by the derived codes used for the state variables,
then more optimization is possible because more cubes can
be combined due to sharing of the outputs.

This procedure has been extended in a program called
NOVA [10] to consider both the input and output encoding
of the state variables. The procedure works well for small
state machines, say less than 30 states, but is ineffective for
large machines, say more than 50 states. There are exam-
ples where an encoding given by the designer, possibly de-
rived from some knowledge about the structure of the prob-
lem, leads to a much smaller implementation of the logic
than an implementation derived using NOVA. One specu-
lation is that a better encoding could be obtained by de-
composing the machine into a product of smaller machines
and applying NOVA to the small machines. The encoding
obtained by concatenating the codes of the small machines
is an encoding of the large machine. Thus a first step in
the multi-valued domain would be the decomposition of the
machine. Unfortunately, we do not know of any really ef-

Authorized licensed use limited to: INESC. Downloaded on February 4, 2009 at 10:42 from IEEE Xplore. Restrictions apply.

fective way to do this and this is an area for potentially fruit-
ful (but probably difficult) research.

6. Conclusions and Open Problems

We have surveyed two-level and multi-level logic opti-
mizations for MV-variables. We discussed three methods
for representing MV-functions (SOPs, MV-networks, and
MDDs). One-hot encoding represents a way to keep the
multi-valued structure, but to use binary operations for the
manipulations; however this is not always successful. Con-
ceptually, the best way to deal with MV-logic is direct ma-
nipulation and optimization followed by intelligent encod-
ing, followed by binary optimizations. An effective package
for this remains a challenge for the future. Although, as we
have seen in this paper, many of the concepts necessary for
suvch a package have been developed, efficient algorithms
for their effective use in such a package are still missing.
The VIS system represents a framework for future devel-
opments in this direction, but a significant amount of effort
and research remains to be done.

Acknowledgements

We’re grateful for financial support for this research pro-
vided by the SRC under contract 98-DC-324, and for the
support of the California Micro program and participating
industrial sponsors, Fujitsu, Motorola, Cadence, Synopsys,
Intel, and Metamor, Inc.

References

[1] G. D. Micheli, R. Brayton, and A. Sangiovanni-
Vincentelli, “KISS: a program for optimal state as-
signment of finite state machines,” inProc. of the Intl.
Conf. on Computer-Aided Design, Nov. 1984.

[2] S. Malik, A. Srinivasan, T. Kam, and R. Bray-
ton, “Algorithms for discrete function manipulation,”
in Proceedings of the International Conference on
Computer-Aided Design, 1990.

[3] M. Iyer, D. Long, and M. Abramovici, “Identifying se-
quential redundancies without search,” inProceedings
of the 33rd Design Automation Conference, 1996.

[4] A. Mehrotra, S. Qadeer, V. Singhal, R. Brayton,
A. Aziz, and A. Sangiovanni-Vincentelli, “Sequential
optimization without state space search,” inProceed-
ings of the International Conference on Computer-
Aided Design, 1997.

[5] S. Khatri, R. Brayton, and A. Sangiovanni-Vincentelli,
“Sequential multi-valued network simplification using
redundancy removal,” into appear in Proceedings of
the International Conference on VLSI Design, 1999.

[6] L. Lavagno, S. Malik, R. Brayton, and
A. Sangiovanni-Vincentelli, “MIS-MV: Optimization
of multi-level logic with multiple-valued inputs,”
in Proceedings of the International Conference on
Computer-Aided Design, 1990.

[7] S. Yamashita, H. Sawada, and A. Nagoya, “A new
method to express functional permissibilities for LUT
based FPGAs and its applications,” inProceedings of
the International Conference on Computer-Aided De-
sign, 1996.

[8] R. Brayton, “Understanding SPFDs: A new method
for specifying flexibility,” in Workshop Notes, Inter-
national Workshop on Logic Synthesis, 1997.

[9] J. Brzozowski and J. Lou, “Blanket albebra for
multiple-valued function decomposition,” inProceed-
ings of the International Workshop on Formal Lan-
guages and Computer Systems, 1997.

[10] T. Villa and A. L. Sangiovanni-Vincentelli, “NOVA:
State Assignment of Finite State Machines for Opti-
mal Two-Level Logic Implementations,”IEEE Trans.
Computer-Aided Design, vol. 9, pp. 905–924, Sept.
1990.

Authorized licensed use limited to: INESC. Downloaded on February 4, 2009 at 10:42 from IEEE Xplore. Restrictions apply.

