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ABSTRACT
Timing analysis and verification is a critical stage in digi-
tal IC design. As feature sizes decrease to nanometer scale,
the impact of process parameter variations in circuit per-
formance becomes extremely relevant. Notwithstanding the
advances in statistical timing analysis as a form of incorpo-
rating variability effects in the timing verification flow, cor-
ner analysis is still the standard timing signoff methodology
for any industrial design. Since it is impossible to analyze
a design for all the process corners, due to the exponential
size of the corner space, the design is usually analyzed for
a set of carefully chosen corners, that are expected to cover
all the worst-case scenarios. However, there is no estab-
lished systematic methodology for picking the right worst-
case corners. This paper addresses this problem by propos-
ing an efficient automated methodology for computing the
exact worst-delay process corners of a digital IC, given a
linear parametric characterization of the gate and intercon-
nect delays. The key aspect of our methodology is the use of
branch-and-bound techniques that enable an effective prun-
ing of the timing graph, significantly reducing the number
of relevant paths that require detailed analysis.

1. INTRODUCTION
As integrated circuit feature sizes decrease, the impact of

process and operational parameter variations in circuit per-
formance and reliability becomes very significant [7]. Un-
der these circunstances, proper timing of the circuit is now
considerably harder to predict and ensure. The ability to
accurately identify the parameter settings that correspond
to critical timing conditions is therefore increasingly impor-
tant. In a traditional timing verification flow a design is
analyzed for a small set of carefully chosen parameter set-
tings, designated as corners, usually corresponding to ex-
treme conditions in the process space. Such corners are cho-
sen based on the knowledge of designers and process engi-
neers. Unfortunately, picking the right corners in a realistic
manner is not trivial and most often than not either the
actual worst settings are missed or gross over-design may
happen. Compounding the problem, for nanometric feature
sizes, the number of relevant parameters increases signifi-
cantly, making it necessary to develop design and analysis
models that account for those variations directly. In this
context, the ability to determine the exact worst corner of
the circuit becomes an issue of increasing importance, as it
enables actual correction or optimization of a design.

Statistical static timing analysis (SSTA) has been intro-
duced as a form of incorporating variability effects in tra-
ditional timing verification. Even though several promis-
ing SSTA modeling techniques have been proposed [4, 1,
9], their practical applicability is still quite limited, as their

usage could ultimately entail an overhaul of the timing veri-
fication flow [5]. Industrial tools and design flows are not yet
prepared to handle statistical information, and EDA com-
panies are still evaluating the best ways to incorporate it
in their products and design flows, as it does not represent
a natural extension to the current flows. Further, SSTA
requires complex parameter characterization, like multidi-
mensional statistical distributions, and most foundries still
do not provide that information on their fabrication tech-
nologies in a consistent manner, either due to confidential-
ity issues, or simply because they are still trying to figure
out themselves the best way to represent and convey such
information. In fact, process control steps can be better
described by ranges than peaked distributions.

Even though SSTA is not yet a mature methodology, mainly
due to poor parameter characterization and lack of tool sup-
port, the parametric delay and slew formulations that it pre-
scribes, can be employed in automating the complex selec-
tion of the worst corners, to be used in traditional corner-
based analysis. This paper proposes an efficient methodol-
ogy for computing the exact worst-delay corners of a digital
integrated circuit, given a linear parametric characteriza-
tion of the cell and interconnect delays. The key aspect
of our methodology is the utilization of branch-and-bound
techniques that enable an effective pruning of the timing
graph, thus significantly reducing the number of relevant
paths requiring detailed analysis. Parameters only need to
be characterized by their respective value ranges, as oppo-
site to SSTA where they need to be characterized by sta-
tistical distributions. Additionally, this approach produces
more insightful information for the designer, like worst-delay
corners and specific paths where they induce critical timing
conditions, making it much more useful in guiding manual
or automated design optimization than other approaches.

Recently, [6] proposed a linear-time approach for timing
analysis that computes a delay upper bound, covering all
process corners. Experimental evidence shows that for the
limited set of ISCAS combinational benchmarks the delay
upper bound computed by this approach is close to the de-
lay computed by exhaustive corner analysis. However, no
matter how tight, this estimate is just an approximation.
Futher, the worst-case corner for the delay upper bound
may not be the true worst-delay corner of the circuit. In
fact, the worst-delay corner may correspond to a completely
different setting of parameters. The inability to compute the
exact worst-delay corner, somehow reduces the usefulness of
this technique as it becomes difficult to infer which paths or
areas of the circuit are critical or need to be fixed. The goal
of our work is quite different as we target the determination
of the exact worst-delay corner and associated paths.



This paper is organized as follows. Section 2 introduces a
few basic concepts and notation. Section 3 formulates the
worst-delay corner problem and discusses possible exhaus-
tive solutions. Section 4 proposes a solution using branch-
and-bound techniques. Section 5 discusses application of the
former techniques to the computation of worst-slack corners.
Section 6 discusses the tightness of bounds and its effect on
performance. Finally, Section 7 presents the experimental
results and Section 8 presents some concluding remarks.

2. BACKGROUND
The timing information of a circuit is usually modeled

by a timing graph, where vertices correspond to pins in the
circuit, and edges to pin-to-pin delays in cells or intercon-
nect. The timing graph is an acyclic graph, G = (V,E),
composed of vertices, v ∈ V , and directed edges, e ∈ E,
connecting them. Each edge is annotated with the corre-
sponding delay. The primary inputs are vertices with no
incoming edges. All vertices with no outgoing edges are pri-
mary outputs. The sets of primary inputs and outputs of G
are respectively PI(G) and PO(G). A complete path is a
sequence of edges, connecting a primary input to a primary
output, and will be referred to simply as a path. A partial
path is a sequence of edges connecting any two vertices.

In this work, instead of assuming delays to be constant
real-numbered values, we assume them to be described by
affine functions [8] of process/operational parameter vari-
ations, corresponding to a first-order linearization of every
delay, d, around a nominal point, λ0, in the parameter space,

d(λ−λ0) = d(λ0)+
∂d

∂λ

˛̨̨̨
λ0

(λ−λ0) = d(λ0)+
∂d

∂λ

˛̨̨̨
λ0

∆λ (1)

where ∆λ = λ − λ0, represents the incremental parameter
variation vector. Considering the parameter space to have
size p, then Eqn. (1) can be rewritten more compactly as

d(∆λ) = d0 +

pX
i=1

di∆λi = d0 + dT∆λ (2)

where d0 is the nominal value of d, computed at the nomi-
nal values of the parameters, λi, i = 1, 2, . . . , p, and di is the
sensitivity of d to parameter λi, computed at the nominal
point λ0. It is out of the scope of this paper to discuss the
delay computation procedure [3]. Therefore, in the follow-
ing, we will assume the timing information of any circuit to
be available in the form of an annotated timing graph.

Two main approaches have been proposed for timing anal-
ysis: block-based and path-based. In the block-based ap-
proach, characterized by linear runtime, arrival times are
pushed through the timing graph in a levelized fashion,
performing sum operations with delays over the edges and
min/max operations over the vertices with multiple incom-
ing edges. The alternative path-based approach consists in
individually computing the delay of each path in the circuit
by adding the delay of each of its edges. Even though more
accurate, this approach is computationally much more ex-
pensive than the former, since the number of paths can grow
exponentially with the number of vertices (pins).

The min/max operations required by block-based timing
analysis are trivial for constant real-valued delays, but more
complex when delays are affine function of process param-
eters, as assumed here. However, the min/max of affine
functions is a piecewise-affine function, and the min/max of
piecewise-affine functions is also a piecewise-affine function.
Similarly, the sum of affine functions is an affine function,
and the sum of a piecewise-affine function and an affine
function is a piecewise-affine function. Therefore, any ar-
rival time can be exactly represented by a piecewise-affine

function, since it is the result of a sequence of min/max and
sum operations between piecewise-affine functions and affine
function. If no simplification is performed, the piecewise-
affine representation of arrival times should grow linearly
with the number of paths, and therefore can be exponential
in the number of vertices.

An important property of affine functions is their convex-
ity [2]. Both the min/max and sum operator produce convex
functions when operating on convex functions. The convex-
ity implies that the smallest/largest value for a given affine
or piecewise-affine function is obtained by setting each vari-
able to one of its extreme values. In the context of timing
analysis this corresponds to state that the smallest/largest
delay or arrival time is obtained by setting each parameter to
one of its extreme values. For the simple case of delays, that
are represented by affine functions, this value is fairly easy
to compute. Assuming that ∆λi ∈

ˆ
∆λmini ,∆λmaxi

˜
, if in

Eqn. (2) we set to ∆λmaxi all the parameter variations with
positive sensitivities, and to ∆λmini the remaining ones, we
are maximizing the value of the affine delay function over the
parameter space, therefore obtaining the maximum value,

max
∆λ

[d(∆λ)] = d(∆λ∗) = d0 +

pX
i=1

di∆λ
∗
i (3)

where the maximizing parameter variation assignment is

∆λ∗i =

(
∆λmaxi if di ≤ 0

∆λmini if di > 0
, i = 1, 2, ..., p (4)

The min can be computed in a similar way. For affine
functions this computation takes linear time in the num-
ber of parameters, however, for piecewise-affine functions
this computation is much more expensive, since it requires
an implicit or explicit enumeration of all the 2p possible so-
lutions (corners), which makes it exponential in the number
of parameters. Throughout this paper, and without loss of
generality, we will assume that all the parametric formulas
have been normalized such that ∆λmax = 1 and ∆λmin = 0.

3. WORST-DELAY CORNER
3.1 Problem Formulation

In the following we will consider the timing graph of a
combinational block with n inputs and m outputs. Assum-
ing that delays are affine functions of the process parame-
ters, in the form of Eqn. (2), then any delay, di,j(∆λ), from
an input i to an output j is a piecewise-affine function.

The worst-delay corner (WDC) problem, consists in com-
puting an assignment, ∆λ∗, to the parameter variation vec-
tor, ∆λ, that produces the worst delay, di,j(∆λ), from any
input i = 1, . . . , n to any output j = 1, . . . ,m.

In late mode, the worst delay is the largest delay. As-
suming that dlatei,j (∆λ) is the piecewise-affine function of the
delay in late mode from input i to output j, then the WDC
problem is formulated as

max
∆λ


max

j=1,...,m

»
max

i=1,...,n
dlatei,j (∆λ)

–ff
(5)

Conversely, in early mode the worst delay is the smallest
one, therefore the WDC problem is formulated as

min
∆λ


min

j=1,...,m

»
min

i=1,...,n
dearlyi,j (∆λ)

–ff
(6)

As we have seen, since arrival times are represented by
piecewise-affine functions which are convex, their worst (min
or max) value is obtained by setting each parameter varia-
tion to one of its extreme values. Therefore, in essence this
problem can be cast as a combinatorial optimization prob-
lem where, by searching in a finite but typically large set of



elements, we want to optimize a given cost function. In this
case the set of elements can be the set of all the 2p possi-
ble parameter variation assignments, and the cost function
is the arrival time at a given primary output. The major
difficulty with this type of discrete problems, as opposed to
continuous linear problems, is that we do not have any op-
timality conditions to check if a given (feasible) solution is
optimal or not. Therefore, in order to conclude that a feasi-
ble solution is optimal, we must somehow compare its cost
with the cost of all other feasible solutions. This amounts
to always explore the entire solution space, either explicitly
or implicitly, by a complete or partial enumeration of all the
feasible solutions and their associated costs.

3.2 Exhaustive Methods
The simplest exhaustive algorithm that can be conceived

for computing the WDC is to evaluate the delay of the circuit
for all the 2p possible parameter variation assignments, and
verify which assignment produces the worst arrival time at
a primary output. That assignment clearly corresponds to
the WDC. Arrival times can be computed in linear time
using a block-based timing analysis procedure. However,
since such procedure must be executed for each of the 2p

parameter variation assignments, the overall algorithm will
be exponential in the number of parameters.

The WDC can instead be computed by searching the path
space, rather than the parameter space. Essentially, this
corresponds to performing an exhaustive path-based tim-
ing analysis and, for each path, compute the corresponding
affine delay function, by adding the delay functions of its
edges. Given the affine delay function of a path, its WDC
can easily be computed by applying Eqns. (3) and (4). The
WDC of the circuit is the WDC of the critical path. Com-
puting the delay function and the corresponding WDC of
a path has linear complexity in the number of parameters.
However, since such computation must be performed for ev-
ery path, and the number of paths can grow exponentially
with the number of vertices, the overall procedure can ex-
hibit exponential complexity in the number of vertices.

Clearly, both exhaustive methods exhibit exponential run
time complexity, either in the number of parameters or in
the number of vertices. For very small circuits, or in sit-
uations where a small number of parameters is of interest,
they may constitute viable options. However, even average
size circuits will render both approaches unpractical.

4. DYNAMIC PRUNING
In this section we propose an approach for computing the

exact WDC using branch-and-bound techniques, that enable
dynamic pruning of parts of the search space, avoiding an
explicit enumeration of all the possible solutions. We start
by briefly explaining the basic foundations of branch-and-
bound techniques and subsequently present path-space and
parameter-space search algorithms based on them.

4.1 Branch-and-Bound
Most combinatorial problems, including the one at hand,

can only be solved by explicitly or implicitly evaluating a
specific, nonlinear, cost function over the entire solution
space, in order to compute the solution that yields the op-
timal cost. Branch-and-bound techniques focus on prun-
ing useless regions of the solution space, thus avoiding the
explicit enumeration and evaluation of all the possible so-
lutions that they may contain. During the execution of
the algorithm, the best known value for the cost function
is maintained, corresponding to the cost of the best solution
already found. If by some simple and quick procedure we

dout
v

active
PO

v
fanin
cone

trail

PIs

current vertex
din

v

Figure 1: Illustration of delay estimates.

are able to determine that the cost of all the solutions con-
tained in a certain subspace is worse than the best known
cost, then it is useless to explore that subspace, since no
improvement on the cost function will be obtained. There-
fore, that portion of the solution space can be pruned, and
an explicit enumeration of all the solutions it may contain
is avoided. Even though in the worst case this approach
can be as bad as the exhaustive enumeration if no prunning
occurs, on average, for a wide range of applications, it has
proven to perform significantly better.

4.2 Path Space Search
In the following we detail a branch-and-bound based al-

gorithm that computes the WDC by finding one path where
it occurs. Without loss of generality, but for the sake of
simplicity, the following discussion will assume late mode
operation (e.g. worst delay = largest delay). Considering a
primary output at a time, the algorithm performs an anal-
ysis of all complete paths that end at that primary output,
that we will designate as the active primary output. For
most paths, that analysis will be implicit as they will get
pruned out therefore not requiring exhaustive analysis, and
hopefully only a few will require an explicit analysis. To
accomplish this, the timing graph is traversed in a back-
ward fashion, starting at the active primary output, going
through the internal vertices, and eventually ending at the
primary inputs (if no pruning is performed). The vertex be-
ing visited in a given step is designated by current vertex.
The path taken to reach that vertex from the active pri-
mary output is designated by trail. If reconvergent fanouts
exist, the same vertex can be reached from the same primary
output, through distinct trails. The worst delay, w∗, found
among the complete paths already analyzed is continuosly
updated, as well as the corresponding corner, ∆λ∗. For each
current vertex of the timing graph, v, the algorithm relies
on three parametric delay estimates:

• dinv is an upper bound on the delay from any primary

input to vertex v (e.g. in the fanin cone of v);

• doutv is the exact delay of the trail;

• dpathv = dinv + doutv , which represents an upper bound
on the delay of any path going through v, that contains
the trail.

The affine expression of dinv is calculated beforehand, through
a forward-traversal, block-based analysis of the timing graph,
using a technique similar to the one proposed in [6], but with
looser bounds, and therefore faster to compute. An illustra-
tion of these estimates is presented in Figure 1.

The rationale underlying the proposed algorithm is that,
if for a given vertex v, and assuming late mode, the following
condition is verified,

max
∆λ

[dpathv ] ≤ w∗ (7)

then the fanin cone of v can be pruned. What Eqn (7) says
is that in this case the delay of any path going through v



1: function Process-Vertex(G, v, w∗, doutv )
2: dinv ← In-Delay-Estimate(v)

3: dpathv ← dinv + doutv

4: 〈w,∆λ〉 ← max∆λ[dpathv ]
5: if w ≤ w∗ then . Fanin cone gets pruned
6: return 〈w∗, 0〉
7: else if v ∈ PI(G) then
8: return 〈w,∆λ〉 . Worst delay is updated
9: else

10: for all e← Incoming-Edges(v) do
11: s← Source-Vertex(e) . Get source vertex
12: de ← Delay(e)
13: douts ← doutv + de
14: 〈w,∆λ〉 ← Process-Vertex(G, s, w∗, douts )
15: if w > w∗ then
16: 〈w∗,∆λ∗〉 ← 〈w,∆λ〉
17: end if
18: end for
19: return 〈w∗,∆λ∗〉
20: end if
21: end function

and containing the trail can never be larger than the largest
delay found so far, w∗. Therefore it is useless to further
explore the fanin cone of v and it can be pruned. In essence
this allows us to avoid analyzing all paths that originate
within that cone, thus impliciting pruning many paths at
once. It should be noted that this pruning is only valid for
a specific trail. If v is subsequently visited through another
trail its fanin cone may not be pruned (at that point a new
condition is verified, corresponding the the trail used). If a
given current vertex is not pruned, all its fanin vertices are
subsequently visited. When the current vertex is a primary
input, the trail is a complete path, and doutv is its affine
delay function. If the worst delay of this path is larger than
the worst delay w∗ found so far, then w∗ is updated. The
procedure is complete when every path of the circuit is either
explicitly visited or pruned.

The proposed algorithm iterates through every primary
output and then chooses the corner that produces the worst
delay among all primary outputs. An alternative technique
is to connect all the primary outputs to a super-sink vertex
through edges of delay 0, and just analyze the super-sink as
the only primary output. In every step of the algorithm (re-
fer to the pseudo-code at the top of the page), the function
Process-Vertex processes the current vertex, v. It either
prunes the fanin cone of v and returns or invokes itself over
each of its fanin vertices. For a given current vertex, v, it
starts by adding dinv and doutv to obtain dpathv , that is an up-
per bound on the delay of any complete path that contains v
and the trail. As we have mentioned dinv was previously com-
puted and annotated in v. doutv can be computed by adding
the delay of all the edges in the trail. This value is computed
in the calling instance of Process-Vertex and passed as
an argument. As dinv and doutv , dpathv is an affine function of
the parameter variations. The worst value for dpathv , w, and
the corresponding corner, ∆λ, are subsequently computed
using Eqns. (3) and (4). If w ≤ w∗ , that means that the
worst-delay path cannot contain the trail, because w is an
upper bound on the delay of any path containing the trail.
Therefore we stop the traversal at this vertex, which cor-
responds to prune its fanin cone. If w > w∗, and v is a
primary input, it means the trail is a complete path and its
worst delay is larger than the largest known delay computed
so far, and therefore the latter should be updated. If v is
not a primary input then the delay estimate is just a con-
servative bound, and therefore it cannot be used to update
the largest know delay. We proceed until all the paths in
the circuit are either explicitly explored or pruned. At the
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Figure 2: Example of path space search.

end, the largest known delay w∗ and the corresponding pa-
rameter variation settings, ∆λ∗, are the worst delay of the
circuit and the worst-delay corner, respectively.

Figure 2 illustrates the execution of the algorithm for a
small timing graph. It should be noticed that w∗ is only
updated when vertex a is analyzed because only then the
trail is a complete path, and therefore dpathv is the exact
delay of that path, and not an upper bound. Further, the
fanin cone of f is not analyzed because w ≤ w∗. This corre-
sponds to pruning a portion of the path space, namely paths
{〈c, f〉, 〈f, g〉} and {〈d, f〉, 〈f, g〉}.

4.3 Parameter Space Search
Similar branch-and-bound techniques can be employed

when the search is conducted in the parameter space. By
analyzing the worst delay obtained for specific corners of the
parameter space it is possible to effectively prune regions of
such space, e.g. exclude other corners, without having to
explicitly compute their associated circuit delay.

We assume corners to be either completely or partially
specified. Completely specified corners have a value assigned
to each element of the parameter variation vector. For such
corners the delay of a given circuit can be exactly computed.
In partially specified corners, the value of at least one of the
elements of the parameter variation vector is unknown. For
such corners only an upper bound on the delay of a given
circuit can be computed, assuming that all the unknown el-
ements of the parameter variation vector assume their worst
values. A partially specified corner implicitly represents a
group of completely specified corners. For example, 〈1, 0, X〉
implicitly represents 〈1, 0, 0〉 and 〈1, 0, 1〉.

The underlying principle of this algorithm is that if the
delay upper bound, w, produced by a given completely or
partially specified corner, ∆λ, is not better than the delay,
w∗, produced by some completely specified corner already
analyzed, ∆λ∗, then the corresponding corners cannot pro-
duce a delay that is larger than w∗ and should therefore be
pruned. No advantage is obtained when the pruning is per-
formed on a completely specified corner. However, when a
partially specified corner is pruned, all the completely speci-
fied corners that it implicitly represents are also pruned and
will not be explored any further.

The algorithm explores the parameter space by either an-
alyzing or pruning every corner. When a corner is analyzed
a delay estimate of the circuit is computed. In order to keep
track of all the partially or completely specified corners that
have already been either analyzed or pruned, we use a de-
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Figure 4: Timing graph to model setup constraints.

cision tree. Each node in the decision tree represents one,
parameter variation, and can have at most a left and right
child, which are the subtrees where the parameter variation
assumes each of its extreme values. The leaves are delay esti-
mates. Figure 3 illustrates the evolution of the decision tree
during the execution of the algorithm for the timing graph
in Figure 2. Note that in step (4) corner 〈0, X〉 is pruned
because its worst delay is 7 (for ∆λ2 = 1), which does not
represent an improvement over the worst delay produced by
the corner 〈1, 1〉, previously analyzed.

5. WORST-SLACK CORNER
In this section we generalize the methodology for comput-

ing the WDC proposed in Section 4, to enable the computa-
tion of worst-slack corners. We present this generalization
by illustrating the computation of worst-slack corners in-
duced by setup and hold constraints in sequential circuits.
Slacks induced by other constraints can be handled similarly.

Sequential circuits consist of combinational blocks inter-
leaved by registers, usually implemented with flip-flops. Typ-
ically they are composed of several stages, where a register
captures data from the primary outputs of a combinational
block and injects it into the primary inputs of the combi-
national block in the next stage. Register operation is syn-
chronized by clock signals generated by one or multiple clock
sources. Clock signals that reach distinct flip-flops (sinks in
the clock tree) are delayed by a certain clock latency.

Within a clock period T , we assume that data is injected
into a combinational block by a register of n flip-flops with
parametric clock latencies lin1 (∆λ), . . . , linn (∆λ), respectively,
and captured by a register of m flip-flops with parametric
clock latencies lout1 (∆λ), . . . , loutm (∆λ), respectively. If the
clock network is a tree, which is a common situation, then
large portions of the net are shared among multiple paths.
In this case, it is feasible to use a very accurate method
(even perform electrical level simulation), to compute good
estimates of the clock latencies, using a path-based approach
in a very efficient way.

5.1 Setup Time and Late Mode
Proper operation of a flip-flop requires that the input data

line must be stable for a specific period of time before the
capturing clock edge. This period of time is designated by
setup time, and we will represent it by tsetup.

Let us consider the case where a flip-flop, with clock la-
tency lini , connected to the i-th primary input of the combi-
national block, is injecting data, and another flip-flop, with
clock latency loutj , connected to the j-th primary output of

−lout
m − thold

−lout
1 − tholdlin1

linn

timing graph of
a combinational

block

min - early mode

Figure 5: Timing graph to model hold constraints.

the combinational block, is capturing the result, Assuming
the delay in the combinational block, from the i-th primary
input to the j-th primary output in late mode to be dlatei,j ,
then the setup time in the capturing flip-flop is observed
only if the following condition holds,

lini + dlatei,j ≤ T + loutj − tsetup (8)

This condition must hold for every 〈i, j〉 input/output flip-
flop pair. For a given output flip-flop j this set of constraints
can be compactly written as

max
i=1,...,n

(lini + dlatei,j ) ≤ T + loutj − tsetup (9)

This expression induces a slack, ssetupj , defined as,

ssetupj = T + loutj − tsetup − max
i=1,...,n

(lini + dlatei,j ) (10)

that is non-negative when the conditions are met and nega-
tive otherwise. The worst-slack corner for ssetupj is the corner
where its value is minimized, formally

min
∆λ

(ssetupj ) = −max
∆λ

(−ssetupj ) (11)

Ignoring the sign and expanding ssetupj we obtain

max
∆λ

(−ssetupj ) = max
∆λ

»
max

i=1,...,n
(lini + dlatei,j )− T − loutj + tsetup

–
(12)

The corner, ∆λ∗, that maximizes the value of−ssetupj among
all outputs j = 1, . . . ,m is given by

max
∆λ


max

j=1,...,m

»
max

i=1,...,n
(lini + dlatei,j )− T − loutj + tsetup

–ff
(13)

Comparing Eqns. (13) and (5) we can easily conclude that
the worst setup slack corner problem can be cast to the
WDC problem, if the original timing graph of the combina-
tional block is modified as illustrated in Figure 4.

5.2 Hold Time and Early Mode
For a correct operation of a flip-flop, the input data line

must be stable for a certain period of time after the captur-
ing clock edge. This period of time is designated by hold
time, and we will represent it by thold. Assuming the same
connectivity as before, and the delay in early mode to be
dearlyi,j , the hold time in the capturing flip-flop is observed
only if the following condition holds,

lini + dearlyi,j ≥ loutj + thold (14)

Following the same steps as before, we obtain the worst-slack
corner for sholdj ,

min
∆λ

(sholdj ) = min
∆λ

»
min

i=1,...,n
(lini + dearlyi,j )− loutj − thold

–
(15)

The corner, ∆λ∗, that minimizes the value of sholdj among
all outputs j = 1, . . . ,m is given by

min
∆λ


min

j=1,...,m

»
min

i=1,...,n
(lini + dearlyi,j )− loutj − thold

–ff
(16)

As before, by comparing Eqns. (16) and (6) we can easily
conclude that the worst hold slack corner problem can be
cast to the WDC problem, formulated in Section 3, if the
original timing graph of the combinational block is modified
as illustrated in Figure 5.



5.3 Multi-Cycle Paths
Multi-cycle paths are paths between registers where the

output register captures the result more than one clock cycle
after the input register has injected the data. For a multi-
cycle path with cycle c ∈ N (c > 1), Eqs. (8) and (14) can
be rewritten to,

lini + dlatei,j ≤ c× T + loutj − tsetup (17)

lini + dearlyi,j ≥ (c− 1)× T + loutj + thold (18)

The cycle c is usually a user-specified timing constraint.

6. BOUND COMPUTATION
The computation of arrival time and delay upper/lower

bounds is a pervasive task in the algorithms presented in
previous sections. Their performance is highly dependent on
the tightness of those bounds. Tighter bounds are more ex-
pensive to compute, but potentially allow for larger regions
of the search space to be pruned, and therefore may have
a significant impact in performance. The bound computa-
tion consists in a min/max operation between two or more
parametric formulas. Given two parametric formulas a and
b, the cheapest upper bound on their max, c ≥ max[a, b],
can be computed by picking each coefficient to be the max
of the coefficients of a and b. Formally,

ci = max[ai, bi] , i = 0, 1, . . . , p (19)

This bound is very cheap to compute, but it is also loose.
The tightest upper bound on the max, with only one bound-
ing function c, can be computed by solving the LP,

min ε

s.t. ε ≥ c(∆λ(q))−max[a(∆λ(q)), b(∆λ(q))], q = 1, . . . , 2p

c(∆λ(q)) ≥ max[a(∆λ(q)), b(∆λ(q))]
0 ≤ ∆λl ≤ 1, l = 1, . . . , p

(20)
where ∆λ(q) is the q-th process corner. This bound is the
tightest (for one plane), but it is expensive to compute.

7. EXPERIMENTAL RESULTS
A realistic circuit block was synthesized and mapped to

an industrial 90nm technology. As process parameters, we
considered the widths and thicknesses of the six metal layers
needed to route the block. During parasitic extraction of the
design, we computed the nominal values and sensitivities of
each parasitic element (resistors and grounded capacitors),
relative to each one of the 12 parameters. From the circuit
block we extracted 3 combinational circuits that we used
as benchmarks. Table 1 presents useful information about
the timing graph of each circuit, including the number of
process parameters considered.

Table 2 presents the CPU time and the search size for the
execution of the exhaustive (Exh) and branch-and-bound
versions of the WDC computation by searching in the path
and parameter spaces. The path space branch-and-bound
versions were executed using both loose (BnB-L) and tight
(BnB-T) bounds, as detailed in Section 6. Table 3 presents
the CPU time and search size for the execution of the ex-
haustive (Exh) and branch-and-bound (BnB-L) versions of
the worst-slack corner computation for hold constraints.

By analyzing the experimental results in Table 2 it is easy
to conclude that the branch-and-bound technique with loose
bounds is very effective, since it reduces the CPU times
and search size by several orders of magnitude, both when
searching the parameter space and the path space. We can
also conclude that the parameter space search is significantly
more expensive than path space search. Additionally, as ex-
pected, when tighter bounds are used the amount of search is
slightly reduced, since more pruning should occur, which in-
dicates potential for some moderate improvement, if tighter,

Name #Vertex #Edge #PI #PO #Par
mult 2507 3324 20 19 12
add 679 890 41 22 12

share 375 493 26 13 12

Table 1: Benchmark information.
Name Parameter Path

Exh B-n-B Exh BnB-L BnB-T
CPU mult 356.52 10.94 2.68 0.02 141.20
Time add 27.54 0.2 0.01 <0.01 22.21
(s) shared 9.52 0.05 0.01 <0.01 11.69

Search mult 4096 125 3249498 1623 1170
Size add 4096 27 9144 595 466

shared 4096 19 3846 52 52

Table 2: Worst-delay corner computation.
Name Path

Exh BnB-L
CPU mult 3.08 0.01
Time add 0.01 <0.01
(s) shared 0.01 <0.01

Search mult 3803713 29
Size add 11552 56

shared 4859 120

Table 3: Worst-slack corner computation (hold).

but still cheap, bounds can be computed. Since the tight
bounds are expensive to compute, in this case the additional
pruning is not noticeable in the CPU time. Observing the
results in Table 3 we can conclude that, as expected, the
branch-and-bound techniques are also effective in computa-
tion of the worst-slack corner.

8. CONCLUSIONS
This paper proposes an efficient, branch-and-bound based,

automated methodology for computing the exact worst-delay
process corners of a digital integrated circuit, given a lin-
ear parametric characterization of the gate and interconnect
delays. Experimental evidence shows that the proposed ap-
proach is particularly effective, leading to reductions in CPU
time up to several orders of magnitude, when computing cir-
cuit timing while accounting for parameter variability.
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