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Abstract 

This paper presents a generalized method for decompo- 
sition of Multiple-Valued fitnctions. The main reason for 
using the described method is efficient implementation of 
logic circuits as well as effective representation of data in 
information systems. In logic synthesis, the method reduces 
the demand for silicon space required to implement designs. 
It is shown that the decomposition technique leads to 
additional compressing capabilities in PLA implementations. 
Another very promising area of application of decom- 
position is its effective representation of data in information 
systems, data bases and in other applications of information 
storing systems. 

1. Introduction. 
The notion of decomposition is central to most methods 

for systems analysis and design. For example, typical 
applications are functional decomposition, FSM decomposi- 
tion, information systems decomposition, and Roth-Karp 
decomposition. 

In general, decomposition relies on the breakdown of a 
complex system into smaller, relatively independent units. 
The motivation for using decomposition in system analysis 
and design is to reduce the complexity of the problem by a 
divide-and-conquer paradigm: A system is decomposed into 
a set of smaller subsystems such that each of them is easier 
to synthesize or analyze. A decomposed system can also be 
superior to a monolithic one. 

Decomposition is a fundamental problem in modem 
logic synthesis. At first glance its goal is to break a logic 
circuit into a set of smaller interacting components. Such an 
implementation is desirable for a number of reasons. A 
decomposed circuit usually leads to improved performance 
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which is reflected both in less silicon area and less signal 
delay. 

Particular stimulus for decomposition methods came 
recently from the field of programmable multi-block logic 
devices. Such technologies are characterized by 1/0 or gate- 
limited blocks of logic into which the circuit must be 
mapped. In such a case implementation is impossible 
without decomposition. Similarly, decomposition is neces- 
sary in order to implement large circuits with the more 
traditional PLAs. 

Although a vast majority of digital systems available 
today use conventional binary circuits, multiple valued logic 
has recently attracted great interest. Of the possible design 
approaches to multiple-valued logic circuits, the PLAs with 
decoders have received the most attention. 

Multiple-valued synthesis is an extension of classical 
binary logic to variables which can assume more than two 
values. However, its application includes not only minimiza- 
tion of PLAs with input decoders [3], [14] but also Boolean 
decomposition of a PLA into several serially cascaded PLAs 

The strong stimulus for developing decomposition me- 
thods and tools comes also from the data compressing pro- 
blems in machine learning, pattern recognition and in many 
other areas of AI applications. In machine leaming the idea 
of reduction of instance space is well known, see e.g. an 
approach to compressing sets of examples, attributes and att- 
ribute-value tuples in a technique called a partition triple [SI 
or other approaches to reduction of an instance space [13]. 

The above techniques, in comparison with logic synthe- 
sis capabilities, suffer from lack of pure functional decom- 
position strategies. Recent results [ll], [12] in decomposi- 
tion-based methodology seem to indicate that the concept of 
functional decomposition should be investigated more 
generally and in more detail. In this paper we concentrate 
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on generalization of the decomposition methodology to 
make it applicable to multiple-valued logic synthesis and to 
information systems as well. 

2. Basics of Decomposition 
Let xi be a multiple-valued variable, and Ci = 

= {O,l,,..,ci-l} be a set of values that it may assume. 
A generalized Multiple-Valued function with n input, m 
output variables is defined as a mapping: 

F(xl,...,X,,): C1 x C2 x ... x C, + Dm, 
where D = {O,l,-} represents the binary value of the 
function (0 or 1) and '-' denotes a don't care value. 

For the sake of clarity the mapping F may be viewed as 
pair T = (M, A), where 
M - is a non-empty, finite set of minterms, 
A - is a finite set of arguments i.e. input and output 

variables ; A = X U Y, where X is the set of input 
variables and Y is the set of output variables, 
X n Y = $. Moreover 
is a function which maps the argument a E A into 
their values for every minterm v E M, i.e.: 

a: M - V,, 

a - 

where V, is a domain (set of possible values) of argu- 
ment a. 

With every subset of arguments B G X, an equivalence 
relation IND(B), called indiscemibility relation, is defined 
as follows: 

IND(B) = {(ml,m2) E M: VxEB, x(ml) = x(m2)} 

Minterms satisfying relation IND(B) are indiscernible 
by arguments from B. Thus, the relation IND partitions M 
into equivalence classes M/IND(B), which form a partition 
P(B) on M. 

Similarly, the output-consistency relation, denoted by 
CON, can be related to every subset B of output variables. 
This relation can be formally defined as follows: 

a) xi b) 
1 2 3 4 5 6  Y 1  Y2 Y3 

1 0 0 0 0 0 0  1 1  0 1 
2 0 0 1 1 0 0  1 1  0 2 
3 1 2 2 0 1 1  0 1 1  3 
4 0 1 1 0 0 1  0 1 1  4 
5 0 1 0 2 0 1  1 0  1 5 
6 1 2 2 3 2 0  0 1 1  6 
7 1 2 2 2 0 1  1 1  0 7 
8 0 0 1 1 0 1  1 0  1 8 
9 0 1 0 3 2 0  0 1 0  9 

10 2 2 2 3 2 0  0 1 0  10 

Y1 Y2 Y3 

1 1  0 
1 1  0 
0 1 - 
0 1 1  
1 0  1 
0 1 1  
- 1 0  
1 0  1 
0 1 0  
0 1 0  

F = H(A,G(B,C)) = H(A,Z) (1) Let B E Y and p,q E M, minterms p,q E CON(B) iff 
y(p) - y(q) for every y E B, where al - a2 means that al  
and a2 are equal if defined. 

The CON relation is not an equivalence relation on the 
set M, as the output-consistency classes of the set M can be 
conjunct However, an unique set of Maximal Output- 
Consistency Classes (MOCC) of minterms exists for every 
given CON relation. 

On the analogy of partition P(B), the collection of 
MOCCs of minterms creates a "rough" partition (r-partition 
for short) on the set M. 

where G and H denote functional dependencies: G(B,C) = Z 
and H(A,Z)= Y and Z is the set of two-valued variables. If 
in addition, C = $, then H is called a simple disjoint 
decomposition of F. 

With the decomposed structure, a multilevel circuit can 
be realized as serially connected components G and H, 
where the outputs of G form intermediate variables. Thus 
we will refer to this process as to a serial decomposition. 

The following theorem states the sufEcient condition for 
the existence of a serial decomposition. 
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x2 x3 x4x5 g 

0 0 0 0  0 
0 1 1 0  0 
2 2 0 1  0 
1 1 0 0  1 
1 0 2 0  0 
2 2 3 2  0 
2 2 2 0  1 
1 0 3 2  1 

g = (gl, ...,gu). Similarly, for each block of partition 
P(A) II, we can assign a vector q with its elements 
xil ,..., xit, gl ,..., g,, defined by the variables of set A and the 
intermediate variables gl, ...,gu. As IT, = P(A) IIG s P,, 
each block of IIH corresponds to one and only one block of 
P,, and consequently to one and only one vector of the 
output variables yl, ...,y,. 

In the example, u=2, therefore encoding the blocks of 
IIG respectively as 0 and 1, we immediately obtain the truth 
table of function G, it is presented in Table 2. The truth 
table of function H can be derived by reencoding input 
vectors of F using an intermediate variable g. The truth 
table obtained in this way is shown in Table 3. 

'1 '6 g y1 y2 y3 

0 0 0  1 1 0  
1 1 0  0 1 1  
0 1 1  0 1 1  
0 1 0  1 0 1  
1 0 0  0 1 1  
1 1 1  1 1 0  
0 0 1  0 1 0  
2 0 0  0 1 0  

3. PLA Decomposition 
In serial decomposition a function F can be implement- 

ed as a multi-level PLA structure, but in contrary to the 
existing methods [2], the circuits implementing components 
G and H have, in general, multiple-valued inputs and two- 
valued outputs. 

The structure of the decomposed circuit is not limited 
to that of PLAs and standard decoders as in [14], however 
the PLAs with decoders are the most suitable devices for 
implementing MVL circuits. The method, therefore, is not 
confined to PLA synthesis and can be considered as a 
general function decomposition approach. 

For PLA implementation, the design objective is to 
decompose the original function into components corre- 
sponding to a set of interconnected PLAs, so that the overall 
area of the resulting logic network is minimized. The silicon 
area taken by a PLA with two-bit decoders can be estimated 
as S = (4% + 2nb + m)P, where %, "b denote the number 
of multiple-valued and binary input variables, respectively, 
m is the number of output variables, and P is the number of 
product terms. 

The truth table of F (Table la) can be minimized to 
five product terms, which in the positional cube notation can 
be written as: 

1101 1111 1111 1111 1111 10 001 
1111 1111 1111 1110 1011 11 100 
1111 1101 1111 1101 1001 11 110 
1011 1111 1110 1001 1111 11 011 
1111 1111 1111 1111 1111 01 010 

thus the estimated area is S, = (4.5 + 2.1 + 3)*5 = 125. 
When the function F is decomposed as shown in 

Example 2, the product terms for components G and H, 
represented in cube notation as well are as follows: 
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G 1110 1110 1111 1001 1 
1010 1111 1011 1111 1 

H: 1001 11 01 100 
1101 10 11 001 
1010 11 01 011 
1110 11 10 100 
1111 01 11 010 
1111 11 10 010 

Therefore the PLA area estimated as S ,  + S,, where 
S ,  = 34 and SH = 66, is only 80% of the original function 
after the minimization procedure. 

4. Decomposition of Decision Tables 
The proposed functional decomposition procedure can 

also be effectively used for reduction of space requirements 
in many problems related to data representation in machine 
learning [5], [13]. 

Let F be a mapping function 

F CI x ... C, + D 

representing functional dependency D = F(C), where C is 
the set of condition attributes and D is the set of decision 
attributes. Let A, B be the subsets of C such that 
C = A  U B and A f l  B = 4. 

The structure of the decomposed decision function is 
shown in Fig.1. The procedure of making a final decision is 
as follows: an intermediate decision is made on the basis of 
the attributes' subset B and then taking into consideration 
both the intermediate decision and the attributes subset A, 
the goal decision is made, which is equal to the correspond- 
ing value of the function F. A simple counterpart of Theo- 
rem 1 for a case of decision tables was formulated in [7]. 

.B 

decision 

I I 

Final decision 

Fig.1. Two-stage realization of a decision table 
The decomposition gain comes from the fact that in 

some cases the size of table representation of the function 
generated using decomposition can be much smaller than the 
representation of a single unified function [7]. 

5. The Compatibility Relation 
As it is seen from Theorem 1, the main task of decom- 

position is to verify if a subset of input variables for 
function G which, when applied as a subfunction to function 
H will generate final function F , i.e. to find P(B), such that 
there exists II, z P(B) that satisfies condition (2) in 
Theorem 1. 

A relation of compatibility of partition blocks will be 
used to verify whether or not partition P(B) is suitable for 
serial decomposition. 

Two blocks Bi,Bj E P(B) are compatible if and only if 
partition II& obtained from partition P(B) by merging blocks 
Bi and Bj into a single block Bij satisfies condition (2) in 
Theorem 1, i.e., if and only if 

P(A) II& s P, (3) 
A subset of n partition blocks, 9 = {B. ,B. ,..., B. }, 

where Bi. E P(B), is a class of compatible blocks for 
partition P(B) if and only if all blocks in B are pairwise 
compatible. 

A compatible class is called Maximal Compatible Class 
(MCC) if it is not a subset of any other compatible class. 

The set M = {MCC,, ..., MCC,} of all Maximal Compat- 
ible Classes can be formed from the set of all compatible 
pairs (Bi,Bj), which in this case can be interpreted as arcs of 
a graph G = (B, COM), where elements of B represent its 
vertices, COM represents the compatibility relation and 
where two vertices are connected by an arc iff Bi and Bj are 
compatible i.e. (Bi,Bj) E COM. In such a formulation 
finding the Maximal Compatible Classes for P(B) blocks is 
equivalent to finding the maximum cliques in a graph G. 

The calculation process then is simply to select a subset 
of MCCs that cover the set of all blocks of P,. The parti- 
tion II, satisfying the inequality (2) and having the mini- 
mum number of blocks can be found by solving the follow- 
ing covering problem for the set B of blocks of partition 
P(B): 

'1 '2 41 
J 

U MCCj = B and k = min. 

In other words we try to find a subset of MCCs i.e. 
MIN(M) = {MCC. , MCCi2, ..., MCC. } such that their union 

results in the set B. The minimal k ensures the minimum 
number of blocks of partition 17,. 

Thus blocks of II, can be created from MCCs by 
eliminating the repeated elements of B in the minimal cover. 
The final I1, is a result of the union of minterms forming 
a set of blocks included in any one block of He 

'1 'k 
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Example 3. For the function F of Example 1, and the same 
sets A, B as in Example 2, let us denote the blocks of P(B) 
as B, ,..., B8 respectively, i.e. P(B) = {B,, ..., Bg}, where 

B6 = {6,10}, B7 = {7}, B8 = (9). By verifying the condi- 
tion (3) for each pair (Bi,Bj), we obtain the following 
relation: COM = {(B1,B2), (B1,B3), (B1,B4), (B~,Bs), 

B, = {I}, B2 = {2,8}, B3 = (31, B4 = (41, B5 = {5}, 

(B1,B6), (B1,B7), (B2,B3), (B2,B5), (B29B6>, (B2,B7), 
(B3,B4), (B3,B5), (B3,B6), (B3,Bs), (B4,B6), (B4,B7)9 

(B7,B8)}' 
(B4,B8), (B5,B6), (B5,B7), (BS,B8>, (B6,B7), (B6,B8), 

Then applying any algorithm that finds the maximum 
are 

by 
MCC2 U MCC7, therefore, the blocks of nG can be built 
of {B1,B2,B3,Bs,B6} and {B4,B7,B8}. Hence nG = 
= (1,2,3,5,6,8,10 ; 4,7,9). 

6. The r-admissibility Test 
Direct application of Theorem 1 to find functions G and 

H would make the problem computationally intractable. To 
overcome this difficulty, we present conditions that allow us 
to check if, for a given set of input variables A C X, 
function F is decomposable so that component H has a 
given number of input variables, and variables in A directly 
feed H. These conditions are based on the concept of 
r-admissibility of a set of partitions. 

Let Pi be a partition on M induced by some input 
variable xi. The set of partitions {PI, ..., Pk} is called 
r-admissible with respect to partition P, if there exists a set 
{Pk+,,...,Pr} of two-block partitions, such that 

P1 *...*Pk*Pk+l '...*Pr 5 PF, 

and there exists no set of r - k - 1 two-block partitions 
which meets this requirement. 

The r-admissibility has the following interpretation. If 
a set of partitions {P,, ..., Pk} is r-admissible, then there 
exists a serial decomposition of F in which component H 
has r inputs: k primary inputs corresponding to input 
variables which induce {P,, ..., Pk} and r-k inputs being 
outputs of G. Thus, to find a decomposition of F in which 
component H has r inputs, we must find a set of input 
variables which induces an r-admissible set of input parti- 

tions. To formulate a simple condition that can be used to 
check whether or not a given set of partitions is r-admissi- 
ble, we introduce the concept of a quotient partition. 

Let z be a partition and a an r-partition, such that 
z ;t a. In a quotient partition of z over a, denoted z la, each 
block of z is divided into a minimum number of elements 
being (not necessarily disjoint) blocks of 0. 

The following theorem can be applied to check whether 
or not a set of input partitions is r-admissible. 

Theorem 2: For partitions a and z, such that (3 s z, let 
z 1 a denote the quotient partition and q(z I a) the number of 
elements in the largest block of T I a. Let e(z I U) denote the 
smallest integer equal to or larger than log,q(z I a), i.e., 
e(% I a) = [log2q(t I a)]. Let ll be the product of partitions 
PI ,..., Pk and nF = n*PF. Then {P1 ,..., Pk} is r-admissible in 
relation to P,, with r = k + e(n I nF). 
Example 4. The following set of partitions on M = {l,.. 
..,15} represents a certain function F of three two-valued 
variables, x,, x2, x4, and one four-valued variable, x3. 

P, = (1,2,3,4,5,6,7 ; 8,9,10,11,12,13,14,15) 
P2 = (1,2,3,13,14,15 ; 4,5,6,7,8,9,10,11,12) 
P3 = (1,7,8,13 ; 2,3,9,14,15 ; 4,5,10 ; 6,11,12) 
P, = (1,3,4,6,7,8,9,10,12,15 ; 2,5,11,13,14) 
PF = (1,8,9,14 ; 2,6,8,12,14 ; 3,6,12,14 ; 

3,10,14,15 ; 4,8,11,12 ; 5,7,8,13 ) 

By examining the admissibility of {P1,P3} we obtain 

Pimp3 1 P1mP3*PF = ((I)(? ; (8913) ; (2)(3) ; 
(9,14)(14,15) ; (4)(5) ; (10) ; (6) ; (11)(12)). 
Hence, r = 2 + p0g221 = 3 i.e. {P1,P3} is 3-admissi- 

ble. Similarly, we can show that {P3,P4} is 3-admissible; 
r(P3,P4) = 3, for short. 

Therefore, F = Hl(xl,~g,Gl(x2,x4,C1)) with 

C2 G {x3,x4}, where each C can contain one, two or none 
variables and both G, and G2 are single-output functions. 

However, if we calculate the admissibility of {P2,P3} 
we will conclude that decomposition of F with the set 
A = {~2,~3} ,  where G is single-output function, does not 
exist. This is because r(P2,P3) = 4, and the only possibility 
for decomposition of F is with the two-output function G. 

In general, the analysis of r-admissibility makes it 
possible to select some interesting subsets of variables for 
which the best disjoint decomposition can exist, however to 
be sure of this fact, the sufficient condition of the decompo- 
sition existence (Theorem 1) should be next verified. 

cl c {xl,x3} Or = H2(X'j,X4,G2(X1,X2,C2)) with 
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7. Experimental Results and Conclusions 

The decomposition method presented in this paper has 
been implemented within experimental program called 
Functional Decomposer (FD). 

The goal of decomposition is to replace the initial truth 
or decision table with two other tables that occupy less 
silicon area or memory space and allow faster processing. 

For testing our Functional Decomposer we used a set of 
Logic Benchmarks in the form of truth tables. The results 
are given in Table 4, where the entries in columns denote: 
OA - original area of the circuit, AAD - area after decom- 
position and PR - profit rate. 

Table 4 

NAME 

z9sym 
rd84 
life 
rd53 
test4 
24 
ad14 

OA 

1045 
1620 
798 
234 
4830 
720 
3360 

AAD 

475 
660 
369 
180 
3524 
556 
1585 

PR 

54% 
59% 
54% 
23% 
27% 
23% 
53% 

Other applications of the decomposition procedure in 
logic synthesis can be found in [8], where the advantages of 
the functional decomposition were demonstrated for PLD- 
based logic synthesis. The described method has also been 
implemented in a prototype decomposition program dedicat- 
ed to FPGA-based logic synthesis [9]. 

We hope that the proposed methodology is general in 
the sense that many kinds of information storing systems 
and all kinds of Boolean functions can be processed. The 
conceptual layer of the method and its core are very general. 
They can be applied to many decomposition problems in 
knowledge representation, data base and logic systems and 
especially to the problems where the nominal data cannot be 
reduced to the quantitative data without substantial loss of 
information. In the case of logic synthesis the presented 
procedure is universal, i.e., it can be applied to completely 
or incompletely specified, binary or multiple-valued Boolean 
functions and any decomposition topology making it suitable 
for various implementation styles including PLAs and 
FPGAs. The input and output routines and the analysis of 
the problem are only to be tuned to a particular problem. 
This means that the presented methodology can form a basis 
for the development of a general decomposition-based 

synthesis tool which would accept a set of design constraints 
and decompose a given system so as to meet those con- 
straints. 
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