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Abstract— Variability in digital integrated circuits makes timing
verification an increasingly challenging task. Statistical static timing
analysis has been proposed as a solution to this problem, but most
of the work has concentrated in the development of timing engines
for computing delay propagation. Such tools rely on the availability
of delay formulas accounting for both cell and interconnect delay. In
this paper, we concentrate on the impact of interconnect on delay and
propose an extension to the standard modeling strategies that is variation-
aware and compatible with such statistical engines. Our approach, based
on a specific type of perturbation analysis, allows for the analytical
computation of the quantities needed for statistical delay propagation.
We also show how perturbation analysis can be performed when only the
standard delay table lookup models are available for the standard cells.
Results from applying our proposed modeling strategy to computing
delays and slews in several instances accurately match similar results
obtained using electrical level simulation.

I. I NTRODUCTION

The impact of process variation on circuit performance is an
area of increasing concern, both in the semiconductor industry, as
well as academic research. Work around statistical static timing
analysis of [1], [2] is a well-known example from the research
community. Nowadays, designers spend a considerable amount of
their verification budget trying to make sure that their circuits will
work under all possible settings. To achieve this, they target the worst
possible scenarios by considering so-called pessimistic conditions,
and design in order to ensure that such corner cases are accounted for.
This analysis is usually based on assuming worst-case conditions on
all possible variations simultaneously. Such an scenario is pessimistic
and may lead to considerable over-design.

Improving this situation requires tools that are better suited to
handle realistic variations and the complex inter-relations that exist
between those variations. Not only should those tools directly make
use of realistic process information, thus making them better suited to
model the unpredictability of process parameter variations, but they
should be able to implicitly determine how such variations affect the
circuit behavior. Such a formulation makes it possible to compute on a
single analysis the circuit behavior not only due to a given parameter
setting, but to a variety of settings. The recent development [1] of
statistical timers that are based on a parametric description of delay
in terms of random process variables is an example of movement in
this direction.

A timing analyzer consists of several component pieces. In a
statistical context, the most well-studied part of the timing engine
is the timing graph traversal, which manages the calculation of
arrival times and slews at the level of abstraction of a timing graph.
An equally important, if more mundane, component is the delay
calculation engine. The delay calculator takes as input the cell and
interconnect models and produces a delay expression in a form that
can be consumed by the graph engine. This paper is concerned with
a portion of the delay calculation step, the impact of interconnect

on delay. We explore how commonly used interconnect modeling
strategies can be extended to be compatible with the most recent
generation of statistical timing analysis tools [1]. Specifically, we
desire to produce cell and interconnect delay as affine functions of
process parameters. We assume that one of several recently proposed
approaches for interconnect reduction under process variation is
available to generate tractably sized reduced order models [3], [4],
[5]. The key technology in our approach is a specific type of
perturbation analysis. While digital circuits are strongly nonlinear
with respect to the circuit inputs, cell delays are often close to
linear with respect to process parameters. In this paper we adapt
the general development oflinear time-varying(LTV) perturbation
theory [6] for extraction of variation-aware delay models to the
specific needs of delay calculation for precharacterized standard
cells. The advantage of this type of approach over, for example,
differencing repeated delay calculation runs is that it is essentialy
an analytic method. Differencing type approaches can suffer from
severe robustness problems that make them difficult to use reliably.
In addition, our technique can potentially be made very fast, handling
parametric models with ten to twenty parameters at minimal penalty
relative to a non-variational calculation.

The outline of this paper is as follows: in Section II, we review the
basics of delay computation, including cell and interconnect delay,
assuming no variations are taken into account. Then, in Section III,
we introduce the general perturbation formulation and discuss the
specific specialization of the more general technique to cell-level
interconnect-related delay. We also discuss how perturbation analysis
can be performed when only delay table lookup models are available
for the standard cells. A key point is thatanalytic expressions for
delay sensitivities can be obtained without having to have closed-form
expressions for the cell delay elements (however, see [7] for such
closed-form expressions). Results of using our proposed approach
are shown in Section V and conclusions are drawn in Section VI.

II. BACKGROUND

Timing verification is an enabling methodology for optimizing
performance and making sure that circuits satisfy certain timing and
frequency requirements. To that end, timing verifiers determine ap-
proximate but safe estimates of the worst-case delay through a circuit:
for every input and output signal, there are many possible paths
through the circuit, each path consisting of a set of interconnected
network cells. Timing verification deals with the identification and
analysis of the critical paths, also known as the longest delay paths in
the circuit. In addition to finding critical-path delays, timing verifiers
can also be used to do miscellaneous static analysis, like finding
high-speed components off the critical path that can be slowed down
to save power and several other relevant tasks. However, the most
common usage is indeed to determine the worst case paths in a
circuit. Computing the delay along a path requires the computation
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Fig. 1. Cell model, loaded by the effective capacitance (top right), and by
the original parasitic network (bottom) and corresponding waveforms (left).

of the delay of every cell along that path, plus the added delay due to
interconnect between the cells. In this section we review the standard
computation of cell and interconnect delay.

A. Cell Delay and Cell Loading

The most familiar type of cell library model today are the delay
look-up tables (LUTs) sometimes referred to asdot-lib (.lib) tables.
This is a simplified model where delay and power information is
maintained in the form of a few parameters. In this simplified model
the timing behavior of a cell is usually characterized by a set of
lookup tables that, for each input/output pin pair, describe the delay
and output slew of the cell as a function of the input slew and output
load. Such a model is illustrated in Figure 1 where the standard
definitions are also used, namely input and output slews are defined
as s = tH − tL, where tL and tH are the time instants at which the
respective waveform reaches some pre-defined values,VL and VH ,
related to the definition of noise margins. In a similar manner, delay
is defined as the time it takes the output of a cell to reach its transition
midpoint, from the time the cell input waveform reached its own
midpoint. Cell characterization is performed by simulating the cell
behavior as a function of input slew and loading capacitances. These
results are then stored in look-up tables as mentioned, which are
accessed to determine delay and slew in specific instances.

In Figure 1, the output load is assumed to be a single lumped
capacitance that somehow models the capacitive effects introduced
by the interconnect and by the input pins of the cells connected to
same net. In reality, however, the interconnect attached to the driver
cell is a complex RC network that in deep submicron processes is
very poorly modeled by a lumped capacitance. The loading effect of
interconnect on the cell, i.e. the impact of downstream interconnect on
the cell delay itself, cannot be accurately obtained simply by looking
at the total capacitance on the net. To try to account for the effects of
complex interconnect, while still preserving table-based cell models,
the concept ofeffective capacitancehas been widely adopted. For
the remainder of this paper we will consider that theC shown in
Figure 1 is such an effective capacitance.

The idea behind the effective capacitance consists in determining
the value ofC that in a certain sense approximates as accurately as
possible the behavior of the original parasitic network. In Figure 1.
the output stage of a cell (or more accurately, of an output pin of a
cell) is modelled by a voltage source, producing a voltage rampv,
with slew s, and a series resistor, with resistanceR, that models the
output resistance of the pin. The figure depicts the output stage of
a cell loaded by the effective capacitanceC (top right), and by the
original parasitic RC-network, obtained by layout extraction (bottom

right). In the following, without loss of generality, in order to simplify
the description, we restrict ourselves to the case of rising output
waveforms for non-inverting cells. Clearly any other case can be
derived in a similar manner.

The simple RC circuit on the top of Figure 1 is an approximated
model of the output stage of a cell connected to an effective
capacitance, that is itself an approximation of the interconnect load.
For a given input slewsi and a given effective capacitanceC, we can
compute the estimated cell delayd and the estimated output slewso,
by a simple table lookup in the timing characterization of the cell.
Using this information, we can easily compute the three time instants
at which the waveform of the output voltagevo should crossVL, VT

andVH , respectively,

tL =
si

VH −VL
VT +d− so

VH −VL
(VT −VL) (1)

tT =
si

VH −VL
VT +d (2)

tH =
si

VH −VL
VT +d+

so

VH −VL
(VH −VT) (3)

For the simple RC circuit presented in Figure 1, with time constant
τ = RC, excited by a rising ramp of slews, shifted in time byk, the
voltagevo is given by,

vo(s,τ,k, t) =


0 i f 0≤ t < k
αVDD

s (−τ+ t−k+ τe−
t−k

τ ) i f k ≤ t < k+ s
α

VDD− ατVDD
s (e

s
α −1)e−

t−k
τ i f t ≥ k+ s

α

(4)

whereα = (VH −VL)/VDD. In order to simplify our notation, in the
following we will assume,

φ = 〈s,k,R,C〉. (5)

Using Eqn. (4), we can compute a waveform forv (e.g. s and k)
and a resistanceR, such that the waveform of the responsevo crosses
(tL,VL), (tT ,VT) and (tH ,VH), thus matching the tabulated behavior
of the cell and its output response. This problem can be stated by
the following three equations,

vo(tL,φ) = VL (6)

vo(tT ,φ) = VT (7)

vo(tH ,φ) = VH (8)

The waveform ofv can be seen as the “ideal” output voltage of the
cell, under a zero output load.

We should not lose track of the fact that our goal is to determine
an appropriate value for the effective capacitanceC. The previous
derivations assumed that such a value was somehow known. However,
all that is required is thatC should approximate the behavior of
the original parasitic network as accurately as possible. Several
criteria [8] can be used when defining what effective capacitance pro-
vides a good approximation of the behavior of the original parasitic
network. In this work we consider that the effective capacitance that
better approximates the behavior of the original parasitic network is
the one that draws the same average current, over the transition period
(e.g. when the output voltage switches fromVL to VH ). Formally,

〈Ic〉= 〈Im〉 ⇔
1
so

Z tH

tL
Ic dt =

1

t
′
H − t

′
L

Z t
′
H

t
′
L

Im dt (9)

wherevm(t
′
L) = VL and vm(t

′
H) = VH . 〈Ic〉 can be computed analyt-

ically. 〈Im〉 must be computed by numerically integrating the port
current, obtained by interconnect simulation, as detailed in Section II-
B. From Eqns. (6), (7), (8), and (9) we can compute the value ofφ
that both matches the output waveformvo with the tabulated timing
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information attL, tT andtH , and also that matches the average current
drawn by the original parasitic network and the effective capacitance.
Since Eqns. (6), (7), (8) and (9) contain nonlinear terms, an implicit
iterative method must be used to solve them. We have used Newton’s
method in this work.

Once the value of the effective capacitanceC is known, we can
compute the delayd and output slewso of the cell by a simple
lookup in the timing characterization of the cell. This completely
characterizes the cell output waveform within the constraints of
the simple model. Such a waveform constitutes the input to the
interconnect model.

B. Interconnect Delay

Assuming that the cell delay has been computed, signals are then
propagated along the path through an interconnect net. The input of
such nets, designated byport, are tied to the output of a cell, and the
net outputs, which we will refer to astaps, connect to the inputs of
several other cells. At the timing level, the difference in the timing
of the transition at the cell output (port) and next cell inputs (taps)
we refer to as the intrinsic interconnect delay.

There are various methods of computing the interconnect delay
ranging from closed-form expressions that are descendants of the
Elmore delay formula to numerical solution of the underlying inter-
connect equations. In this work we assume the circuit equations of the
cell driver plus interconnect network system are solved numerically,
either via direct integration or an equivalent process like recursive
convolution. Likewise the slew at the output nodes must be computed
to be used in the analysis of the following cell.

III. VARIATION -AWARE METHODOLOGY

A. General Perturbation Formulation

In this section, we will discuss the parametric analysis of the
intrinsic interconnect delay itself. The impact of the interconnect
parameters on the cell delay (i.e. variation in cell loading effects)
is taken up in the next section.

The starting point of our analysis is the general formulation of
time-varying linear perturbation theory (see [6] for details). We
assume the existence of a set of nonlinear differential-algebraic
equations whose topology is fixed, but whose constitutive relations
depend on a continous way on a set of parameters. Without loss of
generality the basic circuit equations can be written as

d
dt

q(v,λ)+ i(v,λ) = u(t) (10)

wherev∈Rn represents the circuit state variables, for example, node
voltages,q∈ Rn, the dynamic quantities such as stored charge,i ∈
Rn, the static quantities such as device currents,t, time, andu(t) ∈
Rn, the independent inputs such as current and voltage sources. In
departure from the usual case, we introduce ap-element parameter
vector λ ∈ Rp. These parameters represent properties of the circuit,
such as wire width or thickness, that induce variation in the circuit
behavior through theq and i functions.

The perturbation approach to modeling the parameter variation
treats the parameters as fluctuations∆λ around a nominal valueλ0,
and assumes the circuit responsev can be treated similarly, i.e.

λ = λ0 +∆λ (11)

v = v0 +∆v. (12)

Expandingi and q as a function ofv and λ and keeping the first
order variations,, we get

q(v,λ) = q(v0,λ0)+
∂q
∂λ

∆λ+
∂q
∂v

∆v (13)

i(v,λ) = i(v0,λ0)+
∂i
∂λ

∆λ+
∂i
∂v

∆v. (14)

Assuming a solution to the nominal case,v0(t) is obtained, that is

d
dt

q(v0,λ0)+ i(v0,λ0) = u(t) (15)

then substituting the perturbation expansions (13) and (14) into
Eqn. (10) and using (15) to eliminate the nominal-case terms, we
obtain the equations for the first-order perturbation expansion as

d
dt

[
∂q
∂v

∆v

]
+

∂i
∂v

∆v =−
[

d
dt

(
∂q
∂λ

)∆λ+
∂i
∂λ

∆λ
]

(16)

The simplest way to compute waveform sensitivities from
Eqn. (16) is by solving it once for each parameter in turn, as

for eachk:
d
dt

[
∂q
∂v

∂v
∂λk

]
+

∂i
∂v

∂v
∂λk

=−
[

d
dt

(
∂q
∂λk

)+
∂i

∂λk

]
. (17)

This gives the final expression

v(t,λ) = v0(t)+
p

∑
k=1

∂v
∂λk

(t)∆λk. (18)

Once the sensitivities in the waveforms are known, the next step
is to translate to sensitivity of delay. As discussed, delay can be
computed asd = t2− t1 where t2, t1 are the crossing times of the
two waveforms of interest. The sensitivity in a crossing time can be
related to the sensitivity of the waveform valuev(t) at that point via
the slew,∂v/∂t. Suppose there is a small change∆T in the crossing
time of a given waveform. With a linear model, the corresponding
change in the voltage is

∆V =
∂v
∂t

∆T. (19)

Conversely, if the perturbation in the waveform∆V can be computed,
the change in crossing time is given by

∆T =
∆V
∂v
∂t

. (20)

Therefore we can compute the sensitivity of the delay as

∂d
∂λk

=

∂v
∂λk

∣∣∣
t2

∂v
∂t

∣∣∣
t2,λ0

−
∂v

∂λk

∣∣∣
t1

∂v
∂t

∣∣∣
t1,λ0

(21)

Note that for this computation, we only need the waveform
sensitivity at a few points in time. This fact can be used to further
speedup computations (see [6] for details).

This is the formulation for a general first-order perturbation
analysis. In the following we restrict ourselves to the problem at
hand, namely modeling the linear interconnect sub-circuits assuming
variations in parameters affecting the interconnect elements.

B. Specialization to Interconnect

Our concern in this document is with the special case of intercon-
nect parameters, so simplifications of the general theory are possible.
On-chip cell-level interconnect models are usually written in terms
of capacitances and resistances, or equivalently, capacitances and
conductances. Inductance is typically neglected at this level and for
the sake of simplicity we will proceed likewise; it is however easy to
see that the derivation is quite similar when inductance is involved.
Therefore, in this case,

q(v,λ) = C(λ)v i(v,λ) = G(λ)v (22)

so that
∂k

∂λk
=

∂G
∂λk

v
∂q
∂λk

=
∂C
∂λk

v (23)
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Let us then assume, for now, that for every element in the parasitic
network (resistor or capacitor), a linear variational model is available.
Such a model contains the nominal values for the elements and also
the sensitivities to each parameter. Therefore, the conductance and
the capacitance matrices have the form:

G = G0 +
p

∑
k=1

(Gk∆λk) (24)

C = C0 +
p

∑
k=1

(Ck∆λk) (25)

where G0 and C0 are the nominal values of the elements in the
interconnect network and the sensitivities∂G

∂λk
and ∂C

∂λk
to each

parameterλk are given by

∂G
∂λk

= Gk
∂C
∂λk

= Ck. (26)

The nominal value corresponds to the solution of the equations with
each∆λk = 0, that isλ = λ0. Assuming the variational formulation
for G presented in Eqn. (24), and forv presented in Eqn. (12) we
obtain, for instance fori(v,λ):

i(v,λ) =

[
G0 +

p

∑
k=1

(Gk∆λk)

]
(v0 +∆v) (27)

Simplifying and eliminating the (non-linear) cross-product terms, we
obtain:

i(v,λ)≈G0v0 +G0∆v+
p

∑
k=1

(Gkv0∆λk) (28)

implying that:
i0 ≡ i(v0,0) = G0v0 (29)

∂i
∂v

= G0 (30)

∂i
∂λk

= Gkv0 (31)

An identical procedure can be applied toq(v,λ) leading, as
expected, to:

q≈C0v0 +C0∆v+
p

∑
k=1

(Ckv0∆λk) (32)

and therefore, that:
q0 ≡ q(v0,0) = C0v0 (33)

∂q
∂v

= C0 (34)

∂q
∂λk

= Ckv0 (35)

Eqns. (15) and (16) which describe the general perturbation anal-
ysis framework, can therefore, in the specialization of parameter-
varying interconnect, be written as:

C0
d
dt

v0(t)+G0v0(t) = u(t) (36)

C0
d
dt

[∆v]+G0∆v =−
p

∑
k=1

[
d
dt

(Ckv0(t))∆λk +Gk∆λk

]
(37)

The delay modeling problem is completed by adding the notion of
inputs and outputs to form state-space models. In the case of cell-level
interconnect, the inputs are represented by drivers, the output stages
of cells. For the sake of simplicity of exposition here, we will assume
that the input is given by a fixed current source. However, other

models (e.g. voltage drivers, or nonlinear current source models [9],
[10]) are treated in a similar fashion. In this case,

u(t) = Bidrv(t) (38)

whereB is a vector (or matrix, in the case of multiple simultaneous
source inputs) that describes the connection of every input source to
the interconnect network. For the case of current input sources,B is
simply an incidence matrix indicating at which node each driver is
connected to.

Similarly, in the case of cell-level interconnect, the outputs are
typically receivers, the inputs of the following gates in the circuit.
We denote such outputs as “taps” and monitor voltage at these “taps”.
Assuming that the output is represented by voltage, mathematically
this is represented by another matrixL as

vtap = LTv (39)

where againL is an incidence-type matrix describing which voltage
nodes are monitored.

Using this representation, the full set of equations is now

C0
d
dt

v0(t)+G0v0(t) = Bidrv(t) (40)

v0,tap(t) = LTv0(t) (41)

C0
d
dt

[∆v]+G0∆v =−
p

∑
k=1

[
d
dt

(Ckv0(t))∆λk +Gk∆λk

]
(42)

∆vtap = LT∆v (43)

These equations can be written more compactly if we define

sk(t) =−
[
Ck

d
dt

v0(t)+Gkv0(t)
]

(44)

where v0(t) is the nominal solution computed above.sk can be
interpreted as the “equivalent source” that will allow determination of
the sensitivity to thekth interconnect parameter. With this definition,
the final, complete set of equations is then rewritten as

C0
d
dt

v0(t)+G0v0(t) = Bidrv(t) (45)

v0,tap = LTv0(t) (46)

C0
d
dt

[∆v]+G0∆v =
p

∑
k=1

sk(t)∆λk (47)

∆vtap = LT∆v (48)

C. Interconnect Sensitivity Calculation

The process of sensitivity calculation can now be concisely stated.
First, solve Eqns. (45) and (46) to get the nominal case responses.
Then, for each parameterk, solve

C0
d
dt

[
∂v

∂λk

]
+G0

[
∂v

∂λk

]
= sk(t) (49)

∂vtap

∂λk
= LT

[
∂v

∂λk

]
(50)

to get the sensitivity of the response waveforms. From the sensitivity
waveforms, the delay sensitivity can be computed. Of course, in
practice, it is useful to diagonalize the state-space model above, i.e. to
put theC0,G0 matrices into pole-residue form, as numerical solution
of the multiple systems is much more efficient.
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IV. CELL DELAY SENSITIVITY CALCULATION

In the preceding section, we have seen how to perform variation-
aware delay computation, by computing the sensitivities of the
response waveforms in interconnect blocks. However, it is also
necessary to show that similar sensitivites can be computed at the
output of cells, in particular assuming that cell delay computation is
still based on delay table models.

To show this, we refer back to the derivation in Section II and in
particular to Eqns. (6), (7), (8) and (9). If we perform an expansion
around a nominal pointφ0, keeping the first order variations, and
eliminating the nominal-case terms, we obtain,

∆vo(tL,∆φ) = 0 (51)

∆vo(tT ,∆φ) = 0 (52)

∆vo(tH ,∆φ) = 0 (53)

〈∆Ic〉(tL, tH ,∆φ) = 〈∆Im〉 (54)

Noticing the dependence oftL, tT and tH , on d and so, and their
dependence onsi andC, we obtain the generic equation,

∂vo

∂s
∆s+

∂vo

∂k
∆k+

∂vo

∂R
∆R

+
(

∂vo

∂C
+

∂vo

∂tX

dtX
dC

)
∆C+

∂vo

∂tX

dtX
dsi

∆si = 0
(55)

where
dtX
dC

=
∂tX
∂so

∂so

∂C
+

∂tX
∂d

∂d
∂C

(56)

dtX
dsi

=
∂tX
∂si

+
∂tX
∂so

∂so

∂si
+

∂tX
∂d

∂d
∂si

. (57)

tX can be replaced bytL, tT or tH to obtain Eqns. (51), (52), and (53),
and all derivatives are computed at timetX . For Eqn. (54) a similar
expansion can be performed,(

∂〈Ic〉
∂s

− ∂〈Im〉
∂s

)
∆s+

∂〈Ic〉
∂k

∆k

+
(

∂〈Ic〉
∂R

− ∂〈Im〉
∂R

)
∆R+

d〈Ic〉
dC

∆C+
d〈Ic〉
dsi

∆si = 〈∆Im〉
(58)

where
d〈Ic〉
dC

=
∂〈Ic〉
∂C

+
∂〈Ic〉
∂tL

dtL
dC

+
∂〈Ic〉
∂tH

dtH
dC

(59)

d〈Ic〉
dsi

=
∂〈Ic〉
∂tL

dtL
dsi

+
∂〈Ic〉
∂tH

dtH
dsi

(60)

∆si and 〈∆Im〉 are related to the parameter variation vector,∆λ, by
the following expressions,

∆si =
∂si

∂λ
∆λ (61)

〈∆Im〉=
∂〈Im〉

∂λ
∆λ (62)

where ∂si
∂λ and ∂〈Im〉

∂λ are the sensitivity vectors. Resorting
to Eqns. (55), (58), (61), and (62), we can now represent
Eqns. (51), (52), (53), and (54) in matrix form as,

J∆φ =
(

A
∂si

∂λ
+B

∂〈Im〉
∂λ

)
∆λ (63)

∂si
∂λ results from the variational timing analysis on the interconnect of

the input net, as described in Section III.∂〈Im〉
∂λ can be computed by

integrating the sensitivities of the port current,Im, for the transition
period and dividing by its width. All the derivatives inJ, A and
B can either be computed analytically or by accessing the timing
characterization of the cell.

If NC = [0 0 0 1] is a vector that “selects” the capacitance (fourth)
row from ∆φ, then,

∆C = NC∆φ = NCJ−1
(

A
∂si

∂λ
+B

∂〈Im〉
∂λ

)
∆λ (64)

Acknowledging the dependence of the delayd and the output
slew so on the input slewsi and the capacitanceC, the following
expressions can be derived,

∆d =
∂d
∂si

∆si +
∂d
∂C

∆C (65)

∆so =
∂so

∂si
∆si +

∂so

∂C
∆C (66)

where ∂d
∂si

, ∂d
∂C , ∂so

∂si
and ∂so

∂C can be computed by direct analysis of
the lookup table that contains the timing characterization of the cell.
Substituting Eqns. (61), (64) in Eqns. (65), and (66), we can derive
the sensitivities of the delay and output slew to the parameters,

∂d
∂λ

=
∂d
∂si

∂si

∂λ
+

∂d
∂C

NCJ−1
(

A
∂si

∂λ
+B

∂〈Im〉
∂λ

)
(67)

∂so

∂λ
=

∂so

∂si

∂si

∂λ
+

∂so

∂C
NCJ−1

(
A

∂si

∂λ
+B

∂〈Im〉
∂λ

)
(68)

V. EXPERIMENTAL RESULTS

A realistic circuit block was synthesized and mapped to an in-
dustrial 90nm technology. As process parameters, we considered the
widths and thicknesses of the six metal layers needed to route the
block. During parasitic extraction of the design, we computed the
nominal values and sensitivities of each parasitic element (resistors
and grounded capacitors), relative to each one of the 12 parameters.

In order to validate the interconnect delay and slew computations,
we selected from the design 3671 nets, including nets in the internal
logic, nets in the clock tree and nets in the pad wiring. For each of
these nets, we computed the parametric delay and slew expressions
for each of its taps (resulting in 13870 taps among all nets), while
the port was excited by a rising voltage ramp. To assess the accuracy
of the proposed methodology, the delay and slew sensitivities were
compared to transistor-level simulations performed using the circuit
simulator SPECTRE. In Figure 2 we present scatter plots of the
sensitivities computed by both methods, for 4 parameters. In Figure 3
we present histograms of the relative errors for other 4 parameters.
Both figures clearly show that the computed sensitivities accurately
match those obtained by simulation.

Fig. 2. Computed delay sensitivities vs. transistor-level simulation.In order to validate the cell delay and output slew computations
we proceeded as follows. For a given standard cell of that same
90nm technology, and using Spice-level models, we generated a
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Fig. 3. Histograms of errors in computed delay sensitivities.

dotlib-style lookup table of size 7x7, for delay and output slew, as
a function of input slew and load. Using these tables, and applying
the proposed methodology, we computed the delay and output slew
sensitivities for one of the cell instances in the previously mentioned
design, considering its loading net obtained from extraction. Using the
methodology proposed in Section IV we generated the sensitivities
of delay and output slew to all 12 parameters. Next, varying the
parameter values, a similar set of sensitivities was also computed
with SPECTRE, using accurate Spice-level models for the cell. The
delay and output slew sensitivity values obtained using the proposed
method were then assessed by computing its relative error versus the
SPECTRE-generated data. These relative errors are shown in Figure 4
(left plot). As can be observed, the errors are in general small, usually
in the low percentage range. The only exception to this rule is the
pathological case of the slew sensitivity to parameter #2, whose
absolute value is small, the smallest of all the sensitivities and near
machine precision. In order to investigate this behavior, we introduced
a variation in the input slew depending on parameter #2, so that
the delay and output slew sensitivity values to this parameter would
become larger. As a result we observed that when this happened the
relative error dropped to the normal range, as shown in Figure 4
(right plot). Considering that the size of the dotlib-style lookup table
used was only 7x7 (typical value), providing a rough approximation
of the behavior of the cell, and that the parasitic network was also
approximated by a single lumped capacitance, we believe that the
accuracy of the computed values is fairly good. Better accuracy
should be obtained by using larger lookup tables, or by extending the
proposed model for handling tables depending on other parameters.

VI. CONCLUSIONS

In this paper we have developed an analytic delay calculation
methodology suitable for use in a statistical static timing methodol-
ogy. Our approach, based on a specific type of perturbation analysis,
allows for the analytical computation of the quantities needed for sta-
tistical delay propagation. We also showed how perturbation analysis
can be performed when only the standard delay table lookup models
are available for the standard cells. The techniques proposed are
robust and show good correlation with transistor level calculations.
Future work will show how to develop models that include nonlinear
contributions from the process parameters.
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