
Functional Decomposition of MVlL Functions using Mult i-Valued
Decision Diagrams

Craig Files’ Rolf Drechsler2 Marek A. Perkowskil

‘Department of Electrical Engineering
Portland State University

Portland, OR 97207-0751, USA
email: cfiles@ee.pdx.edu

Abstract

I n this paper, the minimization of incompletely spec-
ified multi-valued functions using functional decompo-
sition i s discussed. From the aspect of machine learn-
ing, learning samples can be implemented as minterms
in multi-valued logic. The representation, can then be
decomposed into smaller blocks, resulting in a reduced
problem complexity. This gives induced descriptions
through structuring, or feature extraction, of a learn-
ing problem. Our approach to the decomposition is
based o n expressing a multi-valued function (learning
problem) in terms of a Multi-valued Decision Diagram
that allows the use of Don’t Cares. The inclusion of
Don’t Cares i s the emphasis for this paper since multi-
valued benchmarks are characterized as having many
Don’t Cares.

1. Introduction

This paper explores functional decomposition as
it is extended to the synthesis of Multi-Valued Logic
Networks (MVLNs) and to the concept of Machine
Learning (ML). The two problems are disjoint, given
that many synthesis problems for MVLNs are com-
pletely specified or nearly completely specified func-
tions. While functions in ML tend to have 99.9% DonY
Cares (DCs) in their respective learning problems.

Decomposition was proposed by Ashenhurst in the
1950’s [Z] as a method of Boolean multi-level logic min-
imization. While this approach has been known for
many years, it wasn’t until recently that this approach
could be utilized because of the large computation pro-
cedures that are required. Lately, though, while much
research has focused on decomposition as applied to

0-8186-7910-7/97 $10.00 0 1997 IEEE
27

err

21nstitut e of Computer Science
Albert-Ludwigs-University

79110 Freiburg im Breisgau, Germany
].ail: drechsle@informatik.uni-freiburg.de

FPGA design synthesis, several researchers have shown
general decomposition methods by expressing Boolean
functions as Binary Decision Diagrams (BDDs) [7, 121.

The approach proposed in this paper is to decom-
pose MVL functions using Multi-valued Decision Dia-
grams (MDDs) [lo] as the underlying data structure.
It was shown that MDDs have a direct correspondence
to the problem considered (analogously to BDDs in the
Boolean domain). We consider, especially, the aspect
of using DCs in the minimization process and outline
the occurring difficulties. In contrast to previous pa-
pers on MVL decomposition [9, ll] we consider func-
tions with MV outputs.

The concept of using decomposition in ML is to
reduce a given function specified by a set of care
minterms (samples) to a composition of smaller func-
tions (attributes in ML terminology). The result is
a set of expressions that describe suitable intermedi-
ate concepts. Each of these intermediate concepts can
then be further decomposed, leading to expressions
that form a more comprehensible description of the
learned concepts. The advantage of using decompo-
sition to obtain useful intermediate concepts is that it
leads to a result being in a hierarchy of compositions
that could be illustrated as a tree structure. This tree
structure gives the original function a hierarchy of sub-
functions and variables, which leads to learning that is
faster, involves smaller error and gives better explana-
tion of the learned concepts.

In terms of decomposing functions that are (nearly)
completely specified, the decomposition process in-
volved may produce functions with DCs. In [8], the
authors show that functions can be minimized by us-
ing generalized DC values to assume any value in the
range of the input function (other than the previously
used Boolean values). Thus, the decomposition algo-

mailto:cfiles@ee.pdx.edu
mailto:drechsle@informatik.uni-freiburg.de

rithms proposed in the paper can be easily applied to
MVLNs. Recently, more and more interest has been
in the design of such networks. Because of this inter-
est, several design methods were proposed to reduce
the final design and size of the network. In these cases,
though, most of them were only of theoretical nature
or have not been applied to large examples.

Experimental results are given to show the efficiency
of our approach. We use a benchmark set from the
area of machine learning that is characterized by the
fact that the functions are “real” MVL functions and
that they contain many DCs.

The paper is structured as follows: In Section 2 pre-
liminaries are given, i.e., notations and definitions are
introduced. The method of decomposition is described
in Section 3. Section 4 addresses the problem of the
implementation and the choice of the underlying data
structure of our algorithm. In Section 5 experimental
results are described. Finally the results are summa-
rized.

xo Xi-1

X n - 1-

1
Figure 1. Curtis Decomposition

A DD is called ordered if each variable is encountered
at most once on each path from the root to a terminal
and if the variables are encountered in the same order
on all such paths. A DD is called reduced if it does not
contain vertices either with isomorphic sub-graphs or
with all successors pointing to the same node.

In this paper, only reduced, ordered MDDs are con-
sidered.

3. Functional Decomposition
2. Preliminaries

This section provides the notations which are the
basics of multi-valued logic and are important for the
understanding of this paper.

2.1. Multi-valued Decision Diagrams

It is well known that each Boolean function f :
B“ -+ B can be represented by an ordered BDD [5],
i.e., a directed acyclic graph where a Shannon decom-
position is carried out in each node.

Obviously, BDDs can be extended to represent func-
tions f : Bn -+ (0, .., k - 1) and the resulting graphs
are denoted as Multi-Terminal BDDs (MTBDDs). The
operations on MTBDDs can be carried out as efficiently
as in the case of two terminals [SI.

It is straightforward to extend MTBDDs to MDDs
[lo] representing functions f : (0, .., k-1)” -+ (0, ..,A-
1). For this, each internal node has k outgoing edges’.
In [lo], it was shown that the efficient operations known
for BDDs can also be carried out on MDDs using
a case-operator (multi-valued Shannon decomposition
operator).

The extension or addition of Don’t Cares (DC) to
an MDD is fairly straightforward by representing the
function as f : (0, . . l k - l}n -+ (0, .., k}. Thus, each
internal node still has k outgoing edges, but has the
ability of representing IC + 1 values. The (k + l)-th
value is used to represent a DC value in the function.

’In our application all variables are defined over the same set
of values.

In this section, the basic principles of the decompo-
sition of binary and MVL functions are described. For
simplicity of the presentation most of the examples are
in the binary case, but can easily be related directly to
MVL cases. Finally, the influence of DCs used in the
decomposition process is discussed.

3.1. Generalized Functional Decomposition

Definition 1 A function f(a0, a l l . . . , ~ ~ - 1) is decom-
posable under bound set {CO, . . . , xi-1) and free set
{ C i - l , * - a , %-I} 1 0 < i < n, 0 5 1 if and only
if f can be represented as the composite function
F(G~(ZO,...,Z~-~) ,...,Gj-~(~o,...,~i~~), ~ i - l , ...,
xn-l), where 0 < j < i - 1. If 1 equals 0 then f is
said to be disjunctively decomposable, otherwise, it is
known as non-disjunctively decomposable [3, 41,

The principle idea of the decomposition using the
notations from Definition 1 is shown in Figure 1. Note,
that because of the complexity of non-disjunctive de-
compositions, disjunctive decomposition is the method
used in this paper.

Definition 2 Given a k-valued, completely specified
function f , with a bound set B , and free set A, then for
the partition A J B , a partition matrix representation of
f is defined as a rectangular array, where the columns
correspond to the variables in the bound set, and the
rows correspond to the variables in the free set.

Using these definitions the following is found:

28

The array has k j B } columns and k j A } rows.

Given a A-valued function f, with a bound set
B , then the corresponding partition matrix has 1
distinct columns, where 1 is known as the Column
Multiplicity (CM) of a partition.

The CM for the function can be reduced if
the function is incompletely specified, by find-
ing columns that are compatible and combining
the two columns by setting don’t care values. By
compatible, for every row, the possible output
value-sets of the first column (a number or a DC)
intersect the non-empty sets of the corresponding
output value-sets of the second column.

Thus, to represent f as a composite function in
the form

0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 1 1 1 1 0 1 0 1

J’(Go(), . , Gj-10, zi,. , zn-I)

where each G function has inputs (zo,, . . , si-1)

then j = [logkl], G functions are needed.

Example 1 Consider the 4-valued function in Fig-
ure 2, where the partition of a given function is shown
in Figure 2(a). Notice that the number of distinct
columns is four (labeled as A, B, C and D), the func-
tion can be represented as a composite function with
[193]=2, G functions. The resulting decomposition is
denoted as F(Go(z0, zi) , 22).

0 0 2 0 0 0 0 0 2 0 2 0

0 1 0 3 1 1 3 3 0 3 0 3

3.2. BDD/MDD Based Decomposition

In [7], a method for detecting decompositions based
on the concept of a cut-set in a BDD representation of
Boolean functions was presented. (In the following we
briefly review the main idea as applied to MDDs; for
more BDD details see [7].)

Definition 3 Given a bound set (20,. . . , zi-l} and
free set {zi, . . . , zn-l} for a function f, then if a DD
is constructed with variable ordering { C O , . . . , zi-l} <
{zi,. . . , zn-l} the cut-set(i - 1) is the number of dis-
tinct columns (column multiplicity) for the given bound
and free sets. The cut-level is defined as the split be-
tween the two sets.

Example 2 Given the multi-valued function from Ex-
ample 1, the corresponding MDD is created by placing
th% bound variables {zo,zI} on the top of the BDD,
while the free variables {zz) are on the bottom. Note,
that the order of the variables within the bound set or
the fpee set has no effect on the partition found. The
MDD obtained is shown in Figure 2(b). Notice that the

$0

1

2

3

I ,

A B C D B B D D C D C D D D D D

(a)
A

- f

(b)

Figure 2. Example for MVL decomposition

number of nodes below the cut-level, i.e., the number
of 22 nodes plus the number of terminal nodes hav-
ing a pointer cross the cut-level, is equal to four. The
resulting decomposition is shown in Figure 2(c).

3.3. Don’t Cares

One of the biggest advantages of functional decom-
position is that after a function is broken up into
smaller blocks, DCs are (possibly) introduced into
these smaller blocks. These DCs can then be used for
optimization in the next level of decomposition,i.e., de-
composing either the resulting G functions or the F
function.

The following example explores the ideas of DCs in
Boolean functions, but note that the idea can be di-
rectly applied to MVL functions. (A Boolean function
and the use of partitions are for simplicity and ease of
explanation.)

Example 3 Given the Boolean function shown in Fig-
ure 3(a) and resulting partition in Figure 3(b), the
function can be decomposed into [1g31=2, G functions.
Using an encoding scheme of A={O,O}, B={0,1}, and
C={l,l}, Go=O 0 0 1 or Go=zo AND 21, while G1=0
1 1 1 or G ~ = z o OR 21. The resulting partition matrix
is shown in Figure 3(c), where 4 DCs are introduced
into the function. The DCs come from the above en-
coding, where the case { l ,O} does not exist. Now, by
swapping the variables Go and 23 the partition matrix

29

(a)

GnGi

A B B C

(b)

A B B B

(d)

Figure 3. Example for using Don’t Cares

in Figure 3(d) is found. The partition (z3Gl}l(z~~G0}
has CM of 2, while (z2G0}1(z3G1} also has CM of 2.
Notice that without the addition of DCs (say the values
were forced to 0 instead) then the resulting CM would
be larger than 2.

The example shows the importance of introducing
DCs into the partition matrix. Notice that encoding is
also a big factor in the final outcome of the decompo-
sition. The concept of encoding, though, has not been
evaluated in previous approaches, where a single out-
put line is constructed with a multi-valued output to
carry all possible data[l3]. The problem with not using
the encoding scheme is that it may lead to functions
that do not decompose. The encoding, used in this pa-
per, is done by using k-valued logic symbols, where k
is given by the original input function.

A problem arises, though, when functions become
incompletely specified, since the detection of CM be-
comes very difficult. From Example 2, the CM was
calculated using by counting the number of “columns”
at a certain cut-set level. In determining CM in the
presence of DCs, each node below the cut-level may
represent an incompletely specified function. The CM
is then determined by computing the possible com-
patibility between each of these nodes and then using
some search strategy, find the minimal CM. Possible

approaches include: reducing the problem to set cov-
ering, graph coloring, or heuristic methods[l3].

In the case of MVL, the problem of determining a
minimal CM (often) becomes reduced because the pos-
sibility of having compatible nodes decreases with an in-
crease in the number of values represented in the func-
tion. But, in the case of machine learning problems, in
general, the functions are highly unspecified, e.g., for
large functions, 99.9% of the function may be unspec-
ified. Also, by definition, given a CM for a partition
rlogkCM1 G functions must be used in the composite
function. As the size of lc grows, finding the exact min-
imal CM becomes less of an issue because the idea of
reducing CM is to reduce the number of G functions.

Example 4 Given a partition, using 5-valued logic,
the CM is originally found to be 11 (before setting
DC values). To represent this decomposition two G
functions ([log,lll = 2) must be used. The only way
that the number of G functions will be reduced is if 7
columns can be combined. By analyzing the partition,
it might be obvious that this is an impossible task.
(Even if it is possible, many DC values must be set to
literal values.) By not combining the DC columns the
current partition will result in a decomposition with 5’-
11=14 columns with DCs. Thus, the function F, found
from f=F(G(A) , B) , will have an additional 14 * 5IB3
DCs. Notice, though, that encoding now becomes a

problem because there are (;;) =4,45’7,400 possible

encodings.

4. Implementation

The main goal in logic synthesis is finding a “good”
result through some figure of merit. In this paper, the
result of decomposing a MVL function must be general
or robust, in that, the use of the realization technology
for the decomposed function is unknown. Also, when
using the concept of functional decomposition in ma-
chine learning, the main concern is determining the
”pattern” of the object. Thus, it is unnecessary to
have different figures of merit for each technology as
long as a “good” figure of merit is chosen to represent
the generality of a pattern.

Thus, an appropriate method for representations
that do not require distinction between different
gate types is called Decomposed Function Cardinality
(DFC). This idea was first proposed by Abu-Mostafa
in 1988 [l] for binary functions and is extended here
for MV logic.

Definition 4 A function f (z o , zl,. . . , zn- l) with k
valued logic and m outputs, has cardinality kn * m.

30

DFC is defined as the sum of the function cardinality
of each decomposed partial block., A non-decomposable
function is defined as a function that has a DFC>
k” * m.

It is a “good” representation of the complexity or
”patterness” of a function, since a function is a set of
ordered pairs and, as with any set, has a definite prop-
erty in its number of elements or cardinality. Thus,
for a function that has multiple decompositions, DFC
may be used to find the minimumcombined component
cardinality of all the decompositions of that function.
Because of the simplistic representation of DFC, it is
also a “good” figure of merit for evaluating function
implementations in most of the current technologies.

Example 5 Given the multi-level
function f=F(Go(zo, zl), Gl(z2, m), z4, zcg), where f
has six primary inputs, is 4-value, and has 1 output.
Then the cardinality o f f is 46 * 1=4096 and the DFC
of the given multi-leveled decomposition is 4’ + 4’ +
4(1+1+2) = 288.

For a function that has multiple decompositions,
DFC may be used to find the minimum combined com-
ponent cardinality of all the decompositions of that
function. The objective of decomposition (in this pa-
per) is to find the decomposition that produces the
smallest DFC. Notice, though, that finding the exact
or smallest DFC is an NP-complete problem, i.e., evalu-
ating all partitions (discounting the NP-complete prob-
lems involved with CM and encoding).

Column compatibility, in this paper, is found by
a very simple and quick heuristic that attempts at
matching columns in a maximal clique. Encoding is
done in a sequential manner, i.e., the column labeled
A is given the value 0; B=l; C=2, etc.

The heuristic for selecting partitions, evaluates all
possible partitions, the partition that results in the
smallest DFC, of a simple decomposition (first level de-
composition), is used in the next level decomposition.
Note, that the smallest level DFC, doesn’t always re-
sult in the smallest overall DFC.

Even if this is still a heuristic, it is not very fast,
in that, it must evaluate on the order of 2n (n-input
variables) partitions, which implies calling a dynamic
swap procedure in the MDD on the order of 2” times.
The reason for not implementing “faster” heuristics is
because one of the best attributes in MVL functions
is that it has a reduced number of input variables,
i.e., fewer partitions to evaluate. For example, given
a 10-input, 10-valued, l-output function, there are 21°
partitions to evaluate, but if the function was encoded
to a Boolean function then there would be 30-input

i n t decompose(function f) {
i f (Num_vars<3) then

eva lua te a l l poss ib le p a r t i t i o n s ;
// given p a r t i t i o n wi th smallest DFC
// c r e a t e F and GO through Gn-1
DFC=decompose(F);
for i = O t o (n-1)

// i f func t ion i s non-decomposable
// r e t u r n c a r d i n a l i t y of t h e f
i f (DFC < c a r d i n a l i t y of f) r e t u r n DFC;
else r e t u r n c a r d i n a l i t y of f ;

r e t u r n c a r d i n a l i t y of f ;

DFC=DFC+decompose(G(i));

1

Figure 4. Algorithm

variables, implying 230 partitions to evaluate. (The
solution may also be constrained to groups of binary
variables that come from encoding the same MV sym-
bol so that they are always taken all together to bound
or free sets.)

The recursive procedure’s pseudo-code of the algo-
rithm is given in Figure 4. The first statement checks
to see if the number of variables is less than three, if
it is, then this path of the decomposition is completed.
The program then evaluates all the possible (disjunc-
tive) decompositions for the given function. The parti-
tion that has the smallest (single level) DFC is chosen
as the best. This partition is then used to break up
the function f into its components F and Go through
Gn-l. Each of these new functions is then decomposed.
The resulting DFC returned from each decomposition
process is added up and compared to the cardinality
of the function. If the DFC found is larger than the
cardinality of the original function then the function is
said to be undecomposable (at whatever level of decom-
position).

5. Experiment a1 Results

In this section, the experimental results of our de-
composer, FREDMVL, while running on a HP 700
workstation are presented. All run times are given in
CPU minutes. The benchmarks are taken from the
UCI repository of Machine Learnin#. Some charac-
teristic information about the benchmarks is given in
Table 1. The files labeled fiarel-* and flare2-* come
from the same output functions of flare1 or Pared, re-
spectively.

2http://www.ics.uci.edu/ mlearn/MLRepository.html

31

name in out
balance 4 1
breastc 9 1
flarel-1 10 1

lc card. DFC time
5 625 375 0.1

10 l o 9 7025 207
7 71° 1797 7

flarel-2
flarel-3

I * I 1 I I I I I I

10 1 7 71° 3512 8
10 1 7 71° 1751 8

Table 1. Benchmark characteristics

flare2-1
flare2-2
flare2-3
haves

The run times mainly stem from the size of the ini-
tial networks, as in the case of each of the flare bench-
marks, 21° partitions are evaluated for the first level
decomposition alone. The reason for the delay in the
breastc benchmark is because of the large number of
DCs in the initial network. Thus, checking for CM is
a very difficult task, as there are many partitions with
over 300 columns, that by combining columns, the CM
drops to less than 20. In fact, the partition that had
the smallest DFC in the first level decomposition orig-
inally had a CM of 345 which was reduced to a CM of
7 by setting DC values.

10 1 7 7'' 1413 7
10 1 7 71° 2867 9
10 1 7 71° 1751 8
4 1 5 625 314 0.1

6. Conclusions

We presented a new approach to functional decom-
position of MVL functions. Our algorithm makes use of
MDDs as the underlying data structure and by this be-
comes applicable to larger problem instances. We con-
sidered the problem of multi-level minimization with
special emphasis on using DCs. The quality of our al-
gorithm has been demonstrated by application to a set
of benchmarks from the area of machine learning.

Finally, we want to point out one problem that has
to be faced in our algorithm: The number of nodes
in a level of the MDD might become large. Since our
algorithm uses operations that are linear in the number
of nodes per level the run times may largely increase. In
[lo], it was reported that by encoding MDDs on BDDs
the runtime of an MDD package can be much improved.
It is the focus of current work, whether an MDD or
a BDD based data structure should be preferred in
decomposing MVL functions.

References

[l] Y.S. Abu-Mostafa. Complexity in Information

Theory. Springer-Verlag, New York, 1988.

[2] R.L. Ashenhurst. The decomposition of switch-
ing functions. In Int'l Symp. o n Theory Switching
Funct., pages 74-116, 1959.

[3] H.A. Curtis. A new approach to the design of
switching circuits. Princeton, N.J., Van Nostrand,
1962.

[4] J.P. Roth, R.M. Karp. Minimization over Boolean
graphs. In IBM Journal of Research and Develop-
ment , pages 227-38, 1962.

[5] R.E. Bryant. Graph - based algorithms for
Boolean function manipulation. IEEE Trans. on
Comp., 8:677-691, 1986.

[6] E. Clarke, M. Fujita, P. McGeer, K. McMillan,
J. Yang, and X. Zhao. Multi terminal binary deci-
sion diagrams: An efficent data structure for ma-
trix representation. In Int'l Worlcshop o n Logic
Synth., pages P6a:1-15, 1993.

[7] Y.-T. Lai, M. Pedram, and S.B.K. Vrudhula. BDD
based decomposition of logic functions with appli-
cation to FPGA synthesis. In Design Automation
Conf., pages 642-647, 1993.

[8] L. Lavagno, S. Malik, , R.K. Brayton, and A.L.
Sangiovanni-Vincentelli. MIS-MV: optimization of
multi-level logic with multiple-valued inputs. In
Int'l Conf. o n CAD, pages 560-563, 1990.

191 T. Luba. Decomposition of multiple-valued func-
tions. In Int '1 Symp. o n multi-valued Logic, pages
256-261, 1995.

[lo] A. Srinivasan, T. Kam, S. Malik, and R.E. Bray-
ton. Algorithms for discrete function manipula-
tion. In Int'l Conf. on CAD, pages 92-95, 1990.

[ll] Y . Watanabe and R.K. Brayton. Heuristic min-
imization of multiple-valued relations. IEEE
Trans. o n CAD, 12, 1995.

[12] C. Scholl and P. Molitor. Efficient ROBDD based
computation of common decomposition functions
of multioutput boolean functions. In G. Saucier
and A. Mignotte, editors, Novel Approaches in
Logic and Architecture Synthesis, pages 57-63.
Chapman& Hall, 1995.

[13] M. Perkowski, M. Marek-Sadowska, L. Jozwiak,
T. Luba, S. Grygiel, M. Nowicka, R. Malvi,
Z. Wang, and J.S. Zhang. Decomposition of
multiple-valued relations In International Sym-
posium on Multi-Valued Logic, May 1997.

32

