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Abstract— With roots dating back many years and ap-

plications in a wide variety of areas, model order reduction

has emerged in the last few decades as a crucial step in the

simulation, control, and optimization of complex physical

processes. Reducing the order or dimension of models of

such systems, is paramount to enabling their simulation

and verification. While much progress has been achieved

in the last few years regarding the robustness, efficiency

and applicability of these techniques, certain problems of

relevance still pose difficulties or renewed challenges that

are not satisfactorily solved with the existing approaches.

Furthermore, new applications for which dimension reduc-

tion is crucial, are becoming increasingly important, rais-

ing new issues in our quest for increased performance. This

talk is aimed at presenting an overview of some of those

issues and at sparking renewed discussion about how to

tackle them.
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I. Basics of MOR

Model reduction algorithms are now standard tech-
niques in many areas, including the integrated circuits
community. Such techniques are commonly used for ap-
proximation and analysis of models arising from intercon-
nect and electromagnetic structure analysis. The need for
higher accuracy while accounting for all relevant physical
effects, implies that the mathematical formulations used
to describe and model such systems often result in very
large scale systems. Reducing the order or dimension of
such models is paramount to enabling the simulation and
verification of these systems. In recent years the need for
reduction techniques for large-scale systems has triggered
a revival of research activities in model order reduction.
Initial interest in model reduction techniques stemmed
from efforts to accelerate analysis of circuit interconnect.
More recently, however, model reduction has come to be
viewed as a method for generating compact models from
all sorts of physical system modeling tools. Such tech-
niques are now routinely used to generate lumped-circuit
approximations of distributed electronic circuit elements,
such as the interconnect or package of VLSI chips, or in
simulations of microelectromechanical systems (MEMS),
which have both electrical and mechanical components.
While enormous progress has been achieved both from
a theoretical as well as practical standpoint, still greater

challenges lie ahead as new and exciting applications are
being researched for which order reduction is again a cru-
cial step.

Model order reductions seeks to replace a large-scale
models of a physical system by a system of lower di-
mension which exhibits similar behavior, typically mea-
sured in terms of its frequency or time response char-
acteristics. Existing methods for model reduction can
be broadly characterized into two types: those that are
based on projection methods, and those based on balanc-
ing techniques. Among the first, Krylov subspace projec-
tion methods such as PVL [1] and PRIMA [2] have been
the most widely studied over the past decade. They are
very appealing due mostly to their simplicity and their
strong performance in terms of efficiency and accuracy.
However, Krylov projection methods are known to have
a few drawbacks in practical application. First, there is
no general agreement on how to control error in these
methods. Error estimators do exist for some methods
but they are seldom used in practice as they require ad-
ditional computations, which can be expensive and awk-
ward to implement. Second, moment based methods such
as PRIMA, are known in some cases to produce mod-
els that are “too high” in order with the obvious con-
sequences in terms of analysis or simulation cost [3], [4].
Third, any guarantees on retaining relevant properties of
the underlying system, such as passivity of the models, are
dependent on the structure of the system representation,
a non-issue for RLC-type models, but a troublesome prob-
lem for other types of models. An alternate class of model
reduction schemes are the truncated balanced realization
(TBR) family [5]. These are purported to produce “nearly
optimal” models and have easy to compute a-posteriori
error bounds. However, they are expensive to apply, as
they require the computation of the system Gramians by
solving a large Lyapunov or Sylvester-type equation. This
is an expensive procedure, which limits their applicability
to small to medium sized systems. Balanced realization-
based techniques are also awkward to implement correctly
and Both types of methods have carved their niche in spe-
cific segments or applications. Furthermore hybrid tech-
niques that combine some of the features of each type of
method have also been presented. Examples of these in-
clude the solution of the large Lyapunov equations via a
Krylov subspace method [6], [7]. Other approaches include
a two-step method where an initial reduced model is first
obtained via projection and then further compressed us-
ing a TBR method [3]. Recently a new technique has been
proposed that attempts to establish a connection between
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the two techniques. The Poor Man’s TBR [8] explores a
connection between multipoint projection and a different
interpretation of the system Gramians. It leads to a pro-
jection scheme where the projection matrix approximately
spans the dominant eigenspace of the Gramian matrix and
provides an interesting platform for bridging between the
two types of techniques. Still the technique is not with-
out drawbacks, as it relies on proper choice of sampling
points, a non-trivial task in general.

II. Issues with MOR

In spite of the issues previously mentioned, both
projection-based and balanced-realization type methods
are in widespread use nowadays. Clearly such issues, ir-
respective of their seriousness, have not affected the pop-
ularity of those methods. Still, there are situations where
neither method presents itself as a satisfactory solution.
Additionally, new challenges are being posed that required
further research into these methods.

As an example of the first type of problems consider the
problem of reducing systems with a large number of in-
put/output ports, also known as “massively coupled” sys-
tems. Such systems typically occur in substrate and pack-
age parasitic networks. Algorithms such as PRIMA [2]
and PVL [1] are considered impractical for such net-
works. They rely on block iterations, where the size of the
block equals the number of input/output ports. There-
fore each block iteration considerably increases the size of
the model. For example, if a moment-matching (Krylov-
subspace) algorithm is used to reduce a network with 1000
ports, and if only two (block) moments are to be matched
at each port, the resulting model will have 2000 states,
and the reduced system matrices will be dense. This
makes simulation in the presence of nonlinear elements
impractical. TBR is intrinsically somewhat less sensitive
to the number of inputs ports. Unfortunately such sys-
tems are typically very large which makes reduction based
on balancing techniques impractical. Hybrid methods are
also not helpful as the initial projection-based reduction
is ineffective, making the TBR-based 2nd step too expen-
sive. In the PMTBR framework, however, it is possible
to exploit circuit functional information that results in
correlations between the waveforms incident on the par-
asitic network ports. By exploiting this information, an
input-correlated variant of the PMTBR procedure can be
derived that enables significant further model order reduc-
tion. Unfortunately such reduction is highly dependent
upon knowledge of the input time behavior and does not
generalize well. Clearly further research in needed into
this problem.

As an example of new challenges that arise for model or-
der reduction techniques is the problem of order reduction
of parameterized systems. Parameter-based descriptions
are now starting to be used for variability-aware design
and verification. Operating conditions, such as tempera-
ture, as well as relevant process and geometric features,
will parameterize such models. Parameter description
may also reflect geometric concerns, free parameters to
be optimized by design optimization procedures, layout

issues as well as coupling-related information. For high
frequency, at nanoscale feature sizes, process variability
effects as well as dependence on operating conditions be-
comes extremely relevant and should be accounted for in
the models. Existing techniques for handling such systems
are straightforward extensions to the basic order reduction
algorithms [9], [10]. Projection-based techniques match
Taylor-series coefficients, which in parameter-based de-
scriptions are multidimensional moments. Unfortunately
this technique has exponential cost increase with the num-
ber of parameters and is thus expensive except for small
size and small number of parameters. Building a projec-
tion space assuming small perturbations around the nom-
inal operating point is also problematic: it is hard to do
anything beyond first-order and thus it is not clear how
to dial in accuracy. Sampling the parameter space also
presents a challenge, as it is not clear where to place sam-
ple point in such a multidimensional space. Still if some
information regarding the statistical distribution of the
parameter values is available, this can be used to guide
the sampling and to build the model accordingly.

In this talk, these and other issues will be discussed in
order to stimulate discussion leading to further advances
in this field.
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