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Abstract—Quaternary logic has shown to be a promising
alternative for implementing FPGAs, since voltage mode qua-
ternary circuits can reduce the circuits’ cost and at the same
time reduce its power consumption. In this paper, we study the
implementation of circuits in quaternary logic. To obtain cost-
effective implementations of quaternary circuits, we propose a
mapping from binary to quaternary circuits based on integer
linear programming. Our results show that the expected im-
provements can be achieved, reducing, in average, the number
of transistors by 27% and the number of nets by 19%, compared
to a binary implementation.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are very conve-
nient and flexible hardware platforms for the implementation
of these systems, helping designers to cope with one of
the more demanding requirements currently imposed on the
industry: time to market. Their flexibility comes at a price:
in order to allow the many different interconnection schemes
of the increasing number of devices in a single FPGA, an
enormous area of the circuit must be used to implement all
the required switches and wires.

As technology evolves according to Moore’s Law, providing
ever smaller, faster, and lower voltage devices, the amount
of interconnections inside a single chip is increasing signifi-
cantly [1]. When considering FPGAs, this problem becomes
even more critical, since the huge amount of interconnections
impacts not only the circuit delay [2], but also the power
consumption and area [3].

Multiple-valued logic (MVL) has received increased atten-
tion in the last decades because of the possibility to represent
the information with more than two discrete levels. As a
consequence, there is a possibility to increase the amount of
information transferred using a single wire [4].

Most of the efforts in this direction, however, propose the
use of current-mode circuits or hybrid implementations of
CMOS to build the configurable logic blocks (CLBs) [5]–
[7]. While those solutions provided significant area reduction,
their high static power consumption and extreme manufac-
turing complexity did not make them viable alternatives as a
replacement for standard CMOS designs.

In order to overcome the inconveniences of current-mode
circuits and hybrid implementations, the use of voltage-mode
CMOS logic to implement quaternary look-up tables has been
proposed in [8], and shown to maintain the compaction al-
lowed by multi-valued logic. First steps to tackle the challenge

of low power and high density FPGAs using this voltage-mode
MVL technique were presented in [9], where an arithmetic-
oriented configurable logic block was proposed.

Our contribution in this paper is a mapping tool to allow
automatic implementation of quaternary standard arithmetic
circuits. Since there is no quaternary design flow available,
we propose a method based on integer linear programming
to map binary circuits to quaternary circuits. Section II
discusses differences between binary and quaternary look-
up table structures. The proposed approach is described in
detail in Section III, and the obtained results are discussed in
Section IV. The development of quaternary devices in future
technologies is discussed in Section V. Section VI summarizes
our conclusions and points to future work.

II. BINARY AND QUATERNARY LUTS OVERVIEW

General Lookup Tables (LUT) are basically memories,
which implement a given logic function. Values are initially
stored in the lookup table structure, and once inputs are
applied, the logic value in the addressed position is assigned to
the output. The capacity of a LUT C is given by |C| = n× bk

where n is the number of outputs, k is the number of inputs
and b is the number of logic values. For example, a 6-input
binary lookup table with one output is able to store 1×26 = 64
Boolean values. For the purpose of this work, 6-input 1-output
LUTs (k = 6,n = 1) are used because they are the most
complex ones used in currently available FPGAs, such as the
Xilinx Spartan-3E [10], and the Altera Ciclone III [11].

A binary function implemented by a Binary Lookup Table
(BLUT) is defined as f : Bk → B, over variables X =
(x0, . . . , xi, . . . , xk−1), where each variable xi represents a
Boolean value B. The total number of different functions is
given by |F | = b|C| where b = |B| (i.e. b = 2 in the binary
case).

Quaternary functions are basically generalizations of binary
functions. A quaternary function is defined as g: Qk → Q,
over quaternary variables Y = (y0, . . . , yi, . . . , yk−1), where
the values of a variable yi, as the values of the function g(Y ),
can be in Q= {0, 1, 2, 3}. The number of functions is also
given by |F | = b|C|, where b = 4.

III. MAPPING BINARY TO QUATERNARY CIRCUITS

In this section we discuss the problem of mapping a circuit
of binary 6-to-1 LUTs (BLUTs) to quaternary 3-to-1-LUTs
(QLUTs). The input circuit is represented as a directed acyclic
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Figure 1. Projections used to combine quaternary nets.

graph (DAG) G = (B, D) over the set of BLUTs B with edges
D ⊆ B × B. Each BLUT i ∈ B has a corresponding set of
inputs I(b), satisfying |I(b)| ≤ 6 and a single output O(b),
such that O(b) ∈ I(c), for a net (b, c) ∈ D.

The goal of mapping binary to quaternary logic is to
minimize the number of LUTs and the number of used nets.
Necessary conditions for mapping two BLUTs to the same
QLUT are that 1) their joint set of inputs is not larger than
six and 2) we have to guarantee that the mapping satisfies the
partial ordering constraints given by the circuit’s DAG.

The proposed mapping process is performed in two stages.
In the first stage, we map BLUTs to QLUTs, considering only
input and ordering constraints, and minimizing the number
of QLUTs used. In the second stage, we map binary nets
to quaternary nets. For a quaternary net, which results from
pairing of two binary nets a and b we write 〈a | b〉. To make
this two-stage approach possible, we have to allow combining
two quaternary nets 〈a | b〉 and 〈c | d〉 to produce, for example,
a quaternary net 〈a | c〉. This is necessary, if some quaternary
input is not available according to the mapping defined in the
first stage. We call this a projection, and use the four types of
projections as shown in Figure 1.

The two stages are modeled as integer linear programs. For
the first stage, let B = [1, n] be the set of BLUTs. We need at
most n QLUTs and define the set of QLUTs as Q = [1, n]. Let
xijk indicate a mapping of BLUTs i and j to QLUT k, and
let J ⊆ B2 be the set of joinable gates (i.e. J = {(b1, b2) |
b1 6= b2 ∈ B, |I(b1)∪I(b2)| ≤ 6}). To allow mapping a single
BLUT to a QLUT, we add an “empty” gate with index 0 and
extend the set of joinable gates to J0 = J ∪ {(0, b) | b ∈ B}.
Then we formulate the mapping problem as the following 0/1
integer program:

min.
∑

(i,j)∈J0,k∈Q

xijk (1)

s. t.
∑

j:(i,j)∈J0,k∈Q

xijk = 1, ∀i ∈ B, (2)

∑
(i,j)∈J0

xijk ≤ 1, ∀k ∈ Q, (3)

∑
j:(i1,j)∈J0,

k∈Q

k xi1jk ≤
∑

j:(i2,j)∈J0,
k∈Q

k xi2jk, (4)

∀(i1, i2) ∈ D,

xijk ∈ {0, 1}, ∀(i, j) ∈ J0, k ∈ Q.

The objective function (1) minimizes the number of QLUTs.
Restriction (2) guarantees that every BLUT is mapped to some
QLUT, while restriction (3) ensures that each QLUT receives
at most one pair of BLUTs. Restriction (4) makes sure that
the mapping satisfies the ordering constraints defined by the
binary circuit: for every pair of dependent BLUTs (i1, i2) ∈ J ,
i1 has to be mapped on a QLUT of index not greater than the
index of i2. The formulation has O(n3) variables and O(n2)
restrictions.

In the second stage, we map the binary nets pairwise to
quaternary nets. This is accomplished by defining a pairing
of the input nets of the circuit, a pairing of the input nets
of each QLUT and a pairing of the output nets. For a given
pairing, not every input pair of every QLUT is available as
a primary input pair or an output of another QLUT. In this
case, we have to insert an additional projection, to provide
the necessary quaternary net. This is always possible, since
the mapping of the first stage respects the partial order of the
circuit.

Let I be the set of primary binary input variables, Qj be
the set of binary input variables of QLUT j ∈ Q and O be
the set of primary input output variables. We define matching
variables iuv ∈ {0, 1} for all u 6= v ∈ I , qjuv ∈ {0, 1} for all
u 6= v ∈ Qj , j ∈ Q, and ouv ∈ {0, 1} for all u 6= v ∈ O. The
matching variables indicate which pairs of the inputs, QLUT
inputs, or outputs are mapped to the same quaternary wire.
We further set iuv = 1 for each pair available as the output
of some QLUT.

To quantify the number of necessary projections, we further
define auxiliary variables ruv ∈ {0, 1} for all u 6= v ∈ Qj ,
j ∈ Q indicating that the quaternary input 〈u | v〉 on QLUT
j is not available as an input or output of some other QLUT,
and variables puv ∈ {0, 1}, for all u 6= v ∈ O indicating that
the quaternary output 〈u | v〉 is not available. Then, the second
stage problem can be formulated as the 0/1 integer program:

min.
∑

u,v∈O
u 6=v

ruv +
∑

u,v∈O
u 6=v

puv (5)

s. t.
∑
v∈I

iuv = 1, ∀u ∈ I, (6)∑
v∈Qj

qjuv = 1, ∀j ∈ Q, u ∈ Qj , (7)

∑
v∈O

ouv = 1, ∀u ∈ O, (8)

ruv ≥ qjuv − iuv, ∀j ∈ Q, u, v ∈ Qj , (9)
puv ≥ ouv − iuv, ∀u, v ∈ O, (10)
iuv, qjuv, ouv ∈ {0, 1},
ruv, puv ∈ {0, 1}.

The objective function (5) counts the number of input pairs
of QLUTs and output pairs, for which a projection has to
be inserted to provide them. Equations (6), (7), and (8) are
perfect matching conditions for the primary inputs, the inputs
of the QLUTs, and the outputs. Equations (9) and (10) define
the auxiliary variables. Equation (9) guarantees, that for each
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Figure 2. Heuristic used to reduce the number of projections. Left: Circuit
before simplification. Right: Network after simplification.

QLUT j and input pair u, v, a projection has to be inserted
(ruv = 1), if the pair actually is an input of the QLUT
(qjuv = 1), but is not available as an input (iuv = 0).
These restrictions are only inserted, if u, v is not available
as an output of a QLUT as defined by the mapping in the
first stage. Similarly, equation (10) defines the projections
needed for outputs. The formulation has O(n2) variables and
O(n) restrictions, and assumes an even number of inputs and
outputs; for circuits with an odd number, we add dummy
variables to make a perfect matching possible.

The final step is the post-processing of the mapping obtained
by the solution of the second ILP. This step determines the
necessary projections to insert into the circuit. For each input
of a QLUT or output, which is not available as a primary
input or output of a previous QLUT, the algorithm inserts a
projection to generate it.

Since the LUT mapping and the wiring is handled sepa-
rately, there are situations where this final step generates more
projections than necessary. We apply a heuristic rule to reduce
the number of projections in some of these cases, as shown
in Figure 2. If the net 〈x | y〉 should be provided, and Q1

operates over only one relevant binary net, we are able to
reduce eliminate the projection P11, and can obtain the net
〈x | y〉 directly from Q1.

Complexity of the problem: The first stage of the pro-
posed mapping is a problem of obtaining a maximum matching
between the BLUTs, which respects additionally the ordering
constraints given by the circuit. Maximum matchings are
well-known to be computable in polynomial time [12]. It
can be shown that the additional ordering constraints make
the problem NP-complete [13]. The entire mapping problem
therefore is also NP-complete. Note that our approach is a
heuristic for the entire mapping problem. Both stages can be
solved exactly by integer linear programming, but determining
the mapping of gates and nets in two separate stages can
produce sub-optimal solutions.

IV. COMPUTATIONAL RESULTS

We used IBM ILOG CPLEX 12.1 [14] as a solver to map
some benchmark circuits from the literature to quaternary
logic. The experiments have been conducted on an Intel Core2
Quad Q6660 running at 2.4 GHz with 3 GB of RAM. We used
all four processors of the machine in the deterministic parallel
mode of CPLEX. The size and a description of the instances
is given in Table I.

The characteristics of the quaternary circuits resulting from
the mapping are given in Table II, which reports the number

Table I
BINARY CIRCUITS USED IN THE COMPUTATIONAL EXPERIMENTS.

Inst. Type BLUTs Inp. Net. Out. Tr.

fb4 4-bit full adder 6 8 1 5 1584
fb8 8-bit full adder 12 16 3 9 3168
fb16 16-bit full adder 24 32 7 17 6336
fb32 32-bit full adder 48 64 15 33 12672
mb4 4-bit multiplier 28 8 20 8 7392
mb8 8-bit multiplier 65 16 79 16 25080
c432 Priority Decoder 10 18 5 5 2640
c499 ECAT1 62 41 30 32 16368
c880 ALU and Control 73 56 49 24 19272
c1355 ECAT1 77 41 118 32 20328
c1908 ECAT1 75 33 108 25 19800
c2670 ALU and Control 133 157 70 63 35112
fir44 4-bit 4-tap FIR2 36 4 0 36 9504
fir84 8-bit 4-tap FIR2 66 8 13 53 17424
1Error Correction and Translation. 2Finite impulse response.

of necessary QLUTs, the number of projections inserted, and
the number of (quaternary) inputs, nets, and outputs. The last
but one column contains the number of required transistors to
implement the circuit, based on a number of 288 transistors
per QLUT and 48 transistors per projection [15]. Finally, the
last column shows the wall-clock time in seconds required to
map each of the circuits from BLUTs to QLUTs.

Table III compares the quaternary circuits to their binary
counterparts in terms of QLUTs and wires. The column
“LUTs” reports the ratio of binary versus quaternary LUTs,
and the two remaining columns report the improvement in
the number of transistors and wires compared with the binary
implementations.

The results in Table III show that the mapping of binary to
quaternary LUTs is often close to optimal. In the worst case
(instance c499), the solver could map in average 1.29 BLUTs
to a single QLUT. Good mapping results were to be expected,
because the first stage of our approach minimizes the number
of QLUTs. Since this stage does not consider the wiring, and
is solved exactly, these values are exact lower bounds for the
number of QLUTs for any mapping of these circuits. The same
holds for the primary inputs and outputs: the second stage of
the mapping process always used the minimum number of
quaternary input and output wires.

Considering the inserted projections and nets the mapping
generates good, but not optimal solutions. The number of

Table II
CHARACTERISTICS OF THE RESULTING QUATERNARY CIRCUITS.

Inst. QLUTs Proj. Inp. Net. Out. Tr. Time [s]

fb4 3 0 4 0 3 864 0
fb8 6 2 8 3 5 1824 0
fb16 12 6 16 9 9 3744 0
fb32 24 15 32 22 17 7632 8
mb4 15 17 4 28 4 5136 1
mb8 49 55 8 96 8 16752 150
c432 7 5 9 9 3 2256 0
c499 48 68 21 100 16 17088 7
c880 47 69 28 104 12 16848 25
c1355 51 76 21 111 16 18336 60
c1908 50 71 18 108 13 17808 28
c2670 83 108 81 159 32 29088 744
fir44 18 1 2 1 18 5232 0
fir84 33 24 4 30 27 10656 37
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Table III
COMPARISON OF BINARY AND QUATERNARY CIRCUITS.

Inst. LUTs Trans. [%] Wires [%]

fb4 2.00 -45,45 -50.00
fb8 2.00 -42.42 -42.86
fb16 2.00 -40.91 -39.29
fb32 2.00 -39.77 -36.61
mb4 1.87 -30.52 0.00
mb8 1.94 -33.21 0.90
c432 1.43 -14.55 -25.00
c499 1.29 1.47 23.20
c880 1.55 -14.07 10.85
c1355 1.51 -10.74 22.03
c1908 1.50 -10.06 28.70
c2670 1.60 -17.16 -6.21
fir44 2.00 -44.95 -47.50
fir84 2.00 -38.84 -17.57

projections inserted is in average about 86% of the number of
QLUTs, and reaches up to 150% for the combinatorial circuits,
i.e., each QLUT needs in average 1.5 projections to provide all
its quaternary inputs. Since projections are much cheaper to
implement than QLUTs, this still leads to an overall reduction
of the number of transistors, with the exception of instance
c499.

Looking at the wires, for instances mb4 and mb8 the
mapping is not able to reduce the number of interconnections,
and for four combinational circuits the number increases. This
can be explained by the chosen two-stage approach, which
minimizes transistors (QLUTs and projections) in both stages.

The last column of Table II shows the running time for both
stages (in seconds) the ILP solver took to map the instances.
For all instances, more than 90% of the time has been spent in
the first stage. This is expected, since the first stage problem
is NP-complete. The execution time also depends on the
characteristics of the circuits, since the number of restrictions
of the formulation of the first stage grows with the number
of joinable BLUTs. Consequently, the proposed approach is
useful for studying gains in circuits of modest size, but to be
able to map larger circuits, we have to substitute the present
strategy by more efficient heuristic methods.

V. QUATERNARY DEVICES IN FUTURE TECHNOLOGIES

Process variability and reduced noise margin are impor-
tant challenges for the development of new multiple-valued
devices. In comparison with binary circuits, voltage-mode
multiple logic devices present closer voltage levels to represent
logic values. The main goal is to avoid excessive power
consumption, and for this reason, in theory they are more
susceptible to errors.

However, a recent work [15] demonstrated by extensive
Monte Carlo simulations that quaternary devices deal very
well with process variability and a reduced noise margin for
technologies with nodes ranging from 90nm to 32nm.

In addition, analog designers used to deal with process vari-
ability for many years. Important works have been proposed
in this field where authors shown the efficacy of these analog
devices even in adverse conditions for nanometer technologies.

Quaternary devices can be seen in a similar way as analog
devices. The knowledge and experience acquired by designer

applied to the development of analog devices in nanotechnolo-
gies may be very useful in an effort to develop new quaternary
devices.

VI. CONCLUSIONS AND FUTURE WORK

Our results indicate that a quaternary implementation of
arithmetic circuits can reduce transistor and interconnections
costs significantly. The proposed approach yields very good
results for the circuits studied in this paper, with almost
optimal results for binary full adders up to 32 bits. However,
the method is limited to circuits of moderate size, since it
is based on the exact solution of an NP-complete problem.
Also, it obtains best results for circuits of not too complex
interconnection structure, which require the insertion of fewer
projections and additional wires. It is also worth noting, that
the mapping could be, with little effort, generalized to map
LUTs of any number of input and outputs.

One important factor on the implementation of circuits in
quaternary FPGAs is related to the obtained results in terms
of the expected circuit performance and power consumption.
The reduced number of transistors and wires will have direct
impact on the circuit area and power consumption. Indirectly,
reduced wire length associated to smaller interconnection
capacitances will be the key for the development of faster
circuits.
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