
DECOMPOSITION OF MULTIPLE-VALUED FUNCTIONS

Tadeusz Luba
Institute of Telecommunications, Warsaw University of Technology

ul. Nowowiejska 15/19, 00-665 Warsaw, Poland

Abstract

This paper presents a generalized method for decompo-
sition of Multiple-Valued fitnctions. The main reason for
using the described method is efficient implementation of
logic circuits as well as effective representation of data in
information systems. In logic synthesis, the method reduces
the demand for silicon space required to implement designs.
It is shown that the decomposition technique leads to
additional compressing capabilities in PLA implementations.
Another very promising area of application of decom-
position is its effective representation of data in information
systems, data bases and in other applications of information
storing systems.

1. Introduction.
The notion of decomposition is central to most methods

for systems analysis and design. For example, typical
applications are functional decomposition, FSM decomposi-
tion, information systems decomposition, and Roth-Karp
decomposition.

In general, decomposition relies on the breakdown of a
complex system into smaller, relatively independent units.
The motivation for using decomposition in system analysis
and design is to reduce the complexity of the problem by a
divide-and-conquer paradigm: A system is decomposed into
a set of smaller subsystems such that each of them is easier
to synthesize or analyze. A decomposed system can also be
superior to a monolithic one.

Decomposition is a fundamental problem in modem
logic synthesis. At first glance its goal is to break a logic
circuit into a set of smaller interacting components. Such an
implementation is desirable for a number of reasons. A
decomposed circuit usually leads to improved performance

0-8186-7118-1/95 $04.00 0 1995 IEEE
256

which is reflected both in less silicon area and less signal
delay.

Particular stimulus for decomposition methods came
recently from the field of programmable multi-block logic
devices. Such technologies are characterized by 1/0 or gate-
limited blocks of logic into which the circuit must be
mapped. In such a case implementation is impossible
without decomposition. Similarly, decomposition is neces-
sary in order to implement large circuits with the more
traditional PLAs.

Although a vast majority of digital systems available
today use conventional binary circuits, multiple valued logic
has recently attracted great interest. Of the possible design
approaches to multiple-valued logic circuits, the PLAs with
decoders have received the most attention.

Multiple-valued synthesis is an extension of classical
binary logic to variables which can assume more than two
values. However, its application includes not only minimiza-
tion of PLAs with input decoders [3], [14] but also Boolean
decomposition of a PLA into several serially cascaded PLAs

The strong stimulus for developing decomposition me-
thods and tools comes also from the data compressing pro-
blems in machine learning, pattern recognition and in many
other areas of AI applications. In machine leaming the idea
of reduction of instance space is well known, see e.g. an
approach to compressing sets of examples, attributes and att-
ribute-value tuples in a technique called a partition triple [SI
or other approaches to reduction of an instance space [13].

The above techniques, in comparison with logic synthe-
sis capabilities, suffer from lack of pure functional decom-
position strategies. Recent results [ll], [12] in decomposi-
tion-based methodology seem to indicate that the concept of
functional decomposition should be investigated more
generally and in more detail. In this paper we concentrate

PI.

on generalization of the decomposition methodology to
make it applicable to multiple-valued logic synthesis and to
information systems as well.

2. Basics of Decomposition
Let xi be a multiple-valued variable, and Ci =

= {O,l,,..,ci-l} be a set of values that it may assume.
A generalized Multiple-Valued function with n input, m
output variables is defined as a mapping:

F(xl,...,X,,): C1 x C2 x ... x C, + Dm,
where D = {O,l,-} represents the binary value of the
function (0 or 1) and '-' denotes a don't care value.

For the sake of clarity the mapping F may be viewed as
pair T = (M, A), where
M - is a non-empty, finite set of minterms,
A - is a finite set of arguments i.e. input and output

variables ; A = X U Y, where X is the set of input
variables and Y is the set of output variables,
X n Y = $. Moreover
is a function which maps the argument a E A into
their values for every minterm v E M, i.e.:

a: M - V,,

a -

where V, is a domain (set of possible values) of argu-
ment a.

With every subset of arguments B G X, an equivalence
relation IND(B), called indiscemibility relation, is defined
as follows:

IND(B) = {(ml,m2) E M: VxEB, x(ml) = x(m2)}

Minterms satisfying relation IND(B) are indiscernible
by arguments from B. Thus, the relation IND partitions M
into equivalence classes M/IND(B), which form a partition
P(B) on M.

Similarly, the output-consistency relation, denoted by
CON, can be related to every subset B of output variables.
This relation can be formally defined as follows:

a) xi b)
1 2 3 4 5 6 Y 1 Y2 Y3

1 0 0 0 0 0 0 1 1 0 1
2 0 0 1 1 0 0 1 1 0 2
3 1 2 2 0 1 1 0 1 1 3
4 0 1 1 0 0 1 0 1 1 4
5 0 1 0 2 0 1 1 0 1 5
6 1 2 2 3 2 0 0 1 1 6
7 1 2 2 2 0 1 1 1 0 7
8 0 0 1 1 0 1 1 0 1 8
9 0 1 0 3 2 0 0 1 0 9

10 2 2 2 3 2 0 0 1 0 10

Y1 Y2 Y3

1 1 0
1 1 0
0 1 -
0 1 1
1 0 1
0 1 1
- 1 0
1 0 1
0 1 0
0 1 0

F = H(A,G(B,C)) = H(A,Z) (1) Let B E Y and p,q E M, minterms p,q E CON(B) iff
y(p) - y(q) for every y E B, where al - a2 means that al
and a2 are equal if defined.

The CON relation is not an equivalence relation on the
set M, as the output-consistency classes of the set M can be
conjunct However, an unique set of Maximal Output-
Consistency Classes (MOCC) of minterms exists for every
given CON relation.

On the analogy of partition P(B), the collection of
MOCCs of minterms creates a "rough" partition (r-partition
for short) on the set M.

where G and H denote functional dependencies: G(B,C) = Z
and H(A,Z)= Y and Z is the set of two-valued variables. If
in addition, C = $, then H is called a simple disjoint
decomposition of F.

With the decomposed structure, a multilevel circuit can
be realized as serially connected components G and H,
where the outputs of G form intermediate variables. Thus
we will refer to this process as to a serial decomposition.

The following theorem states the sufEcient condition for
the existence of a serial decomposition.

257

x2 x3 x4x5 g

0 0 0 0 0
0 1 1 0 0
2 2 0 1 0
1 1 0 0 1
1 0 2 0 0
2 2 3 2 0
2 2 2 0 1
1 0 3 2 1

g = (gl, ...,gu). Similarly, for each block of partition
P(A) II, we can assign a vector q with its elements
xil ,..., xit, gl ,..., g,, defined by the variables of set A and the
intermediate variables gl, ...,gu. As IT, = P(A) IIG s P,,
each block of IIH corresponds to one and only one block of
P,, and consequently to one and only one vector of the
output variables yl, ...,y,.

In the example, u=2, therefore encoding the blocks of
IIG respectively as 0 and 1, we immediately obtain the truth
table of function G, it is presented in Table 2. The truth
table of function H can be derived by reencoding input
vectors of F using an intermediate variable g. The truth
table obtained in this way is shown in Table 3.

'1 '6 g y1 y2 y3

0 0 0 1 1 0
1 1 0 0 1 1
0 1 1 0 1 1
0 1 0 1 0 1
1 0 0 0 1 1
1 1 1 1 1 0
0 0 1 0 1 0
2 0 0 0 1 0

3. PLA Decomposition
In serial decomposition a function F can be implement-

ed as a multi-level PLA structure, but in contrary to the
existing methods [2], the circuits implementing components
G and H have, in general, multiple-valued inputs and two-
valued outputs.

The structure of the decomposed circuit is not limited
to that of PLAs and standard decoders as in [14], however
the PLAs with decoders are the most suitable devices for
implementing MVL circuits. The method, therefore, is not
confined to PLA synthesis and can be considered as a
general function decomposition approach.

For PLA implementation, the design objective is to
decompose the original function into components corre-
sponding to a set of interconnected PLAs, so that the overall
area of the resulting logic network is minimized. The silicon
area taken by a PLA with two-bit decoders can be estimated
as S = (4% + 2nb + m)P, where %, "b denote the number
of multiple-valued and binary input variables, respectively,
m is the number of output variables, and P is the number of
product terms.

The truth table of F (Table la) can be minimized to
five product terms, which in the positional cube notation can
be written as:

1101 1111 1111 1111 1111 10 001
1111 1111 1111 1110 1011 11 100
1111 1101 1111 1101 1001 11 110
1011 1111 1110 1001 1111 11 011
1111 1111 1111 1111 1111 01 010

thus the estimated area is S, = (4.5 + 2.1 + 3)*5 = 125.
When the function F is decomposed as shown in

Example 2, the product terms for components G and H,
represented in cube notation as well are as follows:

258

G 1110 1110 1111 1001 1
1010 1111 1011 1111 1

H: 1001 11 01 100
1101 10 11 001
1010 11 01 011
1110 11 10 100
1111 01 11 010
1111 11 10 010

Therefore the PLA area estimated as S , + S,, where
S , = 34 and SH = 66, is only 80% of the original function
after the minimization procedure.

4. Decomposition of Decision Tables
The proposed functional decomposition procedure can

also be effectively used for reduction of space requirements
in many problems related to data representation in machine
learning [5], [13].

Let F be a mapping function

F CI x ... C, + D

representing functional dependency D = F(C), where C is
the set of condition attributes and D is the set of decision
attributes. Let A, B be the subsets of C such that
C = A U B and A f l B = 4.

The structure of the decomposed decision function is
shown in Fig.1. The procedure of making a final decision is
as follows: an intermediate decision is made on the basis of
the attributes' subset B and then taking into consideration
both the intermediate decision and the attributes subset A,
the goal decision is made, which is equal to the correspond-
ing value of the function F. A simple counterpart of Theo-
rem 1 for a case of decision tables was formulated in [7].

.B

decision

I I

Final decision

Fig.1. Two-stage realization of a decision table
The decomposition gain comes from the fact that in

some cases the size of table representation of the function
generated using decomposition can be much smaller than the
representation of a single unified function [7].

5. The Compatibility Relation
As it is seen from Theorem 1, the main task of decom-

position is to verify if a subset of input variables for
function G which, when applied as a subfunction to function
H will generate final function F , i.e. to find P(B), such that
there exists II, z P(B) that satisfies condition (2) in
Theorem 1.

A relation of compatibility of partition blocks will be
used to verify whether or not partition P(B) is suitable for
serial decomposition.

Two blocks Bi,Bj E P(B) are compatible if and only if
partition II& obtained from partition P(B) by merging blocks
Bi and Bj into a single block Bij satisfies condition (2) in
Theorem 1, i.e., if and only if

P(A) II& s P, (3)
A subset of n partition blocks, 9 = {B. ,B. ,..., B. },

where Bi. E P(B), is a class of compatible blocks for
partition P(B) if and only if all blocks in B are pairwise
compatible.

A compatible class is called Maximal Compatible Class
(MCC) if it is not a subset of any other compatible class.

The set M = {MCC,, ..., MCC,} of all Maximal Compat-
ible Classes can be formed from the set of all compatible
pairs (Bi,Bj), which in this case can be interpreted as arcs of
a graph G = (B, COM), where elements of B represent its
vertices, COM represents the compatibility relation and
where two vertices are connected by an arc iff Bi and Bj are
compatible i.e. (Bi,Bj) E COM. In such a formulation
finding the Maximal Compatible Classes for P(B) blocks is
equivalent to finding the maximum cliques in a graph G.

The calculation process then is simply to select a subset
of MCCs that cover the set of all blocks of P,. The parti-
tion II, satisfying the inequality (2) and having the mini-
mum number of blocks can be found by solving the follow-
ing covering problem for the set B of blocks of partition
P(B):

'1 '2 41
J

U MCCj = B and k = min.

In other words we try to find a subset of MCCs i.e.
MIN(M) = {MCC. , MCCi2, ..., MCC. } such that their union

results in the set B. The minimal k ensures the minimum
number of blocks of partition 17,.

Thus blocks of II, can be created from MCCs by
eliminating the repeated elements of B in the minimal cover.
The final I1, is a result of the union of minterms forming
a set of blocks included in any one block of He

'1 'k

259

Example 3. For the function F of Example 1, and the same
sets A, B as in Example 2, let us denote the blocks of P(B)
as B, ,..., B8 respectively, i.e. P(B) = {B,, ..., Bg}, where

B6 = {6,10}, B7 = {7}, B8 = (9). By verifying the condi-
tion (3) for each pair (Bi,Bj), we obtain the following
relation: COM = {(B1,B2), (B1,B3), (B1,B4), (B~,Bs),

B, = {I}, B2 = {2,8}, B3 = (31, B4 = (41, B5 = {5},

(B1,B6), (B1,B7), (B2,B3), (B2,B5), (B29B6>, (B2,B7),
(B3,B4), (B3,B5), (B3,B6), (B3,Bs), (B4,B6), (B4,B7)9

(B7,B8)}'
(B4,B8), (B5,B6), (B5,B7), (BS,B8>, (B6,B7), (B6,B8),

Then applying any algorithm that finds the maximum
are

by
MCC2 U MCC7, therefore, the blocks of nG can be built
of {B1,B2,B3,Bs,B6} and {B4,B7,B8}. Hence nG =
= (1,2,3,5,6,8,10 ; 4,7,9).

6. The r-admissibility Test
Direct application of Theorem 1 to find functions G and

H would make the problem computationally intractable. To
overcome this difficulty, we present conditions that allow us
to check if, for a given set of input variables A C X,
function F is decomposable so that component H has a
given number of input variables, and variables in A directly
feed H. These conditions are based on the concept of
r-admissibility of a set of partitions.

Let Pi be a partition on M induced by some input
variable xi. The set of partitions {PI, ..., Pk} is called
r-admissible with respect to partition P, if there exists a set
{Pk+,,...,Pr} of two-block partitions, such that

P1 *...*Pk*Pk+l '...*Pr 5 PF,

and there exists no set of r - k - 1 two-block partitions
which meets this requirement.

The r-admissibility has the following interpretation. If
a set of partitions {P,, ..., Pk} is r-admissible, then there
exists a serial decomposition of F in which component H
has r inputs: k primary inputs corresponding to input
variables which induce {P,, ..., Pk} and r-k inputs being
outputs of G. Thus, to find a decomposition of F in which
component H has r inputs, we must find a set of input
variables which induces an r-admissible set of input parti-

tions. To formulate a simple condition that can be used to
check whether or not a given set of partitions is r-admissi-
ble, we introduce the concept of a quotient partition.

Let z be a partition and a an r-partition, such that
z ;t a. In a quotient partition of z over a, denoted z la, each
block of z is divided into a minimum number of elements
being (not necessarily disjoint) blocks of 0.

The following theorem can be applied to check whether
or not a set of input partitions is r-admissible.

Theorem 2: For partitions a and z, such that (3 s z, let
z 1 a denote the quotient partition and q(z I a) the number of
elements in the largest block of T I a. Let e(z I U) denote the
smallest integer equal to or larger than log,q(z I a), i.e.,
e(% I a) = [log2q(t I a)]. Let ll be the product of partitions
PI ,..., Pk and nF = n*PF. Then {P1 ,..., Pk} is r-admissible in
relation to P,, with r = k + e(n I nF).
Example 4. The following set of partitions on M = {l,..
..,15} represents a certain function F of three two-valued
variables, x,, x2, x4, and one four-valued variable, x3.

P, = (1,2,3,4,5,6,7 ; 8,9,10,11,12,13,14,15)
P2 = (1,2,3,13,14,15 ; 4,5,6,7,8,9,10,11,12)
P3 = (1,7,8,13 ; 2,3,9,14,15 ; 4,5,10 ; 6,11,12)
P, = (1,3,4,6,7,8,9,10,12,15 ; 2,5,11,13,14)
PF = (1,8,9,14 ; 2,6,8,12,14 ; 3,6,12,14 ;

3,10,14,15 ; 4,8,11,12 ; 5,7,8,13)

By examining the admissibility of {P1,P3} we obtain

Pimp3 1 P1mP3*PF = ((I)(? ; (8913) ; (2)(3) ;
(9,14)(14,15) ; (4)(5) ; (10) ; (6) ; (11)(12)).
Hence, r = 2 + p0g221 = 3 i.e. {P1,P3} is 3-admissi-

ble. Similarly, we can show that {P3,P4} is 3-admissible;
r(P3,P4) = 3, for short.

Therefore, F = Hl(xl,~g,Gl(x2,x4,C1)) with

C2 G {x3,x4}, where each C can contain one, two or none
variables and both G, and G2 are single-output functions.

However, if we calculate the admissibility of {P2,P3}
we will conclude that decomposition of F with the set
A = {~2,~3} , where G is single-output function, does not
exist. This is because r(P2,P3) = 4, and the only possibility
for decomposition of F is with the two-output function G.

In general, the analysis of r-admissibility makes it
possible to select some interesting subsets of variables for
which the best disjoint decomposition can exist, however to
be sure of this fact, the sufficient condition of the decompo-
sition existence (Theorem 1) should be next verified.

cl c {xl,x3} Or = H2(X'j,X4,G2(X1,X2,C2)) with

260

7. Experimental Results and Conclusions

The decomposition method presented in this paper has
been implemented within experimental program called
Functional Decomposer (FD).

The goal of decomposition is to replace the initial truth
or decision table with two other tables that occupy less
silicon area or memory space and allow faster processing.

For testing our Functional Decomposer we used a set of
Logic Benchmarks in the form of truth tables. The results
are given in Table 4, where the entries in columns denote:
OA - original area of the circuit, AAD - area after decom-
position and PR - profit rate.

Table 4

NAME

z9sym
rd84
life
rd53
test4
24
ad14

OA

1045
1620
798
234
4830
720
3360

AAD

475
660
369
180
3524
556
1585

PR

54%
59%
54%
23%
27%
23%
53%

Other applications of the decomposition procedure in
logic synthesis can be found in [8], where the advantages of
the functional decomposition were demonstrated for PLD-
based logic synthesis. The described method has also been
implemented in a prototype decomposition program dedicat-
ed to FPGA-based logic synthesis [9].

We hope that the proposed methodology is general in
the sense that many kinds of information storing systems
and all kinds of Boolean functions can be processed. The
conceptual layer of the method and its core are very general.
They can be applied to many decomposition problems in
knowledge representation, data base and logic systems and
especially to the problems where the nominal data cannot be
reduced to the quantitative data without substantial loss of
information. In the case of logic synthesis the presented
procedure is universal, i.e., it can be applied to completely
or incompletely specified, binary or multiple-valued Boolean
functions and any decomposition topology making it suitable
for various implementation styles including PLAs and
FPGAs. The input and output routines and the analysis of
the problem are only to be tuned to a particular problem.
This means that the presented methodology can form a basis
for the development of a general decomposition-based

synthesis tool which would accept a set of design constraints
and decompose a given system so as to meet those con-
straints.

References

[l] Brayton R.K., Hachtel G.D., McMullen C.T, Sangiovanni-
Vincentelli A. (1984). Logic Minimization Algorithms for
VLSI Synthesis. Kluwer Academic Publ.

[2] Ciesielski M., and Yang S. (1992). PLADE A Two Stage
PLA Decompition. IEEE Trans. on CAD. vol. 11, pp. 943-
954.

[3] Ciesielski M., Yang S., and Perkowski M. (1989). Multiple-
Valued Minimization Based on Graph Coloring. Proc. IEEE
Znt. Conf: Computer Design, pp. 262-265.

[4] Gnymah-Busse J.W. (1992). LERS - A System to Learning
from Examples Based on Rough Sets. In Intelligent Decision
Support - Handbook of Application and Advances of the
Rough Sets Theory, R.8owinski (ed), Kluwer Academic
Publishers.

[5] Gnymah-Busse, J. W. (1990). On the Reduction of Instance
Space in Learning from Examples. In Methodologies for
Intelligent Systems, S, Z. W.Ras, M.Zemankow and
M.L.Emrich, (eds). Elsevier Science PubL, pp. 388-395.

[6] Hartmanis, J. and Stearns, R E. (1966). Algebraic Struc-
ture 'Iheory of Sequential Machines. Prentice-Hall.

[7l Euba T., Lasacki R., Rybnik J. (1994). An Implementation
of Decomposition Algorithm and its Application in Informa-
tion Systems Analysis and Logic Synthesis. In Rough Sets,
Fuzzy Sets and Knowledge Discovery, W. Ziarko (Ed.).
Workshops in Computing Series. Springer Verlag, pp. 458-
465.

[8] Euba T., Kalinowski J., Jasihski K. (1991). PLATO: A
CAD Tool for Logic Synthesis Based on Decomposition.
Proc. of European Conference on Design Automatioq pp. 65-
69.

[9] Euba T., Selvard H, Krdniewski A. (1993). A New
Approach to FPGA-based Logic Synthesis. Workshop on
Design Methodologies for Microelectronics and Signal
Processing, Gliwice - Cracow.

[lo] Pawlak Z. (1991). Rough Sets. Theoretical Aspects of
Reasoning about Data. Kluwer Academic Publishers.

[l l] Sasao T. (1993). Logic Synthesis and Optimization. Kluwer
Academic Publishers.

[12] Wan W., Perkowski MA. (1992). A New Approach to the
Decomposition of Incompletely Specified Multi-Output
Function Based on Graph Coloring and Local Transforma-
tions and Its Application to FPGA Mapping. Proc. European
Design Automation Conf:, pp.230-235.

[13] Kohavi R (1994). A Third Dimension to Rough sets. Proc.
of The Third International Workshop on Rough Sets and Sofc
Computing, pp.244-251, San Jose.

[14] Sasao T. (1984). Input Variable Assignment and Output
Phase Optimization of PLAs. IEEE Trans Comput. Vol.
C-33. pp. 879-894.

261

