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Abstract 

I n  this paper, the minimization of incompletely spec- 
ified multi-valued functions using functional decompo- 
sition i s  discussed. From the aspect of machine learn- 
ing, learning samples can be implemented as minterms 
in multi-valued logic. The representation, can then be 
decomposed into smaller blocks, resulting in a reduced 
problem complexity. This  gives induced descriptions 
through structuring, or feature extraction, of  a learn- 
ing problem. Our approach to the decomposition is 
based o n  expressing a multi-valued function (learning 
problem) in terms of a Multi-valued Decision Diagram 
that allows the use of Don’t Cares. The inclusion of 
Don’t Cares i s  the emphasis for  this paper since multi- 
valued benchmarks are characterized as having many 
Don’t Cares. 

1. Introduction 

This paper explores functional decomposition as 
it is extended to  the synthesis of Multi-Valued Logic 
Networks (MVLNs) and to the concept of Machine 
Learning (ML). The two problems are disjoint, given 
that many synthesis problems for MVLNs are com- 
pletely specified or nearly completely specified func- 
tions. While functions in ML tend to have 99.9% DonY 
Cares (DCs) in their respective learning problems. 

Decomposition was proposed by Ashenhurst in the 
1950’s [Z] as a method of Boolean multi-level logic min- 
imization. While this approach has been known for 
many years, it wasn’t until recently that this approach 
could be utilized because of the large computation pro- 
cedures that are required. Lately, though, while much 
research has focused on decomposition as applied to  
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FPGA design synthesis, several researchers have shown 
general decomposition methods by expressing Boolean 
functions as Binary Decision Diagrams (BDDs) [7, 121. 

The approach proposed in this paper is to decom- 
pose MVL functions using Multi-valued Decision Dia- 
grams (MDDs) [lo] as the underlying data structure. 
It was shown that MDDs have a direct correspondence 
to the problem considered (analogously to BDDs in the 
Boolean domain). We consider, especially, the aspect 
of using DCs in the minimization process and outline 
the occurring difficulties. In contrast to previous pa- 
pers on MVL decomposition [9, ll] we consider func- 
tions with MV outputs. 

The concept of using decomposition in ML is to 
reduce a given function specified by a set of care 
minterms (samples) to a composition of smaller func- 
tions (attributes in ML terminology). The result is 
a set of expressions that describe suitable intermedi- 
ate concepts. Each of these intermediate concepts can 
then be further decomposed, leading to  expressions 
that form a more comprehensible description of the 
learned concepts. The advantage of using decompo- 
sition to  obtain useful intermediate concepts is that it 
leads to  a result being in a hierarchy of compositions 
that could be illustrated as a tree structure. This tree 
structure gives the original function a hierarchy of sub- 
functions and variables, which leads to learning that is 
faster, involves smaller error and gives better explana- 
tion of the learned concepts. 

In terms of decomposing functions that are (nearly) 
completely specified, the decomposition process in- 
volved may produce functions with DCs. In [8], the 
authors show that functions can be minimized by us- 
ing generalized DC values to assume any value in the 
range of the input function (other than the previously 
used Boolean values). Thus, the decomposition algo- 
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rithms proposed in the paper can be easily applied to 
MVLNs. Recently, more and more interest has been 
in the design of such networks. Because of this inter- 
est, several design methods were proposed to reduce 
the final design and size of the network. In these cases, 
though, most of them were only of theoretical nature 
or have not been applied to large examples. 

Experimental results are given to show the efficiency 
of our approach. We use a benchmark set from the 
area of machine learning that is characterized by the 
fact that the functions are “real” MVL functions and 
that they contain many DCs. 

The paper is structured as follows: In Section 2 pre- 
liminaries are given, i.e., notations and definitions are 
introduced. The method of decomposition is described 
in Section 3. Section 4 addresses the problem of the 
implementation and the choice of the underlying data 
structure of our algorithm. In Section 5 experimental 
results are described. Finally the results are summa- 
rized. 
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Figure 1. Curtis Decomposition 

A DD is called ordered if each variable is encountered 
at  most once on each path from the root to a terminal 
and if the variables are encountered in the same order 
on all such paths. A DD is called reduced if it  does not 
contain vertices either with isomorphic sub-graphs or 
with all successors pointing to the same node. 

In this paper, only reduced, ordered MDDs are con- 
sidered. 

3. Functional Decomposition 
2. Preliminaries 

This section provides the notations which are the 
basics of multi-valued logic and are important for the 
understanding of this paper. 

2.1. Multi-valued Decision Diagrams 

It is well known that each Boolean function f : 
B“ -+ B can be represented by an ordered BDD [5], 
i.e., a directed acyclic graph where a Shannon decom- 
position is carried out in each node. 

Obviously, BDDs can be extended to represent func- 
tions f : Bn -+ (0, .., k - 1) and the resulting graphs 
are denoted as Multi-Terminal BDDs (MTBDDs). The 
operations on MTBDDs can be carried out as efficiently 
as in the case of two terminals [SI. 

It is straightforward to extend MTBDDs to MDDs 
[lo] representing functions f : (0, .., k-1)” -+ (0, ..,A- 
1). For this, each internal node has k outgoing edges’. 
In [lo], it was shown that the efficient operations known 
for BDDs can also be carried out on MDDs using 
a case-operator (multi-valued Shannon decomposition 
operator). 

The extension or addition of Don’t Cares (DC) to 
an MDD is fairly straightforward by representing the 
function as f : (0, . . l  k - l}n -+ (0, .., k}. Thus, each 
internal node still has k outgoing edges, but has the 
ability of representing IC + 1 values. The (k + l)-th 
value is used to represent a DC value in the function. 

’In our application all variables are defined over the same set 
of values. 

In this section, the basic principles of the decompo- 
sition of binary and MVL functions are described. For 
simplicity of the presentation most of the examples are 
in the binary case, but can easily be related directly to 
MVL cases. Finally, the influence of DCs used in the 
decomposition process is discussed. 

3.1. Generalized Functional Decomposition 

Definition 1 A function f(a0, a l l .  . . , ~ ~ - 1 )  is decom- 
posable under bound set {CO,  . . . , xi-1) and free set 
{ C i - l ,  * - a ,  %-I} 1 0 < i < n, 0 5 1 if and only 
if f can be represented as the composite function 
F(G~(ZO,...,Z~-~) ,...,Gj-~(~o,...,~i~~), ~ i - l ,  ..., 
xn-l), where 0 < j < i - 1. If 1 equals 0 then f is 
said to be disjunctively decomposable, otherwise, it is 
known as non-disjunctively decomposable [3, 41, 

The principle idea of the decomposition using the 
notations from Definition 1 is shown in Figure 1. Note, 
that because of the complexity of non-disjunctive de- 
compositions, disjunctive decomposition is the method 
used in this paper. 

Definition 2 Given a k-valued, completely specified 
function f , with a bound set B ,  and free set A, then for 
the partition A J B ,  a partition matrix representation of 
f is defined as a rectangular array, where the columns 
correspond to the variables in the bound set, and the 
rows correspond to the variables in the free set. 

Using these definitions the following is found: 
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The array has k j B }  columns and k j A }  rows. 

Given a A-valued function f, with a bound set 
B ,  then the corresponding partition matrix has 1 
distinct columns, where 1 is known as the Column 
Multiplicity (CM) of a partition. 

The CM for the function can be reduced if 
the function is incompletely specified, by find- 
ing columns that are compatible and combining 
the two columns by setting don’t care values. By 
compatible, for every row, the possible output 
value-sets of the first column (a number or a DC) 
intersect the non-empty sets of the corresponding 
output value-sets of the second column. 

Thus, to  represent f as a composite function in 
the form 

0 0 0 0 0 0 0 0 0 0 0 0  

0 1 0 1 1 1 1 1 0 1 0 1  

J’(Go(), . , Gj-10, zi,. , zn-I) 

where each G function has inputs (zo,, . . , si-1) 

then j = [logkl], G functions are needed. 

Example 1 Consider the 4-valued function in Fig- 
ure 2, where the partition of a given function is shown 
in Figure 2(a). Notice that the number of distinct 
columns is four (labeled as A, B, C and D), the func- 
tion can be represented as a composite function with 
[193]=2, G functions. The resulting decomposition is 
denoted as F(Go(z0, zi) ,  22). 

0 0 2 0 0 0 0 0 2 0 2 0  

0 1 0 3 1 1 3 3 0 3 0 3  

3.2. BDD/MDD Based Decomposition 

In [7], a method for detecting decompositions based 
on the concept of a cut-set in a BDD representation of 
Boolean functions was presented. (In the following we 
briefly review the main idea as applied to MDDs; for 
more BDD details see [7].) 

Definition 3 Given a bound set (20,. . . , zi-l} and 
free set {zi, . . . , zn-l} for a function f, then if a DD 
is constructed with variable ordering { C O , .  . . , zi-l} < 
{zi,. . . , zn-l} the cut-set(i - 1) is the number of dis- 
tinct columns (column multiplicity) for the given bound 
and free sets. The cut-level is defined as the split be- 
tween the two sets. 

Example 2 Given the multi-valued function from Ex- 
ample 1, the corresponding MDD is created by placing 
th% bound variables {zo,zI} on the top of the BDD, 
while the free variables {zz) are on the bottom. Note, 
that the order of the variables within the bound set or 
the fpee set has no effect on the partition found. The 
MDD obtained is shown in Figure 2(b). Notice that the 
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Figure 2. Example for MVL decomposition 

number of nodes below the cut-level, i.e., the number 
of 22 nodes plus the number of terminal nodes hav- 
ing a pointer cross the cut-level, is equal to four. The 
resulting decomposition is shown in Figure 2(c). 

3.3. Don’t Cares 

One of the biggest advantages of functional decom- 
position is that after a function is broken up into 
smaller blocks, DCs are (possibly) introduced into 
these smaller blocks. These DCs can then be used for 
optimization in the next level of decomposition,i.e., de- 
composing either the resulting G functions or the F 
function. 

The following example explores the ideas of DCs in 
Boolean functions, but note that the idea can be di- 
rectly applied to MVL functions. (A Boolean function 
and the use of partitions are for simplicity and ease of 
explanation.) 

Example 3 Given the Boolean function shown in Fig- 
ure 3(a) and resulting partition in Figure 3(b), the 
function can be decomposed into [1g31=2, G functions. 
Using an encoding scheme of A={O,O}, B={0,1}, and 
C={l,l}, Go=O 0 0 1 or Go=zo AND 21, while G1=0 
1 1 1 or G ~ = z o  OR 21. The resulting partition matrix 
is shown in Figure 3(c), where 4 DCs are introduced 
into the function. The DCs come from the above en- 
coding, where the case { l ,O}  does not exist. Now, by 
swapping the variables Go and 23 the partition matrix 
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(b) 

A B B B  

(d) 

Figure 3. Example for using Don’t Cares 

in Figure 3(d) is found. The partition (z3Gl}l(z~~G0} 
has CM of 2, while (z2G0}1(z3G1} also has CM of 2. 
Notice that without the addition of DCs (say the values 
were forced to 0 instead) then the resulting CM would 
be larger than 2. 

The example shows the importance of introducing 
DCs into the partition matrix. Notice that encoding is 
also a big factor in the final outcome of the decompo- 
sition. The concept of encoding, though, has not been 
evaluated in previous approaches, where a single out- 
put line is constructed with a multi-valued output to 
carry all possible data[l3]. The problem with not using 
the encoding scheme is that it may lead to functions 
that do not decompose. The encoding, used in this pa- 
per, is done by using k-valued logic symbols, where k 
is given by the original input function. 

A problem arises, though, when functions become 
incompletely specified, since the detection of CM be- 
comes very difficult. From Example 2, the CM was 
calculated using by counting the number of “columns” 
at a certain cut-set level. In determining CM in the 
presence of DCs, each node below the cut-level may 
represent an incompletely specified function. The CM 
is then determined by computing the possible com- 
patibility between each of these nodes and then using 
some search strategy, find the minimal CM. Possible 

approaches include: reducing the problem to set cov- 
ering, graph coloring, or heuristic methods[l3]. 

In the case of MVL, the problem of determining a 
minimal CM (often) becomes reduced because the pos- 
sibility of having compatible nodes decreases with an in- 
crease in the number of values represented in the func- 
tion. But, in the case of machine learning problems, in 
general, the functions are highly unspecified, e.g., for 
large functions, 99.9% of the function may be unspec- 
ified. Also, by definition, given a CM for a partition 
rlogkCM1 G functions must be used in the composite 
function. As the size of lc grows, finding the exact min- 
imal CM becomes less of an issue because the idea of 
reducing CM is to reduce the number of G functions. 

Example 4 Given a partition, using 5-valued logic, 
the CM is originally found to be 11 (before setting 
DC values). To represent this decomposition two G 
functions ([log,lll = 2) must be used. The only way 
that the number of G functions will be reduced is if 7 
columns can be combined. By analyzing the partition, 
it might be obvious that this is an impossible task. 
(Even if it is possible, many DC values must be set to 
literal values.) By not combining the DC columns the 
current partition will result in a decomposition with 5’- 
11=14 columns with DCs. Thus, the function F, found 
from f=F(G(A) ,  B ) ,  will have an additional 14 * 5IB3 
DCs. Notice, though, that encoding now becomes a 

problem because there are ( ;; ) =4,45’7,400 possible 

encodings. 

4. Implementation 

The main goal in logic synthesis is finding a “good” 
result through some figure of merit. In this paper, the 
result of decomposing a MVL function must be general 
or robust, in that, the use of the realization technology 
for the decomposed function is unknown. Also, when 
using the concept of functional decomposition in ma- 
chine learning, the main concern is determining the 
”pattern” of the object. Thus, it is unnecessary to 
have different figures of merit for each technology as 
long as a “good” figure of merit is chosen to represent 
the generality of a pattern. 

Thus, an appropriate method for representations 
that do not require distinction between different 
gate types is called Decomposed Function Cardinality 
(DFC). This idea was first proposed by Abu-Mostafa 
in 1988 [l] for binary functions and is extended here 
for MV logic. 

Definition 4 A function f ( z o ,  zl,. . . , zn- l )  with k 
valued logic and m outputs, has cardinality kn * m. 
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DFC is defined as the sum of the function cardinality 
of each decomposed partial block., A non-decomposable 
function is defined as a function that has a DFC> 
k” * m. 

It is a “good” representation of the complexity or 
”patterness” of a function, since a function is a set of 
ordered pairs and, as with any set, has a definite prop- 
erty in its number of elements or cardinality. Thus, 
for a function that has multiple decompositions, DFC 
may be used to find the minimumcombined component 
cardinality of all the decompositions of that function. 
Because of the simplistic representation of DFC, it is 
also a “good” figure of merit for evaluating function 
implementations in most of the current technologies. 

Example 5 Given the multi-level 
function f=F(Go(zo, zl), Gl(z2, m), z4, zcg), where f 
has six primary inputs, is 4-value, and has 1 output. 
Then the cardinality o f f  is 46 * 1=4096 and the DFC 
of the given multi-leveled decomposition is 4’ + 4’ + 
4(1+1+2) = 288. 

For a function that has multiple decompositions, 
DFC may be used to find the minimum combined com- 
ponent cardinality of all the decompositions of that 
function. The objective of decomposition (in this pa- 
per) is to find the decomposition that produces the 
smallest DFC. Notice, though, that finding the exact 
or smallest DFC is an NP-complete problem, i.e., evalu- 
ating all partitions (discounting the NP-complete prob- 
lems involved with CM and encoding). 

Column compatibility, in this paper, is found by 
a very simple and quick heuristic that attempts at 
matching columns in a maximal clique. Encoding is 
done in a sequential manner, i.e., the column labeled 
A is given the value 0; B=l;  C=2, etc. 

The heuristic for selecting partitions, evaluates all 
possible partitions, the partition that results in the 
smallest DFC, of a simple decomposition (first level de- 
composition), is used in the next level decomposition. 
Note, that the smallest level DFC, doesn’t always re- 
sult in the smallest overall DFC. 

Even if this is still a heuristic, it is not very fast, 
in that, it must evaluate on the order of 2n (n-input 
variables) partitions, which implies calling a dynamic 
swap procedure in the MDD on the order of 2” times. 
The reason for not implementing “faster” heuristics is 
because one of the best attributes in MVL functions 
is that it has a reduced number of input variables, 
i.e., fewer partitions to evaluate. For example, given 
a 10-input, 10-valued, l-output function, there are 21° 
partitions to evaluate, but if the function was encoded 
to a Boolean function then there would be 30-input 

i n t  decompose(function f )  { 
i f  (Num_vars<3) then  

eva lua te  a l l  poss ib le  p a r t i t i o n s ;  
// given p a r t i t i o n  wi th  smallest DFC 
// c r e a t e  F and GO through Gn-1 
DFC=decompose(F); 
for i = O  t o  (n-1) 

// i f  func t ion  i s  non-decomposable 
// r e t u r n  c a r d i n a l i t y  of t h e  f 
i f  (DFC < c a r d i n a l i t y  of f) r e t u r n  DFC; 
else r e t u r n  c a r d i n a l i t y  of f ;  

r e t u r n  c a r d i n a l i t y  of f ;  

DFC=DFC+decompose(G(i)); 

1 

Figure 4. Algorithm 

variables, implying 230 partitions to evaluate. (The 
solution may also be constrained to groups of binary 
variables that come from encoding the same MV sym- 
bol so that they are always taken all together to bound 
or free sets.) 

The recursive procedure’s pseudo-code of the algo- 
rithm is given in Figure 4. The first statement checks 
to see if the number of variables is less than three, if 
it is, then this path of the decomposition is completed. 
The program then evaluates all the possible (disjunc- 
tive) decompositions for the given function. The parti- 
tion that has the smallest (single level) DFC is chosen 
as the best. This partition is then used to break up 
the function f into its components F and Go through 
Gn-l. Each of these new functions is then decomposed. 
The resulting DFC returned from each decomposition 
process is added up and compared to the cardinality 
of the function. If the DFC found is larger than the 
cardinality of the original function then the function is 
said to be undecomposable (at whatever level of decom- 
position). 

5. Experiment a1 Results 

In this section, the experimental results of our de- 
composer, FREDMVL, while running on a HP 700 
workstation are presented. All run times are given in 
CPU minutes. The benchmarks are taken from the 
UCI repository of Machine Learnin#. Some charac- 
teristic information about the benchmarks is given in 
Table 1. The files labeled fiarel-* and flare2-* come 
from the same output functions of flare1 or Pared, re- 
spectively. 

2http://www.ics.uci.edu/ mlearn/MLRepository.html 
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name in out 
balance 4 1 
breastc 9 1 
flarel-1 10 1 

lc card. DFC time 
5 625 375 0.1 

10 l o 9  7025 207 
7 71° 1797 7 

flarel-2 
flarel-3 

I *  I 1  I I I I I I 

10 1 7 71° 3512 8 
10 1 7 71° 1751 8 

Table 1. Benchmark characteristics 

flare2-1 
flare2-2 
flare2-3 
haves 

The run times mainly stem from the size of the ini- 
tial networks, as in the case of each of the flare bench- 
marks, 21° partitions are evaluated for the first level 
decomposition alone. The reason for the delay in the 
breastc benchmark is because of the large number of 
DCs in the initial network. Thus, checking for CM is 
a very difficult task, as there are many partitions with 
over 300 columns, that by combining columns, the CM 
drops to  less than 20. In fact, the partition that had 
the smallest DFC in the first level decomposition orig- 
inally had a CM of 345 which was reduced to  a CM of 
7 by setting DC values. 

10 1 7 7'' 1413 7 
10 1 7 71° 2867 9 
10 1 7 71° 1751 8 
4 1 5 625 314 0.1 

6. Conclusions 

We presented a new approach to  functional decom- 
position of MVL functions. Our algorithm makes use of 
MDDs as the underlying data structure and by this be- 
comes applicable to  larger problem instances. We con- 
sidered the problem of multi-level minimization with 
special emphasis on using DCs. The quality of our al- 
gorithm has been demonstrated by application to a set 
of benchmarks from the area of machine learning. 

Finally, we want to  point out one problem that has 
to be faced in our algorithm: The number of nodes 
in a level of the MDD might become large. Since our 
algorithm uses operations that are linear in the number 
of nodes per level the run times may largely increase. In 
[lo], it was reported that by encoding MDDs on BDDs 
the runtime of an MDD package can be much improved. 
It is the focus of current work, whether an MDD or 
a BDD based data structure should be preferred in 
decomposing MVL functions. 
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