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Abstract—Analysis and verification environments for next-
generation nano-scale RFIC designs must be able to cope with
increasing design complexity and to account for new effects,
such as process variations and Electromagnetic (EM) couplings.
Designed-in passives, substrate, interconnect and devices can no
longer be treated in isolation as the interactions between them
are becoming more relevant in the behavior of the complete
system. At the same time variations in process parameters lead
to small changes in the device characteristics that may directly
affect system performance. These two effects, however, can not
be treated separately as the process variations that modify the
physical parameters of the devices also affect those same EM
couplings. Accurately capturing the effects of process variations
as well as the relevant EM coupling effects requires detailed
models that become very expensive to simulate. Reduction tech-
niques able to handle parametric descriptions of linear systems
are necessary in order to obtain better simulation performance.
In this work Model Order Reduction techniques able to handle
parametric system descriptions are presented. Such techniques
are based on Structure-Preserving formulations that are able
to exploit the hierarchical system representation of designed-
in blocks, substrate and interconnect, in order to obtain more
efficient simulation models.

I. INTRODUCTION

New coupling and loss mechanisms, including EM field
coupling and substrate noise as well as process-induced
variability, are becoming too strong and too relevant to be
neglected, whereas more traditional coupling and loss mecha-
nisms are more difficult to describe given the wide frequency
range involved and the greater variety of structures to be
modeled. The performance of each device in the circuit is
strongly affected by the environment surrounding it. In other
words, the response of each circuit part depends not only on
its own physical and electrical characteristics, but to a great
extent also on its positioning in the IC, i.e. on the devices
to which it is directly connected to or coupled with. The
high level of integration available in current RFIC designs
leads to proximity effects between the devices, which induce
EM interactions, that can lead to different behaviors of the
affected parts. In any manufacturing process there is always a
certain degree of uncertainty involved given our limited control
over the environment. For the most part this uncertainty was
previously ignored when analyzing or simulating complete
systems, or assumed to be accounted for in the individual

device models. However, as we step towards the nano-scale
and higher frequency eras, such environmental, geometrical
and electromagnetic fluctuations become more significant.
Nowadays, parameter variability can no longer be disregarded,
and its effect must be accounted for in early design stages
so that unwanted consequences can be minimized. This leads
to parametric descriptions of systems, including the effects
of manufacturing variability, which further increases the com-
plexity of such models. Reducing this complexity is paramount
for efficient simulation and verification. However, the resulting
reduced models must retain the ability to capture the effects of
small fluctuations, in order to accurately predict behavior and
optimize designs. This is the realm of Parametric Model Order
Reduction (pMOR). Furthermore, these parametric fluctuations
of the physical characteristics of the devices can affect not
only the performance of such device, but the coupling between
devices. For this reason the parametric models of the individual
blocks of a system can no longer be simulated in isolation but
must be treated as one entity and verified together. Such re-
duction must take advantage of the hierarchical description of
those systems namely to account for designed-in elements as
well as interconnect effects. To this end, structure-preserving
techniques must be used which not only retain structural
properties of the individual systems but also its connections
and couplings.

The goal of this paper is therefore to discuss and present
techniques for model order reduction of interconnect, substrate
or designed-in passives, taking into account their dependence
on relevant process or fabrication parameters and their cou-
pling and connections. The paper is structured as follows: in
Section II an overview of several existing pMOR techniques
will be discussed. In Section III an introduction to two-level
hierarchy MOR will be done, and an extension to improve
the reduction will be presented. In Section IV the proposed
methodology for combining the parametric techniques with
the hierarchical reduction will be proposed. To illustrate the
procedure, its pros and cons, in Section V some reduction
results will be presented for several real-life structures. Finally
conclusions will be drawn in Section VI.
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II. PARAMETRIC MODEL ORDER REDUCTION

Actual fabrication of physical devices is susceptible to the
variation of technological and geometrical parameters due to
deliberate adjustment of the process or from random deviations
inherent to the manufacturing procedures. This variability
leads to a dependence of the extracted circuit elements on
several parameters, of electrical or geometrical origin. This
dependence results in a parametric state-space system repre-
sentation, which in descriptor form can be written as

C(λ)ẋ(t, λ)(λ) + G(λ)x(t, λ) = Bu(t)
y(t, λ) = Lx(t, λ) (1)

where C,G ∈ Rn×n are respectively the capacitance and
conductance matrices, B ∈ Rn×m is the matrix that relates
the input vector u ∈ Rm to the inner states x ∈ Rn and
L ∈ Rn×p is the matrix that links those inner states to the
outputs y ∈ Rp. The elements of the matrices C and G, as
well as the states of the system x, depend on a set of P
parameters λ = [λ1, λ2, . . . , λP ] which model the effects of
the mentioned uncertainty. Usually the system is formulated
so that the matrices related to the inputs and outputs (B and L)
do not depend on the parameters. This time-domain descriptor
yields a parametric dependent frequency response modeled via
the transfer function

H(s, λ) = L(sC(λ) + G(λ))−1B (2)

for which we seek to generate a reduced order approximation,
able to accurately capture the input-output behavior of the
system for any point in the multidimensional frequency-
parameter space.

Ĥ(s, λ) = L̂(sĈ(λ) + Ĝ(λ))−1B̂ (3)

In general, one attempts to generate a Reduced Order Model
(ROM) whose structure is as much similar to the original as
possible, i.e. exhibiting a similar parametric dependence and
retaining as much of the original structure as possible. Many
techniques have been proposed to tackle this problem and in
the following we review some of the most commonly used.

A. Multi-Dimensional Moment Matching

These techniques appear as extensions to nominal moment-
matching techniques [1], [2], [3]. Moment matching algo-
rithms have gained a well deserved reputation in nominal
MOR due to their simplicity and efficiency. The extensions of
these techniques to the parametric case are usually based in the
implicit or explicit matching of the moments of the parametric
transfer function (2). This type of algorithms assumes small
fluctuations of the parameters, so that an affine model based on
the Taylor Series expansion can be used for approximating the
behavior of the conductance and capacitance, G(λ) and C(λ),
expressed as a function of the parameters. The Taylor series
can be extended up to the desired (or required) order, including
cross derivatives, for the sake of accuracy. Some schemes,
denoted as Multi-Parameter Moment Matching use this idea to
match, via different approaches, the multi-parameter moments
of the parametric transfer function (2) (for details see [4], [5],

[6]). However these methods usually suffer of oversize when
the number of moments to match is high.

A slightly different approach, that provides more compact
ROMs, is presented in [7], which relies on the computation
of several subspaces, built separately for each dimension, i.e.
the frequency s and the parameter set λ. Given a parametric
system (1), the first step of the algorithm is to obtain the ks

block moments of the transfer function with respect to the
frequency when the parameters take their nominal value (for
example, via [1]). This block moments will be denoted as Qs.
The next step is to obtain the subspace which matches the kλi

block moments of x with respect to each of the parameter λi,
and will be denoted by Qλi . Once all the subspaces have been
computed, an orthonormal basis can be obtained so that its
columns spans the union of all previously computed subspaces.
Applying the resulting matrix in a projection scheme ensures
that the parametric ROM matches ks moments of the original
system with respect to the frequency, and kλi moments with
respect to the parameter λi.

B. Variational PMTBR

A novel approach was recently proposed that extends the
PMTBR [8] algorithm to include variability [9]. This approach
is based on the statistical interpretation of the algorithm
(see [8] for details) and enhances its applicability. In this inter-
pretation, the approximated Gramian is seen as a covariance
matrix for a Gaussian variable, x(0), obtained by exciting the
underlying system description with white noise. Rewriting the
Gramian as

Xλ=
∫

Sλ

∫ ∞

−∞
(jωCλ+Gλ)−1BBT (jωCλ+Gλ)−Hp(λ)dwdλ

(4)
where p(λ) is the Probability Density Function (PDF) of λ
in the parameter space, Sλ. Just as in the original PMTBR
algorithm, a quadrature rule can be applied in the param-
eter plus frequency space to approximate the Gramian via
numerical computation (see [9] for details). The accuracy of
the resulting ROM does not depend on the accuracy of the
approximation of the integral, but on the projection subspace.
After the quadrature is performed in the overall variational
subspace, the deterministic procedure is followed and the most
relevant vectors are selected via Singular Value Decomposi-
tion (SVD) in order to build a projection matrix meant to
be used as a congruence transformation on the parametric
system matrices (1). As in the deterministic case, an error
analysis and control can be included, via the eigenvalues of
the SVD, but in this variational case, only an expected error
bound can be given The complexity and computational cost is
generally the same as that of the deterministic PMTBR plus
the previous quadrature operations, and, it has been shown
that the size of the reduced model is less sensitive to the
number of parameters in the description, or how this parameter
dependence is modeled.
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III. BLOCK HIERARCHICAL MODEL ORDER REDUCTION

A. Structure Preservation

As pointed out, individual blocks inside an RFIC can no
longer be treated in isolation, and for this reason the complete
system must be treated as an entity. Considering the linear
component blocks including designed-in passives, intercon-
nect, etc, the system description has an interesting structure,
where the diagonal blocks correspond to the individual block
matrices, whereas the off-diagonal blocks correspond to the
static interconnections (in the G matrix) and dynamic cou-
plings (C matrix). Standard model order reductions techniques
can be applied to this joint, global system and while the
resulting reduced model will usually be able to accurately
capture the input-output behavior of the complete set of blocks,
this approach leads to full reduced matrices. Furthermore,
the original two-level hierarchy with interconnections and
couplings can no longer be recovered.

An alternative approach is to perform the reduction of
the individual models in a hierarchical fashion, i.e to reduce
each model independently without taking into account the
rest of the models or the environment. Hence every model
is reduced separately and thus the hierarchy and structure of
the global system is maintained. However, to apply MOR to
each model means to capture its individual behavior, not the
global one. This can be inefficient as too much effort may
be spent capturing some local behavior that is not relevant
for the global response (maybe filtered by another model).
Furthermore certain aspects of the global response might
be missed as it is not clear at the component level how
relevant they are. To avoid these problems, one can reduce
each component block separately but oriented to capture the
global input-output response. This approach will provide us
with more control in the reduction stage while also preserving
the structure of the interconnections. The transfer function to
match is the global one, so the most relevant behavior for the
complete RF system is captured. What is more, only the global
inputs and outputs of the complete RF block are relevant, so
the inefficiencies caused by the large number of ports of the
individual component blocks is avoided.

Some recent methods have advocated this approach. In [10]
a control theoretic viewpoint of reduction of interconnected
systems was presented, but it has the disadvantage that it
is unable to treat capacitive couplings. The Block Structure
Preserving (BSP) technique was first presented in [11] and
later generalized in [12].

G=

 G11 . . . G1Nb

...
. . .

...
GNb1 . . . GNbNb

 C =

 C11 . . . C1Nb

...
. . .

...
CNb1 . . . CNbNb


B =

[
B1

T . . . BNb

T
]T

L = [L1 . . . LNb
] (5)

The main idea was to retain the system block structure,
i.e. the two-level hierarchy, after reduction via projection,
allowing for a more efficient reduction and the maintenance
of certain system properties, such as the degree of sparsity,

Fig. 1. Illustration of block hierarchy in the system matrix and effect of
reduction using BSP.

and the block hierarchical structure. The procedure relies on
expanding the projector of the global system (obtained via
any classical MOR projection technique) into a block diagonal
matrix, with block sizes equal to the sizes of its Nb individual
component blocks (5). A basis that spans a suitable subspace
for reduction via projection is then computed (for example a
Krylov subspace). The projector built from that basis can be
split and restructured into a block diagonal one so that the 2-
level structure is preserved under congruence transformation. V1

...
VNb

≡ colsp [Kr {A,R, q}] →

V1

. . .
VNb

=V̆ (6)

where Kr {A,R, q} is the q column Krylov subspace of the
complete system (A = G−1C and R = G−1B). The block-
wise congruence transformation is (see Figure 1)

Ĝij = V T
i GijVj B̂i = V T

i Bi

Ĉij = V T
i CijVj L̂j = LjVj

(7)

It should be noticed that the above projection matrix V̆ has
Nb (number of blocks) times more columns than the original
projector . This leads to an Nb times larger reduced system.
On the other hand, this technique maintains the block structure
of the original system and gives us some flexibility when
choosing the size of the reduced model depending on the
block layout and relevance. The reduced system will be able
to match up to Nb times q block moments of the original
complete transfer function (see [12] for details) under the best
conditions (i.e. with very weak entries in the off-diagonal
blocks). Under the worst conditions, only q block moments
are matched, i.e. the same number than in the flat reduction.
This technique is applicable to the global system, composed
of the individual blocks and their connections (including both
resistive as well as capacitive or inductive couplings between
the blocks). The BSP technique therefore preserves the block
structure of the system. However, the inner structure of the
blocks themselves is lost since the procedure turns any non-
empty block in the original system into a full block, but it
is still possible to identify the blocks and relate them to the
original device or interaction block. Nevertheless, if any block
is empty in the global system matrix, it remains empty after
reduction, increasing the sparsity.
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B. PMTBR in Block Structure MOR
Any projection-based MOR procedure can be extended in

the BSP manner to maintain the hierarchical structure of a
system. In the case of the PMTBR algorithm, additional char-
acteristics of the procedure can be further taken advantageous
of in the current framework. The PMTBR algorithm links
the rational projection methods with the Truncated Balanced
Realizations (TBR) framework [13]. The procedure is based
on the estimation, via a quadrature rule, of the frequency-based
integral expression for the controllability Gramian, (4),

X̄ =
∑

k

zkzH
k = ZZH (8)

where Z = [z1 z2 . . . ] and zi = (jwiC + G)−1
B. In [8]

it was shown that if the quadrature scheme (8) is accurate
enough, then the estimated Gramian X̄ converges to the
original one X , which implies that the dominant eigenspace of
X̄ converges to the dominant eigenspace of X . If the system
has some internal structure, then the matrix Z that is computed
from the vector samples of the global system can be split into
blocks. The estimated Gramian can be written block-wise as Z1

...
ZNb

 → ZZH =

 Z1Z
H
1 . . . Z1Z

H
Nb

...
. . .

...
ZNb

ZH
1 . . . ZNb

ZH
Nb

=X̄ (9)

But if we expand the matrix Z into diagonal blocks

Z̆=

Z1

. . .
ZNb

→ Z̆Z̆H=

Z1Z
H
1

. . .
ZNb

ZH
Nb

=X̆. (10)

From (9) it can be seen that ZiZ
H
i = X̄ii, i.e. the matrix

X̆ = Z̆Z̆H is a block diagonal matrix whose entries are
the block diagonal entries of the matrix X̄ . Under a good
quadrature scheme, the matrix X̄ converges to the original X ,
and therefore X̆ will converge to the block diagonals of X .
This means that the dominant eigenspace of X̆ converges to
the dominant eigenspace of the block diagonals of X . We can
then apply an SVD to each block of the Z matrix

Zi = ViSiUi → X̆ii = X̄ii = ViS
2
i V T

i (11)

where Si is real diagonal, and Vi and Ui are unitary matrices.
The dominant eigenvectors of Vi corresponding to the dom-
inant eigenvalues of Si can be used as a projection matrix
in a congruence transformation over the system matrices for
model order reduction. The elements of Si can also be used
for a priori error estimation in a way similar to how Hankel
Singular Values are used in TBR procedures. Using these
block projectors Vi, a structure preserving projector for the
global system can be built (6) which will capture the most
relevant behavior of each block (revealed by the SVD) with
respect to the global response (recall that Z is composed
of sample vectors of the complete system). This approach
provides us with more flexibility when reducing a complete
system composed of several blocks and the interactions be-
tween them, as it allows to control the reduced size of each
device via an error estimation on the global response.

IV. PARAMETRIC BLOCK STRUCTURE MOR

From the two-level hierarchical description of a system it
is possible to have some extra block information that allows
us to perform a more efficient MOR. But the behavior of the
individual blocks that compose the system is subject to the
effect of process variations, both geometrical and electrical.
Such variations, as previously pointed out, also affect the
interactions and couplings between these blocks. Any system-
wide EM simulations must address these effects. Therefore,
the variability study must be done over the complete system,
and after model generation, a two-level parametric system will
be obtained, with the block matrices in the block diagonals
and the interactions between them in the off-diagonals. All
these blocks will be functions of the relevant process and
geometrical parameter. For instance, for conductivity,

G =

 G11(λ{11}) . . . G1Nb
(λ{1Nb})

...
. . .

...
GNb1(λ{Nb1}) . . . GNbNb

(λ{NbNb})

 (12)

where λ{ij} represents the set of parameters affecting block
Gij . From (12) is clear that we have a parametric system
depending on λ =

[
λ{11} . . . λ{NbNb}

]
. Therefore we can

apply parametric MOR reduction. Note that any parameter
affecting several blocks (diagonal blocks and their interac-
tions) is treated as a single parameter (this reduces the number
of parameters). However, in order to maintain the system
structure, BSP techniques can be applied. This is possible as
long as the selected pMOR technique is based in a projection
scheme, which is the case for most of the existing procedures.
The extension is very simple: obtain a suitable basis for
projection from the complete system, and then split and expand
it into a block structure preserving projector. If the basis spans
the most relevant behavior of the parametric system, then the
expanded BSP projector will capture those as well. All the
advantages and disadvantages mentioned in Section III hold
here. But there is an extra and important advantage in the
parametric case: the BSP technique maintains the block
parametric dependance, i.e. if a block Cij depends on a set
of parameters λ{ij}, then the reduced block Ĉij = V T

i CijVj

will depend on the same parameter set and no other.
On the other hand, as previously discussed some pMOR

algorithms yield a very large ROM, and therefore their com-
bination with BSP techniques will lead to an extremely large
ROM. However, it was shown in Section II-B that the ROM
size of the Variatinal PMTBR method is less sensitivity to the
number of parameters. Furthermore, this method has a direct
relation with PMTBR: the only difference is in the sampling
scheme for obtaining the matrix whose columns spans the
desired subspace, the rest of the procedure being exactly
the same. Therefore, the results obtained in Section III-B
are applicable to the variational case. The advantage of the
control and error estimation still remains, although in this
case only an expected error bound can be given. Such control
is very useful when the models of a complete entity have
very different sizes: if the same ROM size is applied to every
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Algorithm I: Block Structure Preserving VPMTBR

Starting from a Block Structured System C, G, B, L with Nb

blocks:
1: Select a quadrature rule of K points in the space [s, λ]
2: For each point compute: zi = (siC(λi) + G(λi))

−1 B
3: Form the matrix columns Z = [z1 . . . zk]
4: Split it into Nb blocks,

Z =

264 Z1

...
ZNb

375
5: For each block Zj obtain the SVD: Zj = VjSjUj

6: For each matrix Vj drop the columns whose singular values falls
bellow the desired global tolerance

7: Build a Block Structure Preserving Projector from the remaining
columns

V̆ =

264 V1

. . .
VNb

375
8: Apply V̆ in a congruence transformation on the Block Structured

System C, G, B, L

block, the reduction may grow unnecessarily large. In contrast,
the complexity of the proposed methodology is exactly the
same as that for the non-structure-preserving techniques. The
only difference is that the SVD (or orthonormalization in
the moment matching approaches) must be done block-wise
in order to avoid numerical errors. This can turn into an
advantage, because for some blocks the number of vectors
needed is lower, so less computational effort is required.

V. RESULTS

To illustrate the proposed procedure we present results
from two examples to which several pMOR techniques were
applied. These included [9] denoted as VPMTBR, [7] denoted
as PPTDM, and two Block Structure preserving methods:
Algorithm I, denoted as BS VPMTBR, and block struture
based on [7], denoted as BS PPTDM. The non-reduced model
response will be denoted as Original or Perturbed, depending
on whether a parameter variation has been applied.

A. Example 1 - Spiral

The first example system is composed of three blocks: a
Multiple Input Multiple Output (MIMO) RC ladder of size
101, with 2 ports, a MIMO Spiral Inductor of size 4961, with
2 ports, and another RC ladder of size 101 and 2 ports. The
three systems are connected in series as shown in Figure 2, so
the global input is the input of the first RC and the output is
the output of the second RC. The Spiral has each of its ports
conected to each ladder. The system depends on five parame-
ters, affecting different blocks. Figure 3 shows the frequency
response of the self-admittance Y11 of the nominal system,
the pertubed response of the non-reduced system, and the
responses of the PMTBR-based models (the PPTDM and BS
PPTDM models do not produce competitive results sizewise,

Fig. 2. Interconnection scheme for Example 1, with original sizes and
parameter indication.
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Fig. 3. (Up) Magnitude in dB of Y11 versus the frequency of Example 1 for
the nominal, the pertubed and the parametric ROMs for a random parameter
variation. (Down) Error of the Magnitude of Y11 for the ROMs w.r.t. the
perturbed response.

TABLE I
CHARACTERISTICS OF THE PMOR METHODS APPLIED

Example 1 Example 2
MOR Method Size NNZ (G C) Size NNZ (G C)

NONE 5163 22545 6631 1600 4768 12588

VPMTBR 92 8464 8464 66 4356 4356

PPTDM 150 22500 22500 544 295936 295936

BS VPMTBR 106 11108 8228 96 722 5438

BS PPTDM 352 103502 42856 160 1600 17200

as seen from Table I, and therefore were omitted). Table I
shows the main characteristics of the obtained ROMs. The
moment matching techniques are less efficient, as the Spiral
requires a high-order model. The PMTBR-based techniques
obtain a better compression overall: BS VPMTBR yields a
sligthy bigger ROM, but it maintains the block structure of the
original system, and is able to control the size of each reduced
block depending on its relevance on the global response.

B. Example 2 - Coupled Buses

This example, depicted in Figure 4, is composed of 16
blocks: 2 buses of 8 parallel lines each (each line modeled as
an RC ladder of 100 segments), are on different metal layers,
and cross at a square angle. The inputs and outputs are taken at
the edges of each line of the first bus, so the system will have
16 ports. In this case there is no interconnection, just coupling
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Fig. 4. Bus topology for Example 2.
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Fig. 5. (Up) Y34 versus the frequency for Example 2 for the nominal,
pertubed and parametric ROMs with random parameter variation set. (Down)
Absolute Error of the ROMs w.r.t. the perturbed response.

effects. Each line is assumed coupled to the previous and the
next line of their bus, and to every line of the other bus in
the crossing area. Each line has its width (W) as a parameter,
which implies 16 independent parameters. The width variation
affects the line model, as well as the in-bus coupling (width
variation also affects the interline spacing), and the inter-bus
coupling (the crossing area varies). Figure 5 shows the fre-
quency response of the nominal system, the pertubed response
of the non-reduced system, and the responses of the ROMs for
VPMTBR, PPTDM, BS VPMTBR and BS PPTDM. Again,
the main characteristics of the resulting ROMs are shown in
Table I. The PPTDM based algorithms result in very large
ROMs even for small number of moments to match (2 w.r.t.
the frequency and 2 w.r.t. each parameter). For these reasons
each block moment from PPTDM was truncated to 10 vectors
to keep the size manageable (otherwise no reduction would
be possible). While this seems to produce acceptable results,
there is little control over the result. On the other hand, the
PMTBR based techniques leads to more compressed ROMs,
as the SVD reveals the most relevant vectors. In the case of
the BS VPMTBR, the control of each block allows different
reduction sizes for each bus: since the ports of the 2nd bus
are not taken into account, less effort is needed to capture its
behavior. In fact, the models for the 1st bus are of sizes 8 to
10, while models for the 2nd bus are all size 3. The ability to
control reduction locally is clearly an advantage of the method.

VI. CONCLUSION

In this paper we have presented a block structure-preserving
parametric model order reduction technique, as an extension of
existing pMOR techniques in order to improve the reduction

when a two-level hierarchical structure is available in the sys-
tem description. This type of structure is common in coupled
or interconnected systems, and can lead to simulation advan-
tages. The methodology presented here is general as it can
be used with any projection pMOR technique to mantain the
two-level hierarchy and the block-parameter dependance. The
presented extension of the PMTBR-based procedures into the
Block Structure Preserving framework, allows more control
on the reduction, provided by the inclusion of estimated error
bounds on the single blocks oriented to the global response.
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