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OutlineOutline

Interconnect Scaling
• Fabrication options
• Benefits of Cu/Low k

Engineering “C”
• Reducing k effective
• Optimizing mechanical properties  

Engineering “R”
• Thinner barriers
• Optimizing Cu resistivity

Summary
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Interconnect Fabrication OptionsInterconnect Fabrication Options
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Subtractive Etch (Al) Damascene (W, Cu)Logic devices have fully transitioned from Al to Cu interconnect; 
transition from Al to Cu for Memory devices is in progress 



Novellus Systems Proprietary InformationNovellus Systems Proprietary InformationP. P. 44

Microprocessor Clock Frequency vs. ScalingMicroprocessor Clock Frequency vs. Scaling
Influence of Interconnect System on PerformanceInfluence of Interconnect System on Performance
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Interconnect HierarchyInterconnect Hierarchy
90 nm DSP Example90 nm DSP Example

Courtesy ot Texas Instruments
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A Typical Chip Scaling ScenarioA Typical Chip Scaling Scenario
Global Wires Do Not Scale In LengthGlobal Wires Do Not Scale In Length

Local wire in a macro
Global wire between macros

A More Advanced Chip

Scaled Macro CircuitMacro Circuit

A Chip
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Interconnect Delay vs. Technology NodeInterconnect Delay vs. Technology Node
For ITRS Design Rules/Material ParametersFor ITRS Design Rules/Material Parameters

Reference: R. Ho & M. Horowitz
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Benefits of Cu and Low k InterconnectsBenefits of Cu and Low k Interconnects

Decreased RC Delay
RC ~ εoερL2 (h-2 + w-2)

Line-to-line Capacitance = CL-L
Line-to-ground Capacitance = CL-G

CL-L

CL-G

Crosstalk ~ CL-L / (CL-L + CL-G)

Lower Power Consumption
P ~ CV2f

Reduced Crosstalk Noise
N ~ CL-L/C Total
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Cu Interconnect Evolution vs. Technology NodeCu Interconnect Evolution vs. Technology Node
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Engineering RC requires new materials and processes
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New materials have both benefits & concernsNew materials have both benefits & concerns

Performance
• RC delay
• Crosstalk (~Cll/CT)
• Power dissipation (~CV2f)

Reliability
• Time Dependent Dielectric 

Breakdown (TDDB) 
• Bias Thermal Stress (BTS)
• Via Stress Migration (VSM)
• Electromigration (EM)

Packaging
• Mechanical Integrity
• Heat Dissipation
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Engineering Engineering ““CC””

Goal is reduction in “effective” dielectric 
constant (k) by minimizing:
• k of bulk dielectric material 
• k of dielectric barrier
• Damage to low k during processing
• Moisture absorption in low k material

– Requires hermetic barrier

Goal is reduction in “effective” dielectric 
constant (k) by minimizing:
• k of bulk dielectric material 
• k of dielectric barrier
• Damage to low k during processing
• Moisture absorption in low k material

– Requires hermetic barrier

Must also optimize mechanical properties
• Hardness, modulus, stress, cohesive strength, 

cracking limit
• Adhesion
• Pore size and connectivity 

Must also optimize mechanical properties
• Hardness, modulus, stress, cohesive strength, 

cracking limit
• Adhesion
• Pore size and connectivity 
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k Effective for Dense and Porous Low k Dielectricsk Effective for Dense and Porous Low k Dielectrics

Dense Low k Porous Low k Porous Low k 

Node (nm): 90 65 45 90 65 45
k = 2.85 3.17 3.06 2.93
k = 2.7 3.04 2.93 2.80
k = 2.5 2.86 2.75 2.62 3.19 3.34 3.0 
k = 2.2 2.60 2.48 2.36 3.0 3.17 2.85 
k = 2.0 2.42 2.31 2.18 2.86 3.05 2.74

Node (nm): 90 65 45 90 65 45
k = 2.85 3.17 3.06 2.93
k = 2.7 3.04 2.93 2.80
k = 2.5 2.86 2.75 2.62 3.19 3.34 3.0 
k = 2.2 2.60 2.48 2.36 3.0 3.17 2.85 
k = 2.0 2.42 2.31 2.18 2.86 3.05 2.74
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Porous Dielectric

ESL
Node  90  65   45
k        4.5  4.5  3.5
Th      50   50   40

Barrier
Node  90  65   45
k        5.5  4.5  3.5
Th      65   50   40 Dielectric liner (k=4, t=5nm)

Cap
Node  90  65   45
k       4.2  4.2   3.5
Th      50   50   40

Must simplify porous low k integration to realize benefits
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BEOL Integration ChallengesBEOL Integration Challenges
Low k DielectricsLow k Dielectrics

Low k dielectrics required for capacitance scaling, but:
• Weaker electrical and mechanical properties are a concern

– UV Thermal Processing (UVTP) improves film modulus

• High porosity of Ultra Low k (ULK) films presents integration issues
– Reduced pore interconnectivity enables standard process for lower cost

k vs. Hardness for Porous ULK 
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Making a Reliable Making a Reliable SiCSiC Diffusion BarrierDiffusion Barrier
Resistance to moisture and oxygenResistance to moisture and oxygen
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Engineering Engineering ““RR””

Goal is to lower interconnect resistance by:
• Alleviating contact R increase through material changes

– Replace high resistivity Ti/TiN with WN
• Reducing barrier thickness to maximize Cu volume in trench

– While maintaining reliability
• Reducing via resistance by optimizing:

– Etch and post-etch clean
– Pre-sputter clean
– Barrier deposition

Goal is to lower interconnect resistance by:
• Alleviating contact R increase through material changes

– Replace high resistivity Ti/TiN with WN
• Reducing barrier thickness to maximize Cu volume in trench

– While maintaining reliability
• Reducing via resistance by optimizing:

– Etch and post-etch clean
– Pre-sputter clean
– Barrier deposition

Must also optimize resistivity for smaller feature sizes
• Optimization of Cu plating chemistry and anneal 
Must also optimize resistivity for smaller feature sizes
• Optimization of Cu plating chemistry and anneal 
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Impact of Scaling on Contact ResistanceImpact of Scaling on Contact Resistance

Contact resistance increasing with scaling:
• Control of resistance with scaling DirectFillTM WN/Low ρ W

CVD W Fill

TiN/Ti
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Scaling Cu Barrier/SeedScaling Cu Barrier/Seed

Lower line resistance achieved by optimizing Cu volume:
• Requires thinner barrier while maintaining barrier integrity
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RF HCM™ BarrierRF HCM™ Barrier
Step CoverageStep Coverage
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Cu Fill of Scaled InterconnectsCu Fill of Scaled Interconnects

Cu Seed Protrusion: 
Need Fast Bottom-up 
Fill to Prevent Voids

Cu Seed Protrusion: 
Need Fast Bottom-up 
Fill to Prevent Voids

Thin Cu Seed: 
Optimize Entry 
Conditions

Thin Cu Seed: 
Optimize Entry 
Conditions
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Challenges for Cu fill of smaller feature size:
• Smaller features require faster bottom-up fill without overplating
• Must compensate for nonuniform current distribution from thin Cu seed

New ChemistryOverplating Planar Fill80 nm filled  trench

Thin barrier/seed with
optimized plating process

New plating chemistry & tool enhancements enable Cu fill extendibility 
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OptmizationOptmization of Cu of Cu ResistivityResistivity

Cu resistivity increases with smaller feature size:
• Electron scattering from grain boundaries and sidewalls 

Copper Anneal/Plating Chemistry 
Optimized for Large Grain Size

Cu
Grains

Cu
Grains

• Optimized chemistry/anneal gives large grain size & lower resistivity 
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SummarySummary

Interconnect performance needs have led to the 
introduction of Cu and low k dielectrics 
• Cu interconnects mainstream for Logic devices
• Transition to Cu interconnects underway for Memory devices

The successful integration of Cu/low k has required 
the resolution of numerous technical challenges
• Cu/low k (k=2.9-3.0) in production at 90nm/65nm technology nodes
• Cu/low k (k=2.5) in development for 45nm production in 2008

Even greater challenges lie ahead 
• Lower k dielectrics (k < 2.5), ultra thin (< 3nm) metal barriers, fill of 

sub-50nm features, scaling effects, etc.

Collaboration between industry, universities and 
government is key to fostering innovative solutions
and fueling the IC scaling engine
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• Lower k dielectrics (k < 2.5), ultra thin (< 3nm) metal barriers, fill of 

sub-50nm features, scaling effects, etc.

Collaboration between industry, universities and 
government is key to fostering innovative solutions
and fueling the IC scaling engine
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