
          

Abstract
We present a routability-driven bottom-up clustering technique for
area and power reduction in clustered FPGAs. This technique uses
a cell connectivity metric to identify seeds for efficient clustering.
Effective seed selection, coupled with an interconnect-resource
aware clustering and placement, can have a favorable impact on
circuit routability. It leads to better device utilization, savings in
area, and reduction in power consumption. Routing area reduction
of 35% is achieved over previously published results. Power dissi-
pation simulations using a buffered pass-transistor-based FPGA
interconnect model are presented. They show that our clustering
technique can reduce the overall device power dissipation by an
average of 13%.

1.    Introduction

Advances in Deep Sub-Micron (DSM) technologies have
made possible million-gate FPGA devices from leading commer-
cial vendors. Such high logic density, however, comes at an enor-
mous interconnect cost since most of the device area (70-80%) is
devoted to interconnects. A goal to achieve close to 100% logic
utilization in these million-gate devices proves extremely expen-
sive in terms of area and power. Since most FPGAs are hierarchi-
cal in nature, circuit clustering (from henceforth, we use the terms
clustering and packing interchangeably) has become an integral
part of the FPGA synthesis flow. Current published works on
FPGA clustering mainly focus on achieving tightly packed clusters
for maximum logic utilization. While recent works [1][18] have
attempted to address FPGA routability issues during the clustering
phase, they have not fully addressed issues of circuit connectivity
and underlying circuit structures, leading to inferior results. 

Area, power, and performance remain the three most impor-
tant factors that have restricted mass acceptance of FPGAs. We
address area and power issues in this paper. Timing issues can also
be adequately addressed by our technique, but are not the focus of
this paper. We show that careful interconnect planning which
matches the design and device complexities apriori, can lead to
substantially less stress on routing, and can favorably impact both
area and power. We present a connectivity-based bottom-up clus-
tering technique which packs closely connected components

together, achieves spatial uniformity in the clustered design using
Rent’s Rule [10][16], and reduces the external routing requirement
in clustered FPGAs. This can positively impact FPGA compile
times without the need for multiple iterations.

The paper is organized as follows. In Section 2, we present an
overview of different bottom-up clustering techniques used both in
the ASIC and FPGA design flows. The clustered FPGA model and
the problem statement are presented in Section 3. The next section
explains our connectivity-based bottom-up clustering technique.
There, we also summarize new developments in interconnect plan-
ning in clustered FPGAs using Rent’s rule and show how cluster-
ing and placement can be guided by this rule. Experimental results
are presented in Section 5. Impact of power dissipation is dis-
cussed in Section 6. This is followed by conclusions in Section 7.

2.    Previous Work

Clustering has traditionally been used in the VLSI industry to
extract underlying circuit structures and construct a natural hierar-
chy in the circuits. A cluster can be viewed as a group of strongly
interconnected nodes in a circuit such that the number of edges
connecting these nodes to one another is much greater relative to
the number of edges connecting this subset of nodes to the remain-
ing nodes in the circuit. Clustering heuristics are classified as
either bottom-up [5][7][8][11][13] or top-down [12][13]. Top-
down approaches partition a given netlist into smaller subclusters.
Bottom-up approaches start with a basic circuit cell as a seed and
build clusters around the seed until certain area thresholds are met.
Several bottom-up approaches have been used for standard cell
designs, including the cluster density metric [13], degree/separa-
tion technique[5], k-l connectedness [11], and the random walk
approaches [5]. While bottom-up approaches typically suffer from
limitations because they are based on local connectivity informa-
tion, they are faster than the top-down approaches. Additionally,
the area and pin threshold requirements in FPGAs can be easily
met during bottom-up clustering.

FPGAs usually consist of small, configurable Lookup Table
(LUT)-based Logic Elements (LEs) connected by rich programma-
ble interconnects. Since routing resources grow faster than on-chip
logic resources, routing resources account for the major portion of
the device’s overall area and delay. Speed and area-efficiency of an
FPGA are directly related to the granularity of its logic block.
While coarse-grained blocks are very area-inefficient and have
long internal logic delays, they can reduce the placement and rout-
ing stress by having fast local routing and significantly reduced
external routing. Recently, FPGA vendors have introduced hierar-
chical FPGAs consisting of logic clusters. Examples of such
devices are the Xilinx Virtex [22] and the Apex [23] from Altera.
In these architectures, groups of Logic Elements (LEs) are clus-
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tered to provide better performance. Figure 1 shows a typical
FPGA Logic cluster composed of several LEs. Each LE is a 4-
input LUT. Dedicated routing is provided inside each cluster for
communication between the local LEs.  

Prior research [3][4] on clustered FPGA architectures has
focussed mainly on the area-delay trade-off stemming from the
size and structure of the clusters. Betz et al. [3] proposed a pack-
ing/clustering algorithm, VPack, for hierarchical FPGAs. The main
idea in their work was to pack a technology-mapped circuit into
clusters of a given size and input/output pin constraints. Their
objective was to minimize the number of clusters and the number
of inputs per cluster. The same authors introduced a tool, T-VPack
[18], utilizing a timing-driven packing approach based on the idea
of packing blocks on timing-critical paths to exploit fast local
interconnects. The clusters generated using T-VPack use an aver-
age of 12% fewer tracks than the clusters generated using VPack
for the same array size. A recent work, RPack, [1] presented a
routability-driven packing algorithm which first identifies routabil-
ity factors, prioritizes these factors into an improved clustering
cost function, and achieves fewer routing tracks than VPack. This
approach, however, produces routing track counts comparable to
those generated by T-VPack. More recently, an interconnect-
resource-aware clustering and placement technique was presented
in [20] which used the clustering platform in T-VPack and
achieved improved routability by clustering and placement with
additional interconnect-resource constraints. 

In this paper, we present a connectivity-based clustering tech-
nique that uses a degree/separation based connectivity analysis to
build clusters for FPGAs. We show that LE seed selection during
the clustering phase, and accurately modeling the clustering cost
function, can greatly impact the final routability result and improve
it by as much as 62% over the previously reported results in RPack
[1]). We analyze the savings in power consumption and show that
savings of as much as 13% can be achieved as a direct result from
our clustering technique.

3.    Preliminaries

In this section, we describe our architecture model and define
some key terms. This is followed by a formal  problem definition.

3.1    Architecture model

Figure 2 shows the features and a canonical Logic Cluster
(LC) tile of a typical clustered FPGA device. LCs are groups of n
LEs as shown in Figure 1. Local routing is provided inside the
LCs, which allows all the n LEs to connect to each other through
the use of multiplexers. Routing between the clusters is through
inter-cluster tracks. The number of tracks between any two neigh-
boring clusters is uniform and is called the channel width. The
number of logic clusters that each wire-segment spans before
going through a switch box is called the track segment length. All
switch-boxes are of the subset type and provide inter-cluster rout-
ing from any track i to its adjoining horizontal or vertical segment
i. Switches are assumed to be buffered pass-transistors. All pins on
a cluster can connect to any of the available tracks in its adjacent
channels. We assume that a cluster of size n has (2n+2) input pins
and n output pins. Indeed, this is sufficient to achieve full logic
connectivity as shown by Betz in [4]. In addition, we assume that
all segments are of lengths 1. Even though this architectural deci-
sion influences our results, we believe that the tendency shown in
these results will hold for similar architectures with different
parameters and segment lengths.  All LCs are arranged into a two-
dimensional array. Segmented wires are arranged on tracks, and
programmable switches provide the connectivity between LCs.

3.2    Key Terms

An input netlist is represented as a directed weighted graph
, with vertex set V (corresponding to LEs), hyperedge

set H, and a positive hyperedge weight w(e) assigned for each
. Each hyperedge connects all the vertices on an r pin net.

Hyperedge weights are assigned to be , where r is the

number of terminals on the net. Consequently, higher weights are
assigned to smaller nets. We define the degree of an LE as the
number of nets incident to that LE. The separation of an LE is the
sum of all terminals of nets incident to the LE. A connectivity fac-
tor (c) is associated with each LE and is defined by the ratio:
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Smaller c values signify that more LEs are located in a given LE’s
neighborhood.

We characterize the complexity of a cluster through the well-
know exponential relationship in Rent’s rule [10][16]:

(2)

where Nio = number of pins in a cluster, B is the number of LEs in
the cluster, K is the average number of connections per LE in the
cluster, and p (0 < p < 1) is a parameter known as Rent’s parame-
ter(exponent). Rent’s rule is an empirical metric used to quantify
circuit complexity. In the 1960s, several researchers independently
found that the log-log plots of number of pins versus number of
clusters in a logic design tend to form straight lines and follow the
relationship in (2). Smaller values of p mean that the cluster’s
external routing requirement is low. A good clustering solution,
therefore, will ensure that the Rent’s parameter of the generated
clusters is small. 

Network utilization is defined as the ratio of used interconnect
to the available interconnect in an FPGA fabric in which the mini-
mum number of tracks is the required channel width (W). We
determine the FPGA architecture’s Rent’s exponent Pa from the
log-log relationship between the number of available pins on a
cluster versus the cluster size. It can also be calculated using for-
mula (2). Pa captures the interconnect resource growth of an
FPGA [9]. Since our architecture has uniform interconnect
resources, Pa at the local level is assumed to be uniform. To check
the accuracy of the Pa value calculated using formula (1), we gen-
erated uniform complexity benchmarks circuits [21] having values
of Pd ranging from 0.2 to 0.9. Each generated benchmark was clus-
tered, placed and routed, and the routing resource utilization was
measured. We obtain Pa by drawing the best-fit line and using the
value that gives the highest network utilization for the same archi-
tecture. The empirically calculated value of Pa is a good approxi-
mation of the one calculated using formula (2). 

We now give a formal problem definition:

Problem Statement: Given a  2-D mesh hierarchical FPGA chip
with Rent’s exponent Pa, and a design mapped to k-LUTs, cluster
the mapped design so that the area and power of the clustered,
placed and routed design are minimized, subject to the constraint
of a given bounding box aspect-ratio.

4.    Clustering

In this section, we present the routability-driven bottom-up
clustering technique. Our technique aims to alleviate routing con-
gestion for clustered FPGAs by (i) absorbing as many small nets
into clusters as possible, and (ii) depopulating clusters according to
Rent’s rule in order to achieve spatial uniformity in the clustered
netlist [20]. The clustering objectives are to minimize the number
of external nets that need to be routed, and to match the Rent’s
parameter of the clustered design to that of the underlying FPGA
architecture. Clustering is done in 2 phases. In the first phase, we
find the c factor of all unclustered LEs according to equation (1).
We maintain an array of lists for storing all unclustered LEs. Each
element in the array is a list containing all unclustered LEs with the
same degree in ascending order of their c values. These sorted lists
speed up the search process for unclustered LEs during the second
clustering phase.

The second phase sequentially builds clusters. An LE seed
with the highest degree and lowest c value will be selected to be
the seed of a new cluster. The advantage of our degree/separation
metric in choosing a seed is illustrated in Figure 3. Let A and B be
two candidate seed LEs. Both A and B have the same degree, i.e.
degree(A) = degree(B) = 4. Here, LE B is a better seed candidate
since its c value is smaller than that of A. In other words, B has a
lesser average separation from its neighboring nodes, and more
nets can be potentially absorbed for internal routing. This is evi-
dent from figure 3.d, in which all 4 nets incident to B have been
absorbed. Choosing A as a seed LE results in no nets being fully
absorbed inside the cluster. Choosing cluster seeds in this manner
consistently produces better routable circuits as measured by the
number of tracks needed to route the circuit. 

Once a cluster seed is chosen, unclustered LEs connected to
this seed LE are assigned gain values according to their attraction
to the cluster. The unclustered LE with the highest gain is absorbed
into the cluster. Consider an unclustered candidate LE X which is
being considered for inclusion into a currently open cluster C as
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shown in Figure 4. The attraction of  X to C is a function of the
weight of the net x and the number of pins of x already inside clus-
ter C. We define this gain quantitatively as:

(3)

where = number of pins of net x already inside C, n is the clus-

ter size, and w(x) is the weight of net x (w(x) = 2/r where r is the
number of pins on x).  If X and C have more than 1 net in common
(LE Y in figure 4), then the gain of X is the sum of gains contrib-
uted by these common nets. If adding X to C fully absorbs net x (as
is the case in figure 4), then  is multiplied by a constant

k: , where k>10. This essen-

tially ensures that blocks attached to the currently open cluster
through smaller nets are more likely to be absorbed in the cluster
since they are assigned higher weights. Assigning higher weights
to such LEs is essential, as there can be other unclustered LEs
attached to C (for example, LE Y) through multiple long nets
which may not be entirely absorbed in C.  In figure 4, we need to
ensure that G(X) > G(Y).

An unclustered block can be absorbed into an open cluster
only if cluster size and pin constraints are satisfied. In order to
guarantee spatial uniformity of the clustered netlist, we limit the
number of available pins using Rent’s rule. Our aim is to guarantee
that the Rent’s parameter of any cluster is no more than the Rent’s
parameter of the underlying architecture, Pa. The available number
of cluster pins is bounded by the cluster size and the maximum
available pins in each cluster in the architecture. That is, if j is the
number of pins which can be used, then , since
the minimum number of pins is k+1 (k is the LE size) and the max-
imum number of pins is 2n+2+n = (3n+2).  We can calculate j as
shown below. 

(4)
where (k+1) is the average number of connection per k-input LE
(this value results from the technology mapping phase), n is the
cluster size, and Pa is the architecture’s Rent’s parameter [20]. The
spatial uniformity requirement can potentially lead to unused clus-
ter pins and less than 100% cluster utilization. However, as figure
5 shows, this in fact can reduce the number of external nets.
Reducing the number of external nets greatly impacts the final

routability results. In figure 5, cluster C can absorb an additional
LE. LE a has the highest gain and adding a to C does not violate
either the architecture pin or cluster size constraint. However, add-
ing a to C creates 3 external nets and increases the cluster’s Rent’s
parameter. Our interconnect-resource-aware clustering constraint
recognizes this fact and makes sure that the situation shown in fig-
ure 5.b does not arise. Instead, LE a is chosen as the seed for a new
cluster, thereby creating only a single external net as shown in fig-
ure 5.c. We end up with 2 clusters in both figures 5.b and 5.c -- yet
the clustered netlist in figure 5.c is more routable. The preceding
example shows that instead of striving to achieve more than 98%
[4] cluster logic utilization, limiting the number of usable cluster
pins can potentially lead to uniformity in the clusters generated.
The intent is to keep a low ratio of used pins to total number of
pins in the logic cluster. Better still would be to consider this
aspect during the architecture design phase itself.

Table 1 shows the number of clusters and the number of external
nets created using our clustering technique. We also show results
from previously published FPGA clustering techniques [1][18].
Both T-Vpack and RPack produce 30% more external nets when
compared to our technique. In fact, our clustering technique is able
to absorb more low-fanout nets inside clusters. Section 5 shows
how this translates into significant area savings in terms of the
number of routing tracks used.

Once clustering has been done, the original netlist has been
reduced to a new netlist with each node corresponding to a cluster.
We then use an interconnect-aware placement tool that we have
developed [20] to place this hierarchical netlist. Note that during
placement, no cluster modification is made. A fairly uniform local
complexity of the clusters does not guarantee uniformity of inter-
cluster interconnect length distributions during placement. The
need for spatial uniformity in the placed design necessitates the
incorporation of Rent’s parameter in the placement tool. This spa-
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Table 1:  External nets : Cluster size 8
Circuit T-VPack[18] RPack[1] Ours

Clusters Ext. 
nets

Clusters Ext. 
nets

Clusters Ext. 
nets

alu4 192 804 196 985 196 624
apex2 240 1249 242 1288 249 993
apex4 165 863 167 868 168 739
bigkey 214 1040 214 1060 227 585
clma 1054 5307 1054 5585 1089 3884
des 200 1214 202 1339 352 1213

diffeq 189 1033 189 895 195 662
dsip 172 762 188 1219 228 472

elliptic 454 2247 462 2300 475 1408
ex1010 599 3110 602 3064 613 2575

ex5p 139 767 139 754 140 664
frisc 446 2048 447 1983 477 1521

misex3 178 840 178 876 191 679
pdc 582 2627 590 3011 608 2246
s298 243 767 243 1330 251 591

s38417 802 4423 802 3921 825 3153
s38584 806 4183 806 3556 839 2884

seq 221 1055 223 1166 223 878
spla 469 2099 473 2336 484 1771

tseng 133 801 133 764 141 535
Average 374.9 1861.9 377.5 1915.0 398.5 1403.8
change

(%)
0.95 1.33 0.96 1.36 1.0 1.0
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tial uniformity is desired between the clusters themselves and not
inside the clusters where placement and routing are assumed.
Recently, we proposed a placement tool which uses a local Rent’s
parameter weighted summation of net-lengths as a component of
the cost function [20]. The placement cost function used is:

 (5)                 

Pdk corresponds to the local placed Rent’s parameter of the net i
and the clusters connected to it. This local placed Rent’s parameter
is calculated for each net in the clustered netlist. For each net, we
consider the placement of the clusters connected to the net, and
calculate the interconnect length requirements due to the current

placement. In a sense, if we consider the individual clusters as con-
stituting the lower level of the design hierarchy, then the clusters
and their surrounding interconnects form the higher level of the

design hierarchy. Therefore, in the placement phase, we are not
concerned with the Rent’s parameters of the individual clusters but
rather, with the Rent’s parameter of the clustered netlist at the
higher level of hierarchy. Figure 6 shows a log-log plot of the num-
ber of nets versus the net lengths of a placed circuit. The Rent’s
parameter of this placed design is calculated as the slope of the
best fit line [17].

5.   Experimental Results

We have implemented our clustering technique, named iRAC
(interconnect Resource Aware Clustering) on top of VPRv4.30 [2]
along with our interconnect-aware placement algorithm, iRAP
[20]. We placed and routed 20 of the largest MCNC random
benchmark circuits on clustered FPGAs. Cluster size 8 was used in
our experiments. The number of I/O pads per row/column [4] in
the array is found by:

(6)
where n is the cluster size. Each circuit was mapped into 4-input
LUTs using flowmap [8], clustered using the technique outlined in
section 4, and placed using our Rent’s rule aware placement tech-
nique [20]. 

Table 2 shows the routing track results for T-VPack [18],
RPack [1], and our clustering and placement technique (both with
and without using the degree/separation based seed selection), for
the same array size, in increasing order of Rent’s parameters of the
clustered designs. Both T-VPack and RPack use about 35% more
tracks than our combined clustering and placement routing
techniques. More than 90% of the improvement is due to our effec-
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Table 2: Routing tracks: Cluster size 8
Circuit Array size T-VPack[18] RPack[1] Random Seed iRAC+iRAP

nx,ny Channel Channel Channel Channel Pins used p
bigkey 18,18 17 15 9 9 11.98 0.476

dsip 18,18 14 24 9 9 11.98 0.490
s38584 29,29 32 26 20 19 12.20 0.524
tseng 12,12 21 21 14 12 13.21 0.540

elliptic 22,22 37 32 28 24 13.97 0.561
s38417 29,29 29 25 20 19 13.66 0.562
diffeq 14,14 20 19 16 14 14.41 0.569

des 21,21 17 18 15 13 11.31 0.584
s298 16,16 20 29 18 15 15.52 0.596

Avg.(p < 0.6) 23 23.2 16.5 14.9 13.13 0.545
% change 1.55 1.56 1.11 1.0

frisc 22,22 39 34 31 31 15.65 0.613
alu4 14,14 26 34 25 22 17.06 0.645
clma 33,33 47 48 42 36 17.39 0.649

misex3 14,14 29 32 26 24 17.40 0.674
spla 22,22 42 48 40 37 18.75 0.678
pdc 25,25 52 56 48 45 19.03 0.687
seq 15,15 33 37 33 30 18.93 0.695

ex5p 12,12 37 36 33 31 19.60 0.704
apex2 16,16 34 35 30 29 19.44 0.717

ex1010 25,25 41 42 33 29 19.43 0.726
apex4 13,13 37 35 33 31 19.66 0.727

Avg.(p > 0.6) 37.9 39.7 34 31.4 18.4 0.683
% change 1.20 1.26 1.09 1.0

Overall Average 21,21 31.2 32.3 26.15 23.9 16.03 0.620
Overall %change 1.0 1.34 1.35 1.10 1.0 - -
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tive clustering technique. Since 70-80% of the total routing area is
devoted to interconnects, this can result in overall die reduction of
as much as 28%. For circuits with p < 0.6, T-VPack and RPack use
an average of 55% more tracks than iRAC. The impact in terms of
extra tracks used by T-VPack and RPack for circuits with p < 0.6 is
less significant. The 5th column shows the routing track count for
circuits clustered from random seeds chosen in a manner similar to
that for RPack but with our modified gain cost function.This
column shows that choosing seeds without considering the
underlying structure can result, on average, in 10% more tracks to
route them when compared to iRAC (column 6). The last 2
columns show the average number of pins used per cluster and the
Rent’s parameter of the clustered designs. iRAC is more effective
in clustering circuits which have a higher percentage of low-fanout
nets. By absorbing most of the low-fanout nets, iRAC is able to
lower the number of external nets, and the Rent’s parameter of the
circuits after clustering. For example, table 3 shows the net profile 

for circuit dsip (p = 0.49), both before and after clustering. The
first 2 columns show that most of the nets in the flat netlist are low-
fanout nets. After clustering, the majority of the 2-pin nets are
absorbed inside the clusters for internal routing. On the other hand,
circuits which have fewer low-fanout nets end up with higher
Rent’s parameters after clustering. Note that our clustering
technique never uses more than 20 pins on any of the clustered
designs. Figure 7 shows circuit tseng, clustered, placed and routed

Table 3: Circuit dsip: Netlist profile
Before clustering After clustering

# Pins # Nets # Pins # Nets
2 1141 2 16
3 221 3 221
4 1 4 3
5 39 5 38
6 184 6 188
7 4 224 1
9 2 225 1

10 1 226 2
225 2 228 2
450 2
906 1
908 1

Table 4: Wirelength and Transistor count
Circuit T-VPack RPack iRAC+iRAP

Wire-
length

Trans. Wire-
length

Trans. Wire-
length

Trans.

alu4 7827 9.196e6 9830 1.199e7 6920 7.81e6
apex2 12888 1.559e7 13431 1.604e7 11846 1.331e7
apex4 9522 1.126e7 9214 1.066e7 8496 9.749e6
bigkey 7852 9.964e6 7473 8.79e6 3867 5.380e6
clma 65298 8.974e7 65997 9.162e7 53125 6.899e7
des 10500 1.351e7 10510 1.427e7 8675 1.037e7

diffeq 6105 7.118e6 5590 6.771e6 4478 5.221e6
dsip 6105 8.222e6 9841 1.394e7 3638 5.38e6

elliptic 22945 3.175e7 20401 2.747e7 16724 2.071e7
ex1010 34306 4.524e7 35352 4.632e7 27282 3.211e7

ex5p 7877 9.632e6 7885 9.376e6 7171 8.078e6
frisc 24584 3.344e7 22300 2.921e7 21061 2.662e7

misex3 8684 1.024e7 8873 1.127e7 7776 8.849e6
pdc 44987 5.72e7 46757 6.155e7 39149 4.958e7
s298 7554 9.253e6 10152 1.331e7 6497 7.42e6

s38417 30675 4.309e7 27594 3.725e7 21250 2.849e7
s38584 33831 4.746e7 27104 3.871e7 22283 2.849e7

seq 11532 1.333e7 12207 1.492e7 10327 1.211e7
spla 28914 3.597e7 32068 4.104e7 26128 3.175e7

tseng 4824 5.517e6 4507 5.517e6 2826 3.193e6
Avg. 19340.5 2.535e7 19354.3 2.55e7 15475.9 1.92e7

change
(%)

1.25 1.34 1.25 1.35 1.0 1.0

Routing succeeded with a channel width factor of 21Routing succeeded with a channel width factor of 21
(a) RPack: Circuit tseng

Routing succeeded with a channel width factor of 12Routing succeeded with a channel width factor of 12

(b) Ours: Circuit tseng

Figure 7: Circuit tseng: Clustered, placed and routed
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using RPack [1] (we use RPack since it’s routing result is the same
as that of T-VPack in this circuit) and our approach. In both the
cases, we use a routability-driven placer and router. Each block in
the figures is a size 8 cluster with each cluster containing 18 input
and 8 output pins. As can be seen from the figure, our clustering
and placement solution are able to reduce the overall track count
by over 42% for the same array size.

Table 4 shows the total wire-lengths and total transistor count
for T-VPack [18], RPack [1] and our connectivity-driven
clustering and placement technique. Our clustering and placement
technique is able to reduce the average wire-length by 25%, and as
will be evident in the next section, this reduction is directly related
to the amount of interconnect power savings associated with our
technique. Furthermore, we can effectively reduce critical delay in
a majority of the benchmarks by using our Rent’s rule aware
placement technique. More work in performance-driven clustering
and placement is currently underway. 

 
6.   Power consumption

Dynamic power consumption is a major concern in FPGAs.
FPGAs consume significantly more power than their ASIC coun-
terparts. For example, a Xilinx 4000 series device can consume as
much as 1000nW/MHz/gate whereas its ASIC counterpart con-
sumes only 20-30nW/MHz/gate. Moreover, power consumption
for commercial FPGAs grows linearly with an increase in fre-
quency. For example, Xilinx[22] estimates that a Virtex device
clocked at 250MHz and consisting of 13000CLB slices can con-
sume more than 21W of power.

By reducing the overall routing area and wire-length, we can
directly impact power dissipation. If Ptotal is the total power dissi-
pated in a device, then the 4 major components of power dissipa-
tion are:

(7)

Since we do not increase the array size, and we assume no clock
gating, the last 2 components in (7) remain fairly constant.  Hence,
any change in power dissipation is mainly due to changes in Pinter-

connect and Plogic.  Therefore:

(8)

 can be assumed to increase slightly (~5%) from our clus-

tering technique, since the average number of active LCs, as
shown in Table 1, increases by around 5%. However,  is

mostly a function of the total wire-length of the routed circuit, i.e.

 

 

Table 5 shows the total power contribution by both a loaded and
unloaded wire-segment (Figure 2) in a 0.18µ 1.8V technology at

250MHz. We have lumped R and C values of wire-segments of
length 1 and the associated pass transistors, buffers, parasitics, and
capacitive loading in these simulations. This table clearly shows
that active wire segments contribute the majority of the total inter-
connect power consumed. From table 3, our clustering and place-
ment technique is able to reduce the average wire-length by around
25%. Assuming that interconnect and logic resources consume
approximately 70% of the total dissipated power, and that inter-
connects occupy around 70-80% of the total device area, we can
save approximately 13% of the total device power by using our
clustering and placement techniques.

7.   Conclusions

We have presented an interconnect-aware connectivity-based
bottom-up clustering technique for significant reductions in area
and power for hierarchical FPGAs. Circuits with smaller Rent’s
parameter (usually < 0.6) and fewer high-fanout nets show the
most improvement from our technique. This can be attributed to
smaller nets being absorbed inside the clusters for internal routing.
For cluster size 8, area saving of as much as 62% (35% on aver-
age) is achieved over previously published results [1][18]. This
saving directly impacts the overall device power consumption and
results in approximately 13% power saving. We have observed
that area and power savings can be more significant for clusters of
bigger sizes. An effective seed selection during the clustering
phase, coupled with a cost function that accurately models the
attraction of unclustered LEs to a cluster, can have a major impact
in reducing routing stress. Incorporating interconnect resource
constraints, during both clustering and placement, can further
reduce total routing demand. We are currently extending our
integrated techniques to multi-level clustering and are also looking
at  performance improvements.
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