
240 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2007

Improvements to Technology Mapping for
LUT-Based FPGAs

Alan Mishchenko, Member, IEEE, Satrajit Chatterjee, and Robert K. Brayton, Fellow, IEEE

Abstract—This paper presents several orthogonal improve-
ments to the state-of-the-art lookup table (LUT)-based field-
programmable gate array (FPGA) technology mapping. The
improvements target the delay and area of technology mapping
as well as the runtime and memory requirements. 1) Improved
cut enumeration computes all K-feasible cuts, without pruning,
for up to seven inputs for the largest Microelectronics Center of
North Carolina benchmarks. A new technique for on-the-fly cut
dropping reduces, by orders of magnitude, the memory needed to
represent cuts for large designs. 2) The notion of cut factorization
is introduced, in which one computes a subset of cuts for a node
and generates other cuts from that subset as needed. Two cut
factorization schemes are presented, and a new algorithm that uses
cut factorization for delay-oriented mapping for FPGAs with large
LUTs is proposed. 3) Improved area recovery leads to mappings
with the area, on average, 6% smaller than the previous best work
while preserving the delay optimality when starting from the same
optimized netlists. 4) Lossless synthesis accumulates alternative
circuit structures seen during logic optimization. Extending the
mapper to use structural choices reduces the delay, on average,
by 6% and the area by 12%, compared with the previous work,
while increasing the runtime 1.6 times. Performing five iterations
of mapping with choices reduces the delay by 10% and the area
by 19% while increasing the runtime eight times. These improve-
ments, on top of the state-of-the-art methods for LUT mapping,
are available in the package ABC.

Index Terms—Algorithms, area recovery, cut enumeration,
field-programmable gate array (FPGA), lossless synthesis, tech-
nology mapping.

I. INTRODUCTION

F IELD-PROGRAMMABLE gate arrays (FPGAs) are an at-
tractive hardware design option, making technology map-

ping for FPGAs an important electronic design automation
problem. For an excellent overview of the classical and recent
work on FPGA technology mapping, focusing on area, delay,
and power minimization, the reader is referred to [4].

Recent advanced algorithms for FPGA mapping, such as
[4], [14], and [18], focus on area minimization under delay
constraints. If delay constraints are not given, the optimum
delay for the given logic structure is found first, and then the
area is minimized without changing the delay.

Manuscript received March 16, 2006; revised July 20, 2006. This work
was supported in part by the NSF under Contract CCR-0312676, in part
by the MARCO Focus Center for Circuit System Solution under Contract
2003-CT-888, and in part by the California Micro program with industrial
sponsors, Altera, Intel, Magma, and Synplicity. This paper was recommended
by Associate Editor K. Bazargan.

The authors are with the Department of Electrical Engineering and Computer
Science, University of California, Berkeley, CA 94720 USA (e-mail: alanmi@
eecs.berkeley.edu; satrajit@eecs.berkeley.edu; brayton@eecs.berkeley.edu).

Digital Object Identifier 10.1109/TCAD.2006.887925

In terms of the algorithms employed, mappers are divided
into structural and functional. Structural mappers consider the
circuit graph as given and find a covering of the graph with
K-input subgraphs corresponding to lookup tables (LUTs).
Functional approaches perform Boolean decomposition of the
logic functions of the nodes into subfunctions of limited support
size realizable by individual LUTs.

Since functional mappers explore a larger solution space,
they tend to be time consuming, which limits their use to
small designs. Thus, FPGA mapping for large designs is done
using structural mappers, while functional mappers are used for
resynthesis after technology mapping.

In this paper, we consider the recent work on DAOmap [4]
as representative of the best structural technology mapping
for LUT-based FPGAs. We refer to it as the previous work
and discuss several ways of improving it. The improvements
concern area and delay of the resulting LUT networks and
the runtime and memory requirements of technology mapping.
Specifically, our contributions fall into three categories.

A. Improved Cut Computation

Computation of all K-feasible cuts is typically a runtime
and memory bottleneck of a structural mapper. We propose
several enhancements to the standard cut enumeration pro-
cedure [23], [9]. Specifically, we introduce cut filtering with
signatures and show that it leads to a speed up. This makes
exhaustive cut enumeration for six and seven inputs practical
for many test cases.

Since the number of K-feasible cuts, for large K, can exceed
100 per node, storing all the computed cuts in memory is
problematic for large benchmarks. We address this difficulty by
allowing cut enumeration to drop those cuts at the nodes whose
fanouts have already been processed. This allows the mapper to
store only a small fraction of all K-feasible cuts at any time,
thereby reducing memory usage for large benchmarks by an
order of magnitude or more.

B. Using Factor Cuts

Enumerating K-feasible cuts for a large K becomes im-
portant when FPGA mapping targets macrocells. Such cells
are typically composed of LUTs, multiplexers, and elementary
gates and can implement a subset of functions of K inputs.
Although our improved cut enumeration efficiently computes
all cuts up to seven inputs, it is not practical for 8–12 inputs,

0278-0070/$25.00 © 2007 IEEE

MISHCHENKO et al.: IMPROVEMENTS TO TECHNOLOGY MAPPING FOR LUT-BASED FPGAs 241

which is the size typical for most macrocells, simply because
there are too many cuts.

Since only a very small fraction of all cuts of large size is
used in FPGA mapping, different heuristics have been proposed
to prune the cuts, for example, [9]. The problem is that the delay
optimality for large cut sizes is not guaranteed; in practice, their
deviation from the optimum delay for the given logic structure
may be substantial. This is because heuristics often prune cuts
that are not optimal for a node but may lead to optimal cuts of
the fanouts.

To address the enumeration problem, we introduce the notion
of cut factorization, which is conceptually related to the notion
of disjoint-support decomposition of logic functions [2]. Just as
the algebraic expression (ab + ac) can be factored as a(b + c),
the set of all cuts of a node can be factored using two sets of
cuts called global and local. Collectively, they are called factor
cuts. By expanding factor cuts w.r.t. local cuts, a larger set of
cuts can be obtained. During the cut computation, only factor
cuts are enumerated. Later on, during mapping, other cuts are
generated from factor cuts as necessary.

Depending on how global and local cuts are defined, there
can be different factorization schemes. In this paper, we present
two schemes, namely: 1) complete and 2) partial. In complete
factorization (CF), every cut can be obtained by expanding a
factor cut w.r.t. a local cut. However, CF is expensive since there
may be a large number of global cuts.

Partial factorization (PF) is an alternative approach where
there are much fewer global cuts, but there is no guarantee that
all cuts can be generated by expanding factor cuts. However,
in practice, good cuts are obtained with PF in a fraction of the
runtime required for complete enumeration.

C. Better, Simpler, and Faster Area Recovery

Area optimization after delay-optimum structural mapping
proceeds in several passes over the network. Each pass assigns
cuts with a better area among the ones that do not violate the
required time. Previous work [4] relied on several sophisticated
heuristics for ranking the cuts, trying to estimate their potential
to save area. They concluded that although the heuristics are not
equally useful, to get good area, a number of them need to be
applied.

In this paper, we show that the combination of two simple
techniques is enough to improve the area results of the previous
work by 6% on average while achieving the optimum delay.
The proposed combination is synergistic since the first one
attempts heuristically to find a global optimum, whereas the
second ensures that at least a local optimum is reached.

It should be noted that the first heuristic (known as effective
area [9] or area flow [18]) was used in the previous work but
applied in a reverse topological order while we argue that a
forward topological order works better.

D. Lossless Synthesis

The main drawback of the structural approaches to technol-
ogy mapping is their dependence on the initial circuit structure

(called structural bias). If the structure is bad, neither heuristics
nor iterative area recovery will improve the results of mapping.

To obtain a good structure for the network, usually several
technologically independent synthesis steps are performed. An
example is script.rugged in SIS followed by a two-input gate
decomposition. Each synthesis step in the script is heuristic,
and the subject graph produced at the end is not necessarily
optimum. Indeed, it is possible that the initial or an intermediate
network is better in some respects than the final network.

In this paper, we explore the idea of combining these in-
termediate networks into a single subject graph with choices,
which is then used to derive the mapped netlist. Thus, the
mapper is not constrained to use any one network but can pick
the best parts of each. We call this approach lossless synthesis
since no network seen during the synthesis process is ever
lost. By including the initial network in the choice network,
the heuristic logic synthesis operations can never make things
worse. Also, multiple scripts can be used to accumulate more
choices. We defer discussion of related work to Section VI-C.

In summary, we note that the contributions are largely
orthogonal in nature and tend to reinforce each other. For
example, improved cut enumeration gives extra speed to the
computation of factor cuts and cuts for the networks with
choices. Similarly, the proposed area recovery heuristics will
lead to an even smaller area when factor cuts are used. However,
the interaction of factor cuts and lossless synthesis is less
obviously beneficial. Investigation of this issue is deferred to
future work.

The rest of this paper is organized as follows: Section II
describes the background. Sections III–VI give details on the
four contributions of this paper listed. Section VII shows the
experimental results. Section VIII concludes this paper and
outlines future work.

II. BACKGROUND

A Boolean network is a directed acyclic graph (DAG) with
nodes corresponding to logic gates and directed edges corre-
sponding to wires connecting the gates. The terms network,
Boolean network, and circuit are used interchangeably in this
paper.

A node has zero or more fanins, i.e., nodes that are driving
this node, and zero or more fanouts, i.e., nodes driven by this
node. The primary inputs (PIs) of the network are nodes without
fanins in the current network. The primary outputs (POs) are a
subset of nodes of the network. If the network is sequential,
the flip-flop outputs/inputs are treated as additional PIs/POs. In
the following, it is assumed that each node has a unique integer
number called the node ID.

A network is K bounded if the number of fanins of each node
does not exceed K. A subject graph is a K-bounded network
used for technology mapping. Any combinational network can
be represented as an AND–INV graph (AIG) composed of two-
input AND and inverters. Without limiting the generality, in this
paper, we assume subject graphs to be AIGs.

A cut C of node n is a set of nodes of the network, called
leaves, such that each path from a PI to n passes through at
least one leaf. A trivial cut of a node is the cut composed of

242 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2007

the node itself. A cut is K feasible if the number of nodes in it
does not exceed K. A cut is said to be dominated if it contains
another cut of the same node.

A fanin (fanout) cone of node n is a subset of all nodes of the
network reachable through the fanin (fanout) edges from the
given node. A maximum fanout free cone (MFFC) of node n is
a subset of the fanin cone such that every path from a node in
the subset to the POs passes through n. Informally, the MFFC
of a node contains all the logic used only by the node. Thus,
when a node is removed or substituted, the logic in its MFFC
can also be removed.

The level of a node is the length of the longest path from any
PI to the node. The node itself is counted in the path lengths but
the PIs are not counted. The network depth is the largest level of
an internal node in the network. The delay and area of an FPGA
mapping are measured by the depth and number of LUTs in the
resulting LUT network.

A typical procedure for structural technology mapping con-
sists of the following steps:

1) cut computation;
2) delay-optimum mapping;
3) area recovery using heuristics;
4) recording the resulting LUT network.

For a detailed description on these steps, we refer the reader
to [4] and [18].

III. IMPROVED CUT COMPUTATION

Structural technology mapping into K-input LUTs starts by
computing K-feasible cuts for each internal two-input node of
the subject graph. The number of K-feasible cuts of a network
with n nodes is O(nK) [8].

In this section, we focus on improving the implementation
of the cut computation. The asymptotic complexity of the cut
computation procedures is still quadratic in the number of cuts
stored at a node, but the improvements make the algorithm
faster in practice, applicable to larger circuits, and scalable to
larger values of K.

A. Cut Enumeration

We begin with a review of the standard procedure for
enumerating, for each node of an AIG, the set of all of its
K-feasible cuts [9], [23]. Let A and B be two sets of cuts. For
convenience, we define the operation A♦B as

A♦B = {u ∪ v|u ∈ A, v ∈ B, |u ∪ v| ≤ k}.

Let Φ(n) denote the set of K-feasible cuts of node n. If n is
an AND node, let n1 and n2 denote its fanins. We have

Φ(n) =
{ {{n}} : n ∈ PI
{{n}} ∪ [Φ(n1) ♦ Φ(n2)] : otherwise

}
.

This formula translates into a simple procedure that com-
putes all K-feasible cuts in a single pass from the PIs to the POs
in a topological order. Informally, the cut set of an AND node is
computed by merging the two cut sets of its children and adding

Fig. 1. Illustration of cut computation.

the trivial cut (the node itself). This is done by taking the pair-
wise unions of cuts belonging to the fanins while keeping only
K-feasible cuts.

In this process of merging the cut sets to form the resulting
cut set, it is necessary to detect duplicate cuts and remove
dominated cuts. Removing them before computing cuts for
the next node reduces the number of cut pairs considered
without impacting the quality of mapping. In practice, the total
number of cut pairs tried during the merging greatly exceeds
the number of K-feasible cuts found. This makes checking the
K feasibility of the unions of cut pairs and testing duplication
and dominance of individual cuts the performance bottleneck
of the cut computation.

Example: Fig. 1 illustrates the bottom-up cut enumeration
procedure for a small circuit. Observe that due to reconver-
gence, the cut set of node x contains a dominated cut {a d b c}
(dominated by {a b c}) that may be removed without affecting
the quality of mapping.

B. Using Signatures

In this paper, we propose to use signatures for testing cut
properties, such as duplication, dominance, and K feasibility.
Conceptually, it is similar to the use of Bloom filters for encod-
ing sets [3] and to the use of signatures for comparing clauses
in [11]. The use of signatures only speeds up the computation;
no additional pruning is done.

A signature sign(C) of cut C is an M -bit integer whose bit-
wise representation contains 1s in the positions corresponding
to the node IDs. The signature is computed by the bit-wise OR

of integers as

sign(C) =
∑
n∈C

2ID(n) mod M .

Testing cut properties with signatures is much faster than
testing them by directly comparing leaves. The following
propositions state necessary conditions for duplication, domi-
nance, and K feasibility of cuts. If these conditions are violated,
then there is no need to do a detailed check by comparing
leaves. If the conditions hold, then a detailed check is done to
establish the property. (The detailed test cannot be avoided due
to aliasing: two different cuts may have the same signature).

MISHCHENKO et al.: IMPROVEMENTS TO TECHNOLOGY MAPPING FOR LUT-BASED FPGAs 243

Proposition 1: If cuts C1 and C2 are equal, so are their
signatures.

Proposition 2: If cut C1 dominates cut C2, the 1s of
sign(C1) are contained in the 1s of sign(C2).

Proposition 3: If C1 ∪ C2 is a K-feasible cut, |sign(C1) +
sign(C2)| ≤ K. Here, |n| denotes the number of 1s in the
binary representation of n, and addition is the bitwise OR.

Our current implementation uses one machine word (com-
posed of 32 bits on a 32-bit machine) to represent the signa-
ture of a cut, i.e., M = 32. As a result, most of the checks
are performed using several bit-wise machine operations, and
only if the signatures fail to disprove a property is the actual
comparison of leaves performed.

Example: Let M = 8 (for ease of exposition). The cut C1

with nodes having IDs 32, 68, and 69 would have sign(C1) =
00110001. A second cut C2 with nodes having IDs 32, 68, and
70 would have sign(C2) = 01010001. From comparing the two
signatures, it is clear that neither C1 dominates C2 or vice-
versa. Thus, there is no need to examine the leaves of C1 and
C2 to establish dominance. Let C3 be a third cut with node
IDs 36, 64, and 69. Now sign(C3) = 00110001 = sign(C1).
However, C3 is not equal to C1. (Thus, to establish properties,
a comparison of the cut leaves is necessary.)

C. Practical Observations

In the literature on technology mapping, all four-input and
five-input cuts are typically computed exhaustively, whereas
computation of cuts with more inputs is considered time con-
suming because of the large number of these cuts. Different
heuristics have been proposed [9] to rank and prune cuts to
reduce the runtime. We experimented with these heuristics and
found that they are effective for area but lead to suboptimal
delay.

In order to preserve delay optimality, we focus on perfecting
the cut computation and computing all cuts whenever possible.
Pruning is done only if the number of cuts at a node exceeds
a predefined limit set to 1000 in our experiments. When com-
puting K-feasible cuts with 4 ≤ K ≤ 7 for the largest Micro-
electronics Center of North Carolina (MCNC) benchmarks, this
limit was never reached, and hence no pruning was performed,
meaning that the cuts were computed exhaustively. Due to
the use of signatures, the runtime for 4 ≤ K ≤ 7 was also
quite affordable, as evidenced by the experiments. However, for
eight-input cuts, pruning was required for some benchmarks.

D. Reducing Memory for Cut Representation

The number of K-feasible cuts for K > 5 can be large. The
average number of exhaustively computed seven-input cuts in
the largest MCNC benchmarks is around 95 cuts per node. In
large industrial designs, the total number of cuts could be of
the order of tens of millions. Therefore, once the speed of cut
enumeration is improved, memory usage for cut representation
becomes the next pressing issue.

To address this issue, we modified the cut enumeration
algorithm to free the cuts as soon as they are not needed for
the subsequent enumeration steps. This idea is based on the

observation that the cuts of the nodes, whose fanouts have
already been processed, can be deallocated without impacting
cut enumeration. It should be noted that if technology mapping
is performed in several topological passes over the subject
graph, the cuts are recomputed in each pass. However, given
the speed of the improved cut computation, this does not seem
to be a problem.

Experimental results (presented in Table II) show that by
enabling cut dropping, as explained, the memory usage for
the cut representation is reduced by an order of magnitude for
MCNC benchmarks. We see that for larger benchmarks, the
reduction in memory is even more substantial.

It is possible to reduce the runtime of the repeated cut
computation by recording the cut enumeration trace, which
is saved during the first pass of cut enumeration and used
in subsequent passes. The idea is based on the observation
that, even when signatures are used, the most time-consuming
part of cut enumeration is determining what cut pairs lead to
nonduplicated nondominated K-feasible cuts at each node. The
number of such cut pairs is very small compared with the total
number of cut pairs at each node. The cut enumeration trace
recorded in the first pass compactly stores information about
all such pairs and the order of merging them to produce all
the K-feasible cuts at each node. The trace serves as an oracle
for the subsequent cut enumeration passes, which can now skip
checking all cut pairs and immediately derive useful cuts.

This option was implemented and tested in our cut enumer-
ation package but was not used in the experimental results
because the benchmarks allowed for storing all the cuts in
memory at the same time. We mention this option here because
we expect it to be useful for industrial mappers working on very
large designs.

IV. FACTOR CUTS

This section introduces the notion of cut factorization to
address the problem of cut enumeration. In cut factorization, we
identify certain subsets of the set of cuts of a node—the local
cuts and the global cuts, collectively called factor cuts—and
use these to generate the other cuts when needed. Depending on
how local and global cuts are defined, we get different schemes
for factorization. In this work, we consider two schemes,
namely: 1) complete and 2) partial. In CF, all cuts can be
derived from factor cuts, but it is expensive (although less so
than complete enumeration). In PF, not all cuts can be generated
from factor cuts, but it is very fast in practice and produces good
results.

In this section, we present the theory of cut factorization and
consider a sample application to compute delay optimal FPGA
mapping for large LUTs. For most nodes in a network, exam-
ining only factor cuts is enough to achieve the optimum delay.
For the remaining few nodes, a small number of nonfactor cuts
have to be considered.

A. Preliminaries

1) Dag and Tree Nodes: Consider an AIG G. A dag node is
a node of G that has two or more outgoing edges. A node of G

244 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2007

Fig. 2. AIG fragment to illustrate cut factorization.

that is not a dag node is called a tree node. The set of dag nodes
is denoted by D and the tree nodes by T .

The subgraph GT of G induced by the tree nodes is a forest
of trees. Each tree T in GT has an outgoing edge to exactly one
DAG node nd in G.

Consider the subgraph Tnd of G induced by a DAG node nd

in G and the nodes belonging to the trees in GT that feed into
it. Tnd is a (possibly trivial) tree. Tnd is called the factor tree of
a node n in Tnd. Clearly, every node in G has a factor tree. The
DAG node nd is called the root of Tnd.

The leaves ni of a factor tree are dag nodes. The factor tree
along with the inputs ni is a leaf-DAG and is called the factor
leaf-dag. Every node n in G has a unique factor leaf-dag (via
its unique factor tree). The root of a factor leaf-dag is the root
of the corresponding tree.

Example: Consider the AIG shown in Fig. 2. Nodes p, q, b,
c, and d are PIs. Nodes, such as x and a, that have double circles
are dag nodes. The rest are tree nodes. The set of nodes in each
shaded region forms a factor tree. The factor tree for node b is
trivial. The factor tree of node x consists of x, y, z, c, and d.
The factor leaf-dag of x contains the nodes in factor tree of x
along with nodes a and b.

Local Cuts, Global Cuts, and Expansion: In the following
sections, we will identify some K-feasible cuts in the network
as local cuts and some others as global cuts. We refer to them
collectively as factor cuts. The precise definitions of local and
global will depend on the factorization scheme (complete or
partial), but the general idea is to expand factor cuts by local
cuts to obtain other K-feasible cuts. In the case of CF, this
expansion will produce all K-feasible cuts.

Let c be a factor cut of node n ∈ G. Let ci be a local cut of
a node i ∈ c. Consider l = (

⋃
i ci). l is a cut of n although not

necessarily K feasible. If l is K feasible, then l is called a one-
step expansion of c. Define 1-step(c) as the set of cuts obtained
from c by one-step expansion, i.e.,

1-step(c) = {l|l is a one-step expansion of c}.

We ensure that c ∈ 1-step(c) by requiring that every node
have the trivial cut as a local cut.

Example: In Fig. 2, consider the cut {a, b, z} of x. By
expanding node a with its local cut {p, q}, we obtain the cut
{p, q, b, z} of x. Thus, {p, q, b, z} ∈ 1-step({a, b, z}).

B. Complete Factorization (CF)

In CF, we enumerate tree cuts and reduced cuts (defined in
the following), which are subsets of the set of all K-feasible
cuts. Tree cuts are the local cuts, and reduced cuts are the global
cuts. We use the term complete factor cuts to refer to tree cuts
and reduced cuts collectively. CF has the property that any
K-feasible cut can be obtained by one-step expansion.

Tree Cuts (Local Cuts): Let ΦT (n) denote the set of all tree
cuts of node n. First, define the auxiliary function Φ†

T (n) as

Φ†
T (n) =

{
∅ : n ∈ D

ΦT (n) : otherwise

}
.

Now, ΦT (n) is defined recursively as

ΦT (n) =
{ {{n}} : n ∈ PI
{{n}} ∪ Φ†

T (n1)♦Φ†
T (n2) : otherwise

}
.

ΦT (n) represents the subset of K-feasible cuts of n that only
involve nodes from the factor tree of n.

Example: In Fig. 2, ΦT (x) = {{x}, {y, z}, {y, c, d}}.
Reduced Cuts (Global Cuts): We define ΦR(n), the set of

reduced cuts of a node n, as

ΦR(n)=
{ {{n}} : n ∈ PI
{{n}}∪ ((ΦR(n1)♦ΦR(n2))\ΦT (n)) : otherwise

}
.

The formula for ΦR(n) is very similar to that of Φ(n) except
that nontrivial tree cuts are removed. Since this removal is done
recursively, ΦR(n) is significantly smaller than Φ(n).

Example: In Fig. 2, ΦR(x) = {{x}, {a, b, z}}. Note that
{a, b, c, d} is not a reduced cut of x since {c, d} is removed
when computing ΦR(z).

Cut Decomposition Theorem: With local and global cuts
being tree and reduced cuts, respectively, a cut decomposition
theorem holds.

Theorem 1: Every K-feasible cut of node n in G is a one-
step expansion of a K-feasible complete factor cut of n, i.e., if
c ∈ Φ(n), then ∃c′ ∈ ΦR(n) s.t. c ∈ 1-step(c′).

Proof Sketch: Let c be a K-feasible cut of n. If c consists
of nodes only from the factor tree Tn of n, then c is a local cut
of n and c ∈ 1-step({n}), and the theorem is proved.

Suppose c has some nodes {ni} ⊂ c belonging to a different
factor tree T whose root is x. Consider the set c′ = c \ {ni} ∪
{x}. Node c′ is also a cut of x since every path through {ni}
passes through x. Furthermore, c′ is K feasible since |c′| ≤ |c|
by construction. Now, c′ ∈ ΦR(n) since n is a DAG node
and c ∈ 1-step(c′).

If c has nodes from multiple factor trees, a similar argu-
ment holds. �

C. Partial Factorization (PF)

Although CF causes a reduction in the number of cuts
that need to be enumerated, further reduction is possible by
sacrificing the ability to generate all K-feasible cuts by one-
step expansion. This leads to the notion of PF. PF is much faster
than CF and produces a good set of cuts in practice, especially
for large K (say K = 9).

MISHCHENKO et al.: IMPROVEMENTS TO TECHNOLOGY MAPPING FOR LUT-BASED FPGAs 245

Fig. 3. Example of a limitation of PF.

In PF, leaf-dag cuts play the role of local cuts, and dag cuts
play the role of global cuts. We use the term partial factor cuts
to refer to leaf-dag cuts and dag cuts collectively.

1) Leaf-Dag Cuts (Local Cuts): Let ΦL(n) denote the set
of K-feasible leaf-dag cuts of node n. Define the auxiliary
function Φ†

L(n) as

Φ†
L(n) =

{ {{n}} : n ∈ D
ΦL(n) : otherwise

}
.

Now, ΦL(n) is defined recursively as

ΦL(n) =

{ {{n}} : n ∈ PI

{{n}} ∪
(
Φ†

L(n1)♦Φ†
L(n2)

)
: otherwise

}
.

ΦT (n) represents the subset of K-feasible cuts of n that only
involve nodes from the factor tree of n.

Conceptually, leaf-dag cuts are similar to tree cuts. Unlike
tree cuts, leaf-dag cuts also include the dag nodes that feed into
the factor tree of a node. This allows more cuts to be generated
by one-step expansion at the cost of a slight increase in runtime
for local cut enumeration.

Example: In Fig. 2, the cuts {a, b, z} and {a, b, c, d} are
examples of leaf-dag cuts of node x. (They are not tree cuts
of x.)

Dag Cuts (Global Cuts): Let ΦD(n) denote the set of
K-feasible dag cuts of n. We define

ΦD(n) =

{{n}} : n ∈ PI
ΦD(n1)♦ΦD(n2) : n ∈ T
{{n}} ∪ (ΦD(n1)♦ΦD(n2)) : otherwise

 .

Example: In Fig. 2, for K = 4, {x} and {a, b, c, d} are the
only dag cuts of x.

This definition of dag cuts is motivated by a need to reduce
the number of global cuts seen in CF. Defining dag cuts in
this manner allows us to capture much of the reconvergence
in the network without having to enumerate the large number
of reduced cuts (as in CF).

However, by computing global cuts this way, some cuts
cannot be generated by one-step expansion, as shown in Fig. 3.
The four-feasible cut {a, b, c, d} of x cannot be generated using
one-step expansion of a partial factor cut of x.

D. Delay-Optimum K-LUT Mapping

In this section, we apply factor cuts to technology mapping
for FPGAs with large LUTs. Most of the present-day FPGA

architectures do not provide LUTs of size more than 6. Instead,
they contain macrocells, which can implement a subset of
functions with 8–12 inputs. The algorithm presented in this
section is only used to illustrate the use of factor cuts. The
extension of the proposed algorithm to macrocells is left for
future research.

The conventional algorithm for delay optimal K-LUT map-
ping enumerates all K-feasible cuts and chooses the best set of
cuts using dynamic programming on the AIG. The algorithm
proceeds in two passes over the nodes.

The first pass, called the forward pass, is in topological
order from PIs to POs. For each node, all K-feasible cuts are
enumerated (using the K-feasible cuts of its children), and the
cut with the earliest arrival time is selected.

The arrival time of a cut c, denoted by arrival(c), is
defined as

arrival(c) = 1 +max
n∈c

arrival(n)

where arrival(n) is the best arrival time for node n (from among
all its K-feasible cuts). This recursion is well defined, since
when the cuts for a node n are being processed, the nodes in
the transitive fanin of n have already been processed. Thus, the
best arrival time of any node in a K-feasible cut of n has already
been computed.

The second pass of the algorithm is done in reverse topolog-
ical order. For each PO, the best K-feasible cut is chosen, and
an LUT is constructed in the mapped netlist to implement it.
Then, recursively for each node in this best cut, this procedure
is repeated.

The main limitation of the conventional algorithm is that
it explicitly enumerates a large number of all K-feasible cuts
during the forward pass. The idea behind using factor cuts is to
avoid this enumeration. Ideally, one would like to enumerate
only factor cuts, which are far fewer than K-feasible cuts.
However, there is no guarantee that the best K-feasible cut is
a factor cut. To avoid all possible one-step expansions, which
could be as bad as enumerating all K-feasible cuts, we use
Lemma 2 from [7].

Theorem 2 [7]: In Algorithm 1, if n is an AND node with
inputs n1 and n2, then arrival(n) = p or arrival(n) = p + 1,
where p = max(arrival(n1), arrival(n2)).

Theorem 2 provides a lower bound on the best arrival time.
If a factor cut attains the lower bound, then no one-step
expansions are necessary. If no factor cut attains the lower
bound, then they are one-step expanded one by one. During this
process, if the lower bound is attained, further expansion is not
needed.

Optimality: If CF is used, then this algorithm produces
the optimal delay since one-step expansion will produce all
K-feasible cuts (by the cut decomposition theorem). In the case
of PF, there is no guarantee of optimality. However, experiments
show that for large K, there is no loss of optimality for the set
of benchmarks considered (see Section VII-D).

Expansion: In CF, one-step expansion need not be exhaus-
tive. It suffices to expand the late arriving inputs of the
cut, one node at a time. This is because the expansions are
independent—two nodes in the cut do not have to be expanded

246 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2007

simultaneously with their tree cuts since the tree cuts of two
nodes never overlap.

In PF, the leaf-dag cuts of two nodes may overlap, and so the
expansions are not independent. However, in our experiments,
the late-arriving nodes were expanded one node at a time since
that did not degrade the quality significantly.

It is instructive to see why the conventional algorithm cannot
be easily modified to exploit the lower bound. Although one
need not scan all of Φ(n) to find the best cut (one can stop as
soon as the lower bound is attained), one still needs to construct
Φ(n) completely. This is because a cut c ∈ Φ(n) that does not
lead to the best arrival time for n may lead to the best cut for
some node n′ in the transitive fanout of n.

V. IMPROVED AREA RECOVERY

Exact area minimization during technology mapping for
DAGs is NP-hard [12] and hence not tractable for large circuits.
Various heuristics for approximate area minimization during
mapping have shown good results [4], [14], [18].

In this paper, we use a combination of only two heuris-
tics, which work well in practice. The order of applying the
heuristics is important since they are complementary. The first
heuristic has a global view and selects logic cones with more
shared logic. The second heuristic provides a missing local view
by minimizing the area exactly at each node.

A. Global View Heuristic

Area flow [18] (effective area [9]) is a useful extension of the
notion of area. It can be computed in one pass over the network
from the PIs to the POs. Area flow for the PIs is set to 0. The
area flow at node n is

AF(n) = [Area(n) + ΣiAF (Leafi(n))] /NumFanouts(n)

where Area(n) is the area of the LUT used to map the current
best cut of node n, Leafi(n) is the ith leaf of the best cut at n,
and NumFanouts(n) is the number of fanouts of node n in the
currently selected mapping. If a node is not used in the current
mapping, for the purposes of area flow computation, its fanout
count is assumed to be 1.

If nodes are processed from the PIs to the POs, the computing
area flow is fast. Area flow gives a global view of how useful the
logic is in the cone for the current mapping. Area flow estimates
sharing between cones without the need to retraverse them.

In our mapper, as in the previous work [4], [18], area flow
is used as a tiebreaker in the first pass when a delay-optimum
mapping is computed. In the first stage of area recovery, area
flow becomes the primary cost function used to choose among
the cuts, whose arrival times do not exceed the required times.

B. Local View Heuristic

The second heuristic providing a local view for area recovery
in our mapper is not used in the previous work. This heuristic
proceeds in topological order and looks at the exact local area

to be gained by updating the best cut at each node. The exact
area of a cut is defined as the sum of areas of the LUTs in the
MFFC of the cut, i.e., the LUTs to be added to the mapping if
the cut is selected as the best one.

The exact area of a cut is computed using a fast local Depth
First Search (DFS) traversal of the subject graph starting from
the root node of the cut. The reference counter of a node in the
subject graph is equal to the number of times it is used in the
current mapping, i.e., the number of times it appears as a leaf
of the best cut at some other node or as a PO. The exact area
computation procedure is called for a cut. It adds the cut area
to the local area being computed, dereferences the cut leaves,
and recursively calls itself for the best cuts of the leaves whose
reference counters are zero. This procedure recurs as many
times as there are LUTs in the MFFC of the cut, for which it
is called. This number is typically small, which explains why
computing the exact area is reasonably quick. Once the exact
area is computed, a similar recursive referencing is performed
to reset the reference counters to their initial values before
computing the exact area for other cuts.

MFFCs were used in [8] for duplication-free mapping, which
was alternated with depth relaxation for area minimization. This
paper differs from [8] in that it is not restricted to duplication-
free mapping but employs the concept of MFFC along with
reference counting of nodes in the AIG for accurate estimation
of the impact of cut selection on area during mapping.

Experimentally, we found that, after computing a delay-
optimum mapping, two passes of area recovery are enough to
produce good-quality mapping. The first pass uses area flow,
and the second one uses the exact local area. Iterating area
recovery using both of the heuristics can additionally save up to
2% of the total area of mapping, which may or may not justify
the extra runtime.

It is interesting to observe that the previous work recovers
area at each node in reverse topological order. We argue that
the opposite works better for incremental area recovery since it
allows most of the slack to be used on noncritical paths closer
to the PIs, where the logic is typically wider and hence offers
more opportunity for area savings.

VI. LOSSLESS SYNTHESIS

The idea behind lossless logic synthesis is to remember some
or all networks seen during a logic synthesis flow (or a set
of flows) and to select the best parts of each network during
technology mapping. This is useful for two reasons.

First, technology-independent synthesis algorithms are
heuristic, and so there is no guarantee that the final network
is optimum. When only this final network is used, the mapper
may miss a better result that could be obtained from part of an
intermediate network in the flow.

Second, synthesis operations usually apply a cost function
(e.g., delay) to the network as a whole. Thus, a flow to optimize
delay may significantly increase the area. However, by combin-
ing a delay-optimized network with one optimized for area, it is
possible to get the best of both; on the critical path, the mapper
can choose from the delay-optimized network, off critical from
the area-optimized network, and near critical from both.

MISHCHENKO et al.: IMPROVEMENTS TO TECHNOLOGY MAPPING FOR LUT-BASED FPGAs 247

Fig. 4. Equivalent networks before choicing.

Section VI-A gives an overview of constructing the choice
network efficiently. Section VI-B extends the cut computation
to handle choices.

A. Constructing the Choice Network

The choice network is constructed from a collection of
networks that are functionally equivalent. The identification of
functionally equivalent nodes has been a key component in
recent advances in equivalence checking [15], [17].

Conceptually, the procedure is as follows: Each network
is decomposed into an AIG. All the nodes with the same
global function in terms of the PIs are collected in equivalence
classes. The result is a choice AIG that has multiple functionally
equivalent points grouped together.

The identification of functionally equivalent points could be
done by computing global Binary Decision Diagrams (BDDs),
but this is not feasible for large circuits. One can use random
simulation to identify potentially equivalent nodes and then
use a Satisfiability (SAT) engine to verify equivalence and
construct the equivalence classes. To this end, we implemented
a package called functionally reduced AND inverter graphs.
This package exposes APIs comparable to a BDD package
but internally uses simulation and SAT. More details may be
found in [19].

Example: Figs. 4 and 5 illustrate the construction of a
network with choices. Networks 1 and 2 in Fig. 4 show the
subject graphs obtained from two networks that are functionally
equivalent but structurally different. The nodes x1 and x2

in the two subject graphs are functionally equivalent (up to
complementation). They are combined in an equivalence class
in the choice network, and an arbitrary member (x1 in this case)
is set as the class representative. Node p does not lead to a
choice because p is structurally the same in both networks. Note
also that there is no choice corresponding to the output node o
since the procedure detects the maximal commonality of the
two networks.

A different way of generating choices is by Λ and ∆ transfor-
mations [16]. Given an AIG, the associativity of the AND oper-
ation is used to locally rewrite the graph (the Λ transformation),
i.e., whenever the structure AND(AND(x1, x2), x3) is seen in the
AIG, it is replaced by the equivalent structures AND(AND(x1,
x3), x2) and AND(x1, AND(x2, x3)). If this process is done until

Fig. 5. Choice network.

no new AND nodes are created, it is equivalent to identifying
the maximal multi-input AND gates in the AIG and adding
all possible tree decompositions of these gates. Similarly, the
distributivity of AND over OR (the ∆ transformation) provides
another source of choices.

Using structural choices leads to a new way of thinking about
logic synthesis: rather than trying to come up with a good
final netlist used as an input to mapping, one can postpone
decisions and simply accumulate choices by applying arbitrary
transformations, which lead to improvement in some sense.
The best combination of these choices is selected finally during
mapping.

B. Cut Enumeration With Choices

The cut-based structural FPGA mapping procedure can be
extended naturally to handle equivalence classes of nodes.
It is remarkable that only the cut enumeration step needs
modification.

Given a node n, let N denote its equivalence class. Let Φ(N)
denote the set of cuts of the equivalence class N . Then, it is
obvious that Φ(N) =

⋃
n∈N Φ(n). In addition, if a and b are

the two inputs of n belonging to equivalence classes A and B,
respectively, then

Φ(n) = {{n}} ∪ {u ∪ v|u ∈ Φ(A), v ∈ Φ(B), |u ∪ v| ≤ k} .

This expression for Φ(n) is a slight modification of the
one used in Section III to compute the cuts without choices.
The cuts of n are obtained from the cuts of the equivalence
classes of its fanins (instead of the cuts of its fanins). When
each equivalence class has only one node, this computation is
the same as the one presented in Section III. As before, cut
enumeration is done in one topological pass from the PIs to
the POs.

Example: Consider the computation of the three-feasible
cuts of the equivalence class {o} in Fig. 5. Let X represent the
equivalence class {x1, x2}. Now, Φ(X) = Φ(x1) ∪ Φ(x2) =
{{x1}, {x2}, {q, r}, {p, s}, {q, p, e}, {p, d, r}, {p, d, e},
{b, c, s}}. We have Φ({o}) = Φ(o) = {{o}} ∪ {u ∪ v|u ∈
Φ({a}), v ∈ Φ({x1}), |u ∪ v| ≤ 3}. Since Φ({a}) = Φ(a) =
{a} and Φ({x1}) = Φ(X), we get Φ({o}) = {{o}, {a, x1},
{a, x2}, {a, q, r}, {a, p, s}}. Observe that the set of cuts of o

248 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2007

TABLE I
PERFORMANCE OF IMPROVED K-FEASIBLE CUT COMPUTATION (SEE SECTION VII-A)

involves nodes from the two choices x1 and x2, i.e., o may be
implemented using either of the two structures.

The subsequent steps of the mapping process (computing
delay-optimum mapping and performing area recovery) remain
unchanged, except that now the additional cuts can be used for
mapping at each node.

C. Related Work

Technology mapping for a network that encodes different
decompositions originated in the context of standard cell map-
ping with the work of Lehman et al. [16]. Chen and Cong
adapted this method for FPGAs in their work on SLDMap [6];
in particular, they identified large (five- to eight-input) AND

gates in the subject graph and added choices corresponding to
the different decompositions of the large AND gates into two-
input AND gates. They used BDDs to find globally equivalent
points, which limited the scalability of their approach.

This paper is an extension to FPGA mapping of our paper on
standard cells [5]. It differs from SLDMap [6] in two ways.
First, the use of structural equivalence checking, instead of
BDDs, makes the choice detection scalable and robust. Second,
instead of adding a dense set of algebraic choices by brute force,
we add a sparse set of (possibly Boolean) choices obtained from
synthesis. The expectation is that most of the choices added
by the exhaustive algebraic decompositions only increase the
runtime without being useful. In contrast, the choices added
from synthesis are expected to be better since they are a result of
optimization. This is supported by our experiments on standard
cells [5], and we expect similar results to hold for FPGAs.

VII. EXPERIMENTAL RESULTS

The improvements in FPGA technology mapping are cur-
rently implemented in ABC [1] as command fpga. Cut enumer-
ation is implemented as command cut.

A. Improved Cut Computation (Runtime)

Table I shows the results of exhaustive cut computation
for the largest MCNC benchmarks. To derive AIGs used in
this experiment, the benchmarks were structurally hashed and
balanced first using command balance in ABC.

Exhaustive cut enumeration was performed for computing
K-feasible cuts for 4 ≤ K ≤ 8. Column N gives the number
of AND nodes in the AIG for each benchmark. Columns C/N
give the average number of cuts per node. Columns T give
the runtime in seconds on an IBM ThinkPad laptop with
1.6-GHz CPU and 1 GB of RAM. The final column L/N
lists the percentage of nodes for which the number of eight-
input cuts exceeded the predefined limit (1000/node for these
benchmarks). In computing cuts for 4 ≤ K ≤ 7, the number of
cuts per node never exceeded the limit, and, as a result, the cuts
are computed exhaustively.

In summary, although the number of cuts and their compu-
tation time are exponential in the number of cut inputs (K),
with the proposed improvements, all the cuts up to seven inputs
can often be computed in reasonable time due to efficient cut
filtering based on dominance.

B. Improved Cut Computation (Memory)

The second experiment presented memory requirements for
the cut representation by showing the reduction in peak memory
with and without cut dropping (Table II). The amount of
memory used for a K-feasible cut in the ABC data structure
is (12 + 4∗K) bytes.

Columns labeled “Total” list the memory usage (in
megabytes) for all the nondominated K-feasible cuts at all
nodes. Columns labeled “Drop” list the peak memory usage (in
megabytes) for the cuts at any moment in the process of cut
enumeration, when the nodes are visited in topological order,
and the cuts at a node are dropped as soon as the cuts at all the
fanouts are computed.

MISHCHENKO et al.: IMPROVEMENTS TO TECHNOLOGY MAPPING FOR LUT-BASED FPGAs 249

TABLE II
PEAK MEMORY REQUIREMENTS, IN MEGABYTES, FOR CUTS WITH AND WITHOUT DROPPING (SEE SECTION VII-B)

TABLE III
COMPARISON OF CONVENTIONAL ENUMERATION (ALL) AND CF FOR K = 6. RUNTIMES FOR THIS TABLE (AND TABLES IV AND V)

ARE ON A 3-GHz INTEL PENTIUM 4 WITH 1 GB OF RAM. (SEE SECTION VII-C)

In summary, dropping cuts at the internal nodes after they
are computed and used reduces the memory requirements for
the mapper by an order of magnitude on the largest MCNC
benchmarks and by more then two orders of magnitude on large
industrial benchmarks such as [13].

C. Computation of Factor Cuts

The computation of factor cuts described in Section IV
is implemented in ABC [1]. Table III shows the number of
complete factor cuts for K = 6 for a set of benchmarks. The
column labeled “dag” shows the percentage of nodes that are
dag nodes. On average, about 27% of the nodes are dag nodes.
The number of reduced cuts is about 64% of the total number
of cuts. Enumerating complete factor cuts is about two times
faster than enumerating all cuts.

Table IV shows the number of all cuts, complete factor, and
partial factor cuts for K = 9 for the same set of benchmarks.
In some cases, not all cuts could be computed since there were
too many. The columns labeled “Over” indicate the fraction of
nodes at which the maximum limit of 2000 cuts was exceeded.
When enumerating all cuts, the limit was exceeded in about
16% of the nodes on average. However, the reduced cut enu-
meration exceeded the limit in only 6.5% of the nodes. (The
tree cut enumeration never exceeded the limit.) The number of

complete factor cuts is about 68%, and the enumeration runs
about 34% faster.

The columns under “PF” show the number of partial factor. It
is seen from the table that the number of partial factor cuts is a
small fraction of the total number of cuts (15%) and the time for
enumerating these cuts is less than 10% of the time required to
enumerate all cuts. During enumeration, only a small fraction
of nodes (less than 0.5%) exceeded the limit of 2000 when
computing dag cuts, and hence, those data are not shown
in Table IV.

We note here that the multiplier (C6288) is a particularly in-
teresting benchmark. In comparison with other benchmarks, it
has many—about 60%—dag nodes. This negates the advantage
of computing partial factor cuts as the factor trees are small, and
the factor cut enumeration takes unusually long.

In summary, enumeration of factor cuts is feasible even for
large cut sizes. Even for small K, enumerating complete factor
cuts is significantly faster than enumerating all cuts.

D. Delay-Optimal Mapping With Factor Cuts

A prototype FPGA mapper using factor cuts was imple-
mented in ABC [1]. Table V shows the delay and runtimes
of the various modes of this mapper for K = 9. The first
set of columns (under the heading “Lim = 2000”) shows that

250 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2007

TABLE IV
COMPARISON OF CONVENTIONAL ENUMERATION (ALL), CF, AND PF FOR K = 9. NUMBER OF ALL

NINE FEASIBLE CUTS IS AN UNDERESTIMATE. (SEE SECTION VII-C)

TABLE V
COMPARISON OF CONVENTIONAL MAPPING (ALL) AND CF WITH LIMITS OF 1000 AND 2000, AND PF

WITH A LIMIT OF 2000 CUTS PER NODE. K = 9. (SEE SECTION VII-C)

CF produces better results than enumerating all cuts and is
faster. These columns directly correspond to the “All” and “CF”
cut data shown in Table IV. Note that the suboptimality of
enumerating all cuts is due to the fact that not all cuts could be
computed for the nodes—there was an overflow of 16%. Also,
by comparing the cut computation runtimes in Table IV with
the overall mapping runtimes in Table V, we can see that the
mapping runtime is dominated by cut computation. Expansion
takes a small fraction of the total runtime, and on average, about
25% of the nodes needed to be expanded.

The second set of columns (under the heading “Lim =
1000”) shows the effect of reducing the limit on the maximum
number of cuts stored at a node. Although the cut computation
is more than twice as fast, the delay is 15% worse when
enumerating all cuts. CF continues to produce better delays
and has shorter runtimes. The final set of columns (under the
heading “PF with Lim = 2000”) shows the delay and runtime
obtained with PF. Although one-step expansion from partial
factor cuts may not generate all K-feasible cuts, the cuts that
it does generate are competitive with those enumerated by the

MISHCHENKO et al.: IMPROVEMENTS TO TECHNOLOGY MAPPING FOR LUT-BASED FPGAs 251

TABLE VI
COMPARING FPGA MAPPER WITH IMPROVEMENTS WITH DAOmap [4] (SEE SECTION VII-E)

conventional procedure under the limit. Furthermore, PF is
about six times faster than conventional enumeration.

We also experimented with PF for different values of K. For
K = 6, we found that PF produces about 5% worse results than
enumerating all cuts, although it runs about three times faster.
For K = 12, we found that trying to enumerate all cuts leads to
poor results since more than 40% of the nodes exceed the cut
limit. PF works better, producing 50% smaller delay on average
than exhaustive enumeration.

In summary, for large K (say 9 or 12), complete enumeration
is not possible, and only a subset of cuts of a node can be
stored and propagated in practice. Factor cuts provide a better
alternative in this scenario since better cuts are generated and
stored. Our experiments show that the use of factor cuts leads
to better mapped results than reducing the limit on the total
number of cuts stored at a node in conventional enumeration.

E. Improved Area Recovery

The “DAOmap” and “ABC-baseline” sections in Table VI
compare the FPGA mapping results for five-input LUTs using
DAOmap [4] and our mapper with improved area recovery
implemented in ABC [1]. DAOmap was run on a four-CPU
3.00-GHz computer with 510-Mb RAM under Linux. ABC was
run on a 1.6-GHz laptop with 1-Gb RAM under Windows.
All benchmarks were preoptimized using script.algebraic in
SIS followed by decomposition into two-input gates using
the command dmig in RASP [10]. To ensure identical start-
ing logic structures, the same preoptimized circuits originally
used in [4] were used in this experiment. All the result-
ing netlists have been verified by a SAT-based equivalence
checker [22].

Columns 2 and 5 give the number of logic levels of LUT net-
works after technology mapping. The values in these columns
are equal in all but one case (benchmark frisc). This observation

supports the claim that both mappers perform delay-optimum
mapping for the given logic structure. The one difference may
be explained by minor variations in the manipulation of the
subject graph, such as AIG balancing performed by ABC.

Columns 3 and 6 show the number of LUTs after technol-
ogy mapping. The difference between the results produced by
the two mappers reflects the fact that different area recovery
heuristics are used and, possibly, that ABC-baseline performs
area recovery in a topological order, whereas DAOmap uses a
reverse topological order.

Columns 4 and 7 report the runtimes in seconds. These
include the time for reading a BLIF file, constructing the subject
graph, and performing technology mapping with area recovery.
The differences in runtimes are due to the differences in the
basic data structures, improved cut enumeration, and scalability
of the area recovery heuristics.

In summary, Table VI demonstrates that the mapper in ABC
designed using the improved cut enumeration and the proposed
heuristics for area recovery performs well on the selected
benchmarks.

F. Lossless Synthesis

The “ABC-choices” section in Table VI gives mapping re-
sults for the same benchmarks when lossless synthesis is used.
The alternative logic structures used for this were generated
in ABC by applying script choice listed in the resource file
abc.rc found in the ABC distribution. This script uses the
original network and two snapshots of this network derived
by applying two logic synthesis scripts in ABC, namely:
1) resyn and 2) resyn2. Both scripts are based on iterative
application of AIG rewriting [20]. The three resulting networks
are combined into a single choice network where function-
ally equivalent nodes are detected, as shown in Section VI.
The mapping runtime listed in the “ABC-choices” section

252 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2007

in Table VI includes the runtime of logic synthesis, choicing,
and FPGA mapping with choices.

The “ABC-choices 5x” section shows the results of the
repeated application of mapping with choices. For this, the
netlist mapped into LUTs by first mapping with choices was
redecomposed into an AIG by factoring the logic functions of
the LUTs, subjecting the result to the same lossless synthesis
flow, and followed, as before, by mapping with choices. This
process was iterated five times, which gradually transformed
the logic structure to one better for FPGA mapping into five-
input LUTs. The last column shows the runtime, in seconds,
taken by the complete flow, including reading BLIF files,
five iterations of logic synthesis, and five iterations of FPGA
mapping with choices.

The quality of FPGA technology mapping (both delay and
area) is substantially improved after several iterations of choic-
ing and mapping with choices. Each iteration generates struc-
tural variations on the currently selected best mapping and
allows the mapper to combine the resulting choices even better
by mixing and matching different logic structures. Iterating the
process tends to gradually “evolve” structures that are good
for the selected LUT size independent of the structure of the
original network.

We also compared our lossless synthesis with the technique
in [6], which used associative choices for multi-input AND

gates. The improvements due to these choices (5% in delay,
4% in area) are less than those due to the proposed lossless
synthesis (6% in delay, 12% in area), compared to DAOmap,
used as a baseline in Table VI. On the other hand, exhaustively
adding associative decompositions greatly increases the total
number of choices, leading to many more cuts. This slows down
the mapper more than the relatively few choices added by the
proposed lossless synthesis.

Regarding the theoretical time complexity of iterative map-
ping with choices, the complexity is bounded by the expo-
nential time needed to detect choices. However, in practice,
due to fast equivalence checking, the runtime is reasonable,
as can be seen from the experimental results. The theoreti-
cal time complexity of choicing can also be made linear if
choices are recorded during logic synthesis instead of being
detected later.

In summary, the experiments demonstrate that lossless syn-
thesis can substantially reduce delay and area of the mapped
netlists both as a standalone mapping procedure and as a
postprocessing step applied to an already computed FPGA
mapping.

VIII. CONCLUSION

In this paper, we have taken the state-of-the-art techniques
for LUT-based technology mapping, added three new improve-
ments, and implemented all in a new FPGA mapper available in
ABC [1]. The three improvements are: 1) reduction in runtime
and memory requirements for cut enumeration; 2) improved
area recovery through combined use of global-view and local-
view heuristics; and 3) improved delay and area through the use
of multiple circuit structures to mitigate structural bias during
technology mapping.

These improvements are confirmed by experimental results
using the new mapper. The improved area recovery procedure
leads, on average, to a substantial improvement in runtime and
a 6% smaller area, compared to DAOmap, while preserving the
optimum delay when starting from the same logic structure.
Using multiple logic structures via lossless synthesis leads to
a 6% improvement in delay along with a 12% reduction in
area while the runtime is slightly increased compared with
DAOmap. When lossless synthesis and FPGA mapping are
iterated five times, delay and area improve by 10% and 19%,
respectively, at the cost of increasing the runtime eight times
(which includes the extra logic synthesis time).

We also introduced the notion of cut factorization to enable
delay-oriented mapping for large LUT sizes. Cut factorization
can be seen as an alternative to storing a limited number of cuts
at a node in conventional enumeration, and the experimental
results show that using factor cut-based mapping leads to better
delays and shorter runtimes than conventional enumeration.

Future Work: Confirmation of the full usefulness of factor
cuts remains for future experiments. Our next goal is to apply
factor cut computation for technology mapping into macrocells
or configurable logic blocks in FPGAs with eight or more
inputs. Macrocells differ from LUTs in that they can implement
a subset of all functions of the given number of inputs. Another
possibility is to use factor cuts in standard cell mapping and
in logic synthesis by rewriting [20]. The cut size correlates
with the capability of a mapper (or a rewriting algorithm) to
overcome structural bias. The larger is the cut, the larger is
the scope of Boolean matching (or Boolean transform), and the
smaller is the structural bias.

Also, a major work for the future will be to extend the
improvements to FPGA mapping for the case of integrated
sequential optimization, which includes logic restructuring,
mapping, and retiming, as presented in [21].

ACKNOWLEDGMENT

The authors would like to thank J. Cong and D. Chen for
providing the set of preoptimized benchmarks from [4], which
allowed for a comparison with DAOmap in Table VI. The
authors also acknowledge N. Een for suggesting the counter-
example shown in Fig. 3.

REFERENCES

[1] Berkeley Logic Synthesis and Verification Group, ABC: A System for Se-
quential Synthesis and Verification. [Online]. Available: http://www.eecs.
berkeley.edu/~alanmi/abc/

[2] V. Bertacco and M. Damiani, “Disjunctive decomposition of logic func-
tions,” in Proc. ICCAD, 1997, pp. 78–82.

[3] B. Bloom, “Space/time tradeoffs in hash coding with allowable errors,” in
Commun. ACM, 1970, vol. 13, pp. 422–426.

[4] D. Chen and J. Cong, “DAOmap: A depth-optimal area optimiza-
tion mapping algorithm for FPGA designs,” in Proc. ICCAD, 2004,
pp. 752–757.

[5] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam, “Re-
ducing structural bias in technology mapping,” in Proc. ICCAD, 2005,
pp. 519–526. [Online]. Available: http://www.eecs.berkeley.edu/~alanmi/
publications/2005/iccad05_map.pdf

[6] G. Chen and J. Cong, “Simultaneous logic decomposition with technology
mapping in FPGA designs,” in Proc. FPGA, 2001, pp. 48–55.

[7] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping al-
gorithm for delay optimization in lookup-table based FPGA designs,”

MISHCHENKO et al.: IMPROVEMENTS TO TECHNOLOGY MAPPING FOR LUT-BASED FPGAs 253

IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 13, no. 1,
pp. 1–12, Jan. 1994.

[8] ——, “On area/depth trade-off in LUT-based FPGA technology
mapping,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 2, no. 2,
pp. 137–148, Jun. 1994.

[9] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling a
general and efficient FPGA mapping solution,” in Proc. FPGA, 1999,
pp. 29–36.

[10] J. Cong et al., RASP: FPGA/CPLD Technology Mapping and Synthesis
Package. [Online]. Available: http://ballade.cs.ucla.edu/software_release/
rasp/htdocs/

[11] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in Proc. SAT, 2005, pp. 61–75.

[12] A. Farrahi and M. Sarrafzadeh, “Complexity of lookup-table minimiza-
tion problem for FPGA technology mapping,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 13, no. 11, pp. 1319–1332,
Nov. 1994.

[13] IWLS 2005 Benchmarks. [Online]. Available: http://iwls.org/iwls2005/
benchmarks.html

[14] C.-C. Kao and Y.-T. Lai, “An efficient algorithm for finding minimum-
area FPGA technology mapping,” ACM Trans. Des. Autom. Electron.
Syst., vol. 10, no. 1, pp. 168–186, Jan. 2005.

[15] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust Boolean
reasoning for equivalence checking and functional property verification,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 21, no. 12,
pp. 1377–1394, Dec. 2002.

[16] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic decompo-
sition during technology mapping,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 16, no. 8, pp. 813–833, Aug. 1997.

[17] F. Lu, L. Wang, K. Cheng, J. Moondanos, and Z. Hanna, “A signal
correlation guided ATPG solver and its applications for solving difficult
industrial cases,” in Proc. DAC, 2003, pp. 668–673.

[18] V. Manohararajah, S. D. Brown, and Z. G. Vranesic, “Heuristics for area
minimization in LUT-based FPGA technology mapping,” in Proc. IWLS,
2004, pp. 14–21.

[19] A. Mishchenko, S. Chatterjee, R. Jiang, and R. Brayton. (2005, Mar.).
“FRAIGs: A unifying representation for logic synthesis and verifi-
cation,” EECS Dept., UC Berkeley, Berkeley, CA, ERL Tech. Rep.
[Online]. Available: http//:www.eecs.berkeley.edu/~alanmi/publications/
2005/tech05_fraigs.pdf

[20] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG rewrit-
ing: A fresh look at combinational logic synthesis,” in Proc. DAC,
2006, pp. 332–536. [Online]. Available: http://www.eecs.berkeley.edu/
~alanmi/publications/2006/dac06_rwr.pdf

[21] A. Mishchenko, S. Chatterjee, R. Brayton, and P. Pan, “Integrating logic
synthesis, technology mapping, and retiming,” UC Berkeley, Berkeley,
CA, Apr. 2006. ERL Tech. Rep. [Online]. Available: http://www.eecs.
berkeley.edu/~alanmi/publications/2006/tech06_int.pdf

[22] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Eén, “Improvements
to combinational equivalence checking,” in Proc. ICCAD’06, 2006,
pp. 836–843. [Online]. Available: http://www.eecs.berkeley.edu/~alanmi/
publications/2006/iccad06_cec.pdf

[23] P. Pan and C.-C. Lin, “A new retiming-based technology mapping algo-
rithm for LUT-based FPGAs,” in Proc. FPGA, 1998, pp. 35–42.

Alan Mishchenko (M’99) received the M.S. degree
in applied mathematics and information technology
from the Moscow Institute of Physics and Technol-
ogy, Moscow, Russia, in 1993, and the Ph.D. degree
in computer science from the Glushkov Institute of
Cybernetics, Kiev, Ukraine, in 1997.

Since 1998, he has been a Research Scientist in the
U.S. First, he was with the Portland State University,
Portland, OR. Since 2002, he has been with the Uni-
versity of California, Berkeley. His research focuses
on developing computationally efficient methods for
logic synthesis and verification.

Satrajit Chatterjee received the B.Tech. and
M.Tech. degrees from the Indian Institute of Tech-
nology, Bombay, India, in 2001. He is currently
working toward the Ph.D. degree in computer sci-
ence at the University of California, Berkeley.

His research interests are in developing algorithms
for logic synthesis and physical design.

Robert K. Brayton (M’75–SM’78–F’81) received
the B.S. degree in electrical engineering from Iowa
State University, Ames, in 1956, and the Ph.D. de-
gree in mathematics from Massachusetts Institute of
Technology (MIT), Cambridge, in 1961.

From 1961 to 1987, he was with the Mathematical
Sciences Department, IBM T. J. Watson Research
Center, Yorktown Heights, NY. In 1987, he joined the
Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley, where
he is currently a Cadence Distinguished Professor

of engineering and the Director of the Semiconductor Research Corporation
Center of Excellence for Design Sciences.

Dr. Brayton is a member of the National Academy of Engineering and
a Fellow of the American Association for the Advancement of Science. He
received the 1991 IEEE Circuits and Systems Technical Achievement Award
and five best paper awards, including the 1971 IEEE Guilleman–Cauer Award
and the 1987 International Symposium on Circuits and Systems Darlington
Award. In 2000, he received the Circuits and Systems Golden Jubilee Medal
and the IEEE Millennium Medal, the 2002 Iowa State Marston Medal, and the
2006 IEEE Piore Award.

