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ABSTRACT
Power grid analysis has recently risen to prominence due to the
widespread use of lower supply voltages by power-conscious de-
signs. Low supply voltages imply smaller noise margins and make
the voltage drop across the power grid very critical since it can lead
to overall slower circuits, signal integrity issues and ultimately to
circuit malfunction. Verifying proper behavior of a power grid is a
difficult task due to the sheer size of such networks. Unfortunately
reduced-order modeling techniques do not fare well with such net-
works given the massive number of network ports, which limits the
amount of compression achievable. Recently, new algorithms have
been proposed for solving this problem. In this paper we discuss
the main issues related to model reduction of power grid networks
and compare several methods for such reduction, providing some
insight into the problem and how it can be tackled.

1. INTRODUCTION
Power dissipation is widely recognized as the greatest challenge

to the continuing trend for higher performance fueled by technol-
ogy scaling, increased functionality, and competitive designs. In-
creased chip functionality results in the need for huge power distri-
bution networks, also referred to as power grids. A common tech-
nique to lower power consumption in such designs is to scale down
the supply voltages, since chip power is roughly proportional to
the square of the supply voltage. However, lower supply voltages
imply smaller noise margins and make the voltage drop across the
power grids very critical since it can lead to reduced noise margins
and overall slower circuits. Once voltage drops exceed designer-
specified thresholds, signal integrity violation occurs and circuit
functionality is compromised with obvious yield consequences. Re-
duced noise margins may induce false switching and higher logic
gate delays. This may directly cause chip failures or simply slow
down the circuit enough so that timing requirements cannot be met.

Verifying proper behavior under realistic operating conditions
requires accurate power grid analysis. However, analyzing power
grids is a monumental task due to their sheer size which all but pre-
cludes direct usage in standard simulation environments. A possi-
ble solution to this problem is to compress the model using a model
reduction technique. Model order reduction (MOR) algorithms are
the backbone of contemporary parasitic and interconnect modeling
technologies. These algorithms take as input a linear interconnect
model, and produce as output a smaller model that is suitable for
simulation in conjunction with nonlinear circuit elements. The ef-
fectiveness of the model reduction algorithm is judged by the de-
crease in final circuit simulation time, compared to simulation with
the full model, assuming acceptable error is incurred in the mod-
eling process. MOR algorithms rely on the fact that on a variety
of contexts, only an accurate approximation to the input-output be-
havior of a dynamic linear system is necessary [1, 2, 3]. This is
true for instance for delay analysis since only the waveforms at

the gate inputs and outputs matter. Therefore even if one has to
account for interconnect effects, the precise time-variation at any
interconnection point is not relevant unless such point is a gate in-
put or output. It is quite typical for MOR techniques to be able to
reduce large RC(L) interconnect networks with just a few ports to
models with very few states and still produce very accurate approx-
imations of frequency- and time-domain behavior. In other words,
even if the number of internal states, n, is very high, the description
of the multi-port network is an q× p matrix valued transfer func-
tion where p,q � n and typically only a few states are necessary
for the required accuracy. The compression ratio is therefore quite
high. Of course, it is reasonable to expect that when the number
of ports increases, the the number of states to be retained must also
increase since, in a simplified sense, that means we now care for
an increasing number of internal points/states (i.e. p or q above
increase). Ultimately, however, as the number of ports increases,
the model must be able to accurately characterize the interaction
between all input and output ports. If the number of retained states
keeps increasing, this appears to leave little room for compression
as the size of the matrix transfer function that characterizes all port
interactions, O(q× p), also increases and may approach the com-
plexity of working with the original network equations. In Sec-
tion 4 we will verify this relation in a precise manner and discuss
its implications. Nevertheless, it is important to understand the rea-
sons behind this loss of efficiency since knowledge of the specific
scenarios where each method may produce better results is an im-
portant asset when determining how to perform the reduction.

Recently, the efficient reduction of systems with a large number
of ports has been addressed and several methods have been pro-
posed [4, 5, 6, 7]. In this paper we discuss the main issues related to
order reduction of power grid networks and compare several meth-
ods for solving this problem, providing some insight into the prob-
lem and how it can be tackled. In Section 2 we present the standard
model-order reduction methods that are now in widespread use in
many applications in several fields, including electronic design au-
tomation (EDA). In Section 3 we discuss the newly proposed meth-
ods for handling massively-coupled linear dynamic systems. Then
in Section 4 we present the problem of power grid reduction and
discuss some of its characteristics. We analyze the conditions in
which it can be successfully reduced and the impact of an increas-
ing number of ports. We also discuss scenarios in which the reduc-
tion might lead to better or worse compression ratios. In Section 5
we show results from applying the various methods, in a variety of
settings to the power grid problem. Finally conclusions are drawn
in Section 6.

2. BACKGROUND
Model reduction algorithms are the backbone of contemporary

parasitic and interconnect modeling technologies. Projection-based
Krylov subspace algorithms, in particular, provide a general-purpose,



rigorous framework for deriving interconnect modeling algorithms.
Another class of methods that is sometimes used for model reduc-
tion and which finds its roots in systems and control theory are re-
lated to balancing transformations of the system state description.
All of these algorithms take as input a linear interconnect model,
and produce as output a smaller model that is suitable for simula-
tion in conjunction with nonlinear circuit elements. The effective-
ness of the model reduction algorithm is judged by the decrease
in final circuit simulation time, compared to simulation with the
full model, assuming acceptable error is incurred in the modeling
process.

Considering an RC network, the nodal analysis formulation leads
to

Cv̇ +Gv = Mu
y = NT v (1)

where C,G ∈ R
n×n are the capacitance and conductance matrices,

respectively, M ∈ R
n×p is a matrix that relates the inputs, u ∈ R

p

to the states, v ∈ R
n, that describe the node voltages, N ∈ R

n×q its
counterpart with respect to the outputs, y ∈ R

q, n is the number of
states, p the number of inputs and q the number of outputs. The
matrix transfer function of the network is then given by

H(s) = NT (G+ sC)−1M (2)

The goal of model-order reduction is, generically, to determine a
new model,

Hk(s) = N̂T (Ĝ+ sĈ)−1M̂ (3)

that closely matches the input-output behavior of the original model,
and where the state description is given by z = VT v ∈ R

k,k � n.
However, even if k � n, the reduced-order model may fail to pro-
vide relevant compression. This may happen because, for large
networks, the matrices C,G are very sparse, having a number of
non-zeros entries of order O(n). If the number of non-zero entries
in the reduced-order model increases with the number of ports, the
benefits of reduction may vanish with increasingly large p and q.

In the following we review the standard model-order reduction
techniques in order to understand their basic modes of operation.

2.1 Projection-based framework
Projection-based algorithms such as PRIMA [3], or PVL [8],

have been shown to produce excellent compression in many sce-
narios involving on- and off-chip interconnect and packaging struc-
tures. The PRIMA algorithm [3] reduces a state-space model in the
form of (1) by use of a projection matrix V, through the operations

Ĝ = VT GV M̂ = VT M Ĉ = VT CV N̂ = VT N (4)

to obtain a reduced model in the form of (3). In the standard ap-
proach, the V matrix is chosen as an orthogonal basis of a block
Krylov subspace, Km(A,p) = span{p,Ap, · · · ,Am−1p}. A typical
choice is A = G−1C,p = G−1M. The construction of the projec-
tion matrix V is done in an iterative block fashion, with each block
i being the result of back-orthogonalizing Ai−1p with respect to all
previously computed blocks. When the projection matrix is con-
structed in this way, the moments of the reduced model match the
moments of the original model at least to order k (in PVL, 2k + 1
moments are matched). The difficulty with these algorithms is that
the model size is proportional to the number of moments matched
multiplied by the number of ports. For example, consider the ap-
plication of such an algorithm to a network with a large set of input
ports. If only two (block) moments are to be matched at each port,
and the network has 1000 ports, the resulting model will have 2000
states, and the reduced system matrices will be dense. Therefore
such methods are almost impractical for networks with large num-
bers of input/output ports, that is, for networks with many columns
in the matrices defining the inputs. This is often the case for such

“massively coupled” parasitics networks as occur in substrate and
package modeling, as well as power grids.

2.2 Multi-point Rational Approximation
An evolution of Krylov-subspace schemes are methods that con-

struct the projection matrix V from a rational, or multi-point, Krylov
subspace [9, 10, 11]. Compared to the single-point Krylov-subspace
projectors, for a given model order, the multi-point approximants
tend to be more accurate, but are usually more expensive to con-
struct. Given N complex frequency points, si, a projection matrix
may be constructed whose i-th column is

zi = (G+ siC)−1M (5)

This leads to multi-point rational approximation. Multi-point pro-
jection is known to be an efficient reduction algorithm in that the
number of columns, which determines the final model size, is usu-
ally small for a given allowable approximation error, at least com-
pared to pure moment matching approaches. Of course there are
many practical questions to ponder in an actual implementation,
namely how many points si should be used, and how should the si
be chosen. Lack of an automatic procedure to solve these problems
has limited the applicability of the methods.

2.3 Truncated Balanced Realizations (TBR)
An alternative class of reduction algorithms are based on Trun-

cated Balanced Realizations (TBR). The TBR algorithm first com-
putes the observability and controllability Gramians, X,Y, from the
Lyapunov equations

GXCT +CXGT = MMT , (6)
GT YC+CT YG = NT N (7)

and then reduces the model by projection onto the space associated
with the dominant eigenvalues of the product XY [12]. Model size
selection and error control in TBR is based on the eigenvalues of
XY, also known as the the Hankel singular values, σk. In the proper
case, there is a theoretical bound on the frequency-domain error in
the order k TBR model, given by [13]

‖H−Hk‖ ≤ 2
n

∑
i=k+1

σi (8)

The existence of such an error bound is an important advantage of
the TBR-like class of algorithms. Unfortunately there is no coun-
terpart in the projection-based class of algorithms. Note that the
model selection criteria does not depend directly on the number of
inputs. However, as we shall see, there is an indirect dependence
in most problems. In principle, it is possible to have a 1000-port
starting model, and obtain a good reduced model of only, say, 10
states, if the G,C,M,N matrices are such that all but the the first
few (10) Hankel singular values are small. In practice, solution of
the Lyapunov equations is too computationally intensive for large
systems as encountered in interconnect analysis. Therefore, a vari-
ety of approximate methods [11, 14, 15] have been proposed.

3. MASSIVELY-COUPLED PROBLEMS
In the previous section we briefly summarized the main tech-

niques for model order reduction of linear interconnect networks
currently in use. As discussed, the projection-based techniques,
like PVL or PRIMA present two problems when dealing with net-
works with a large number of ports. First, the cost associated with
model computation is directly proportional to the number of inputs,
p, i.e. to the number of columns in the matrices defining the inputs.
This is easy to see by noting that the number of columns in the
projection matrix V in (4) is directly proportional to p (a direct re-
sult of the block construction procedure). This implies that model



construction for systems with large number of ports is costly. Fur-
thermore, the size of the reduced model is also proportional to p,
as was discussed earlier and can directly be seen from (4). While
the cost of model construction can perhaps be amortized in later
simulations, the large size of the model is more problematic since
it implies a direct penalty for such simulations.

This is often the case for such “massively coupled” parasitic net-
works as occur in substrate, package, power grids or clock distribu-
tion networks. Massively-coupled problem are problems for which
the system description contains a very large number of ports. In
this section, we summarize two recent methods aimed at solving
some of the issues related to reduction of such systems.

3.1 SVDMOR (Singular Value Decomposition
MOR)

The SVDMOR [4] algorithm was developed to address the re-
duction of systems with a large number of ports, like power-grids .
While the size of a reduced model produced via PRIMA is directly
proportional to the number of ports in the circuit, SVDMOR theo-
retically overcomes this problem using singular value decomposi-
tion (SVD) analysis in order to truncate the system to any desired
order.

The main idea behind SVDMOR is to assume that there is a
large degree of correlation between the various inputs and outputs.
SVDMOR further assumes that such input-output correlation can
be captured quite easily from observation of some system prop-
erty, involving matrices M and N. The method can, for instance,
use an input-output correlation matrix, like the one given by the
zero-th order moment matrix SDC = NT G−1M, which contains
only DC information. Alternatively more complicated response
correlations can be used such as a zero-th order, s j-shifted mo-

ment, S(s j)
DC = NT (G + s jC)−1M, a more generic k-order moment,

Sk = NT (G−1C)kG−1M, or even combinations of these. If we let
B be the appropriate correlation matrix, and if the basic correlation
hypothesis holds true, then B can be approximated by a low-rank
matrix. This low rank property can be revealed by computing the
SVD of B,

B = UΣWT (9)

where U,W are orthogonal matrices and Σ is the diagonal matrix
containing the ordered singular values. Assuming correlation, there
will be only a small number, r � m = p + q, of dominant singular
values. Therefore

B ≈ UrΣrVT
r (10)

where truncation is performed leaving the r most significant singu-
lar values. The method then approximates:

M ≈ bmVT
r = MVr(VT

r Vr)
−1VT

r
N ≈ bnUT

r = NUr(UT
r Ur)

−1UT
r

(11)

where bm and bn are obtained using the Moore-Penrose pseudo-
inverse, resulting in:

H(s) ≈ Ur bT
n (G+ sC)−1bm

︸ ︷︷ ︸

Hr(s)

VT
r (12)

Standard MOR methods, like SyMPVL [16] or PRIMA, can now
be applied to Hr(s), resulting in the final reduced model:

H(s) ≈ Hk(s) = UrH̃r(s)VT
r (13)

In our implementation we used PRIMA to obtain Hr(s). The final
reduced system is p×q with a number of nonzero elements of order
O(r2).

3.2 PMTBR (Poor Man’s TBR)
The PMTBR algorithm [7, 6] was motivated by a connection

between frequency-domain projection methods and approximation
to truncated balanced realizations. The method is less expensive
in terms of computation, but tends to TBR when the order of the
approximation increases.

The actual mechanics of the algorithm are akin to multi-point
projection, summarized in Section 2.2. In a multi-point rational ap-
proximation, the projection matrix columns are computed by sam-
pling in several frequency points along a desired frequency interval

zi = (G+ siC)−1M (14)

where si, i = 1,2, . . . ,N, are N frequency sample points. The frequency-
sampled matrix thus obtained can then be used to project the origi-
nal system in order to obtain a reduced model.

In the PMTBR algorithm, a similar procedure is used. The con-
nection to TBR methods is made by noting that and approximation
approximation X̂ to the Gramian X can be can be computed as

X̂ = ∑
i

wizizH
i (15)

where si = jωi and the ωi and wi can be interpreted as nodes and
weights of a quadrature scheme applied to a frequency-domain in-
terpretation of the Gramian matrix (see [7] for details). If we let Z
be a matrix whose columns are the zi, and W is now the diagonal
matrix of the square root of the weights, Eqn. (15) can be written
more compactly as

X̂ = ZW2ZH (16)

If the quadrature rule applied is accurate, X̂ will converge to X,
which implies the dominant eigenspace of X̂ converges to the dom-
inant eigenspace of X . If we compute the singular value decompo-
sition of ZW.

ZW = VZSZUZ (17)

with SZ real diagonal, VZ and UZ unitary matrices, it is easy to see
that VZ converges to the eigenspaces of X, and the Hankel singular
values are obtained directly from the entries of SZ . VZ can then be
used as the projection matrix in a model order reduction scheme.
The method was shown to perform quite well in a wide variety of
settings [15].

An interesting additional interpretation, and quite relevant for
our purposes, was recently presented [6]. It has been shown that if
further information revealing time-domain correlation between the
ports is available, a variant of PMTBR can be used that can lead
to significant efficiency improvement. This idea is akin to the ba-
sic assumptions in SVDMOR and relate to exploiting correlation
between the inputs. Unlike SVDMOR, however, it is assumed that
the correlation information is not contained in the circuit informa-
tion directly, but rather in its inputs. In this variant of PMTBR,
a correlation matrix K is formed by columns which are samples
of port values along the time-steps of some interval. Those sam-
ples, should characterize as well as possible the values expected at
the inputs of the system, i.e. K should be a suitably representative
model of the possible inputs. An SVD is then performed over K
in order to retain only the most significant components of the input
correlation information:

K ≈ UKΣKVT
K (18)

With this additional correlation information, the samples relative to
multi-point approximation become:

zi = (G+ siC)−1MUKΣK (19)

Using the zi above as columns of the Z matrix in (16) leads to the
input-correlated TBR algorithm (ICTBR). See [15] for more details
an a more thorough description of the probabilistic interpretation of
both PMTBR as well as ICTBR.
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Figure 1: TBR error bounds for a 20×20 RC grid as a function
of the number of inputs, q.

4. POWER-GRID REDUCTION
Both the standard model order reduction as well as the meth-

ods described in the previous section can be applied to massively
coupled systems. Methods like SVDMOR are reported to provide
significant advantages over the standard algorithms if certain con-
ditions are met, namely that significant port correlation exists and
can be ascertained in a practical way. PMTBR is a more general
algorithm for model reduction, which can nonetheless be applied
to large systems, given its reduced computational complexity.

As stated previously, the difficulty with standard projection al-
gorithms like PRIMA or multi-point projection schemes, is that the
models produced have size proportional to the number of ports.
This limits their applicability to problems such as power grids,
where the number of network ports is likely to be very large.

An interesting question that might be raised is whether this re-
striction is inherent to the system, given the number of ports, or
an artifact of the computation scheme chosen. In order words, one
might ask whether accurate modeling and analysis of a power grid,
modeled as a large RC grid, does indeed require so much dynamic
information. This questions is all the more relevant as there is a
common popular belief that only a few poles are required to accu-
rately model an RC circuit. The roots of this problem are ancient
and can be traced back to other domains like timing simulation.
Here one asked the question of whether localized approximations
of a node’s behavior could be used for speeding up circuit simula-
tion. It is now widely accepted that in certain settings that is indeed
the case, but this conclusion is not general (see [17] for a discussion
regarding simple RC models). Here a similar question is asked but
now with respect to the number of ports.

To get some insight into the problem, it is interesting to consider
a simplified scenario of a power grid and examine its behavior as
the number of ports increases. Consider then a 20× 20 elements
RC grid, representing a power network, and consider that the grid’s
inputs are positioned along the left side of the grid. Furthermore
consider increasing the number of inputs by attaching more sources
the the various grid nodes (i.e. adding more columns to M), again
all located at the left and assume that the same nodes are observed
(i.e. NT = M). As a proxy for system complexity, Figure 1 shows
the TBR error bound from (8) obtained from the Hankel singular
values as a function of the number of inputs. From the figure, we
can see that indeed the order of the model required for acceptable
accuracy grows with the number of inputs. Even in this simple
setup, for the 64-input case, low-accuracy (say 20%) still requires
at least a model with 120 states. A similar conclusion had been
reached in [15] for the simpler case of an RC line. This result,
seems to put into doubt the possibility of being able to perform
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Figure 2: TBR error bounds for a 10×5 and a 10×50 RC grid
with separated inputs and output.

model compression in such networks. Indeed, if 120 states (out of
a possible 400) are required for accuracy, then the chances of being
able to perform significant reduction are small.

Consider now Figure 2 where the TBR error bound is again plot-
ted, but now for two cases corresponding to a “thin” 10× 5 and a
“fat” 10× 50 RC grids where a fixed number of inputs was used.
Obviously neither grid is realistic in any way, but they serve the
purpose of illustrating an important issue. Clearly the “fatter” grid,
where the inputs are further away from the outputs, is much more
compressible than the “thinner” grid. Indeed, for the “fatter” grid,
only a handful of states are required even for high accuracy. The
“thiner” grid shows the same behavior as before and seems fairly
incompressible.

Figure 2 indicates that there is indeed hope for some reasonable
reduction to be achieved. It also indicates that whenever inputs and
outputs are widely separated, significant compression is possible.
This is akin to the ideas of the multi-pole algorithm developed for
electromagnetic modeling and used for instance in capacitance and
inductance extraction. The effect on any point of a cluster of far-
away input sources is individually indistinguishable. The system is
therefore functionally similar to another one with just a few inputs.
Therefore, only a few states are necessary to capture the various
dynamics and the compression achievable is much greater.

Unfortunately that situation is too restrictive for power grids in
general, where ports are usually located all over the grid. Further-
more, the more likely scenario is that one will at least want to ob-
serve the potential at all grid nodes where inputs are connected (and
thus where current spikes may appear). In this case, it is expected
that the compression ratio will be small.

5. RESULTS
In this section we present results for reduction of power grids.

Two types of topologies were tested: a mesh with voltage inputs on
the left side and current outputs on the right one, which we term
grid A, and a mesh with voltage ports along the left side and cur-
rent ports randomly distributed over the remaining nodes, such as
shown in Figure 3. We call this second setup grid B. Relating back
to the discussion in Section 4, in grid A the separation between in-
puts and outputs is maximal, while in grid B not only every port
is both input and output, but also the geometric proximity between
ports is reduced. We thus expect grid A to be fairly compressible
but smaller reductions to be seen for grid B. The electric model of
all grids is the following: every connection between nodes is purely
resistive and in every node there is a capacitance to ground. Resis-
tance and capacitance values were scaled for simplicity and can
either be set to fixed values (e.g. 1) of randomly generated (e.g. in



Figure 3: Setup for grid B.
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Figure 4: Bode plot of arbitrarily selected entry of 20 × 20
transfer function matrix corresponding to grid A.

the interval (0.9,1.1)) with no major difference observed.
In the following set of experiments, the SVDMOR correlation

matrix used, Ms, was the zero-th order shifted moment, using a
shift of s = 0.1rad/s in normalized frequency.

5.1 Grid A
Grid A was originally used in [4] to illustrate the SVDMOR al-

gorithm. We applied all previously discussed methods to reduce
this grid. The Bode plot of an arbitrarily selected transfer func-
tion is presented in Figure 4. The number of retained states was
forced at k = 40. In the case of SVDMOR, 4 singular values were
kept and 10 PRIMA iterations were run, yielding a final model
of 4× 10 = 40 states. We can observe that SVDMOR and TBR
show good results, better than PMTBR, while PRIMA alone shows
a large error (using larger orders it is possible to produce an ac-
curate approximation). In order to understand the reason for these
results the plot of the singular values of all relevant methods is pre-
sented in Figure 5. We see that the singular values (s.v.) of Ms,
used by SVDMOR to guide the reduction, decay quite fast. There-
fore keeping just the first 4 yields a good approximation. On the
other hand the TBR Hankel s.v. and the PMTBR s.v. decay very
slowly. Non-withstanding, all methods seem to produce reasonable
approximations with low order models, as was expected for this
grid.

5.2 Grid B
In grid B the objective was to emulate a more realistic situation

whereby potentially many devices, modeled as current sources, are
attached to the power grid and can draw or sink current from/to
it when switching. The number of current sources was chosen to
be around 10% of the number of nodes. This is a harder problem
to reduce, due to port proximity, and thus interaction, and the re-
sults show it. Again the Bode plot of an arbitrarily selected transfer
function is presented in Figure 6. The number of retained states
was now forced at k = 104 already showing smaller reduction than
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for grid A. In this case, the approximation produced by SVDMOR
is less accurate than that generated by the remaining methods. TBR
and PMTBR produce the most accurate models. This was expected
from inspection of Figure 7, where we see that the TBR Hankel s.v
and the PMTBR s.v decay very fast, while the s.v. of Ms, used by
SVDMOR for reduction, decay very slowly. Clearly, the assump-
tion of highly correlated ports is not valid here.

5.3 Time analysis: ICTBR
In this experiment, the ICTBR method, presented in Section 3.2,

was used to generate a reduced model. We assumed that the grid
inputs were correlated and had waveforms similar to those shown
in Figure 8, which emulate transistor current signatures. The am-
plitude of the waveforms was randomly varied by 10%, while the
phase shows a random 20% jitter.

Grid B was used for this experiment and the voltage resulting
from the time analysis of one of the 32 ports connected to current
sources is shown in Figure 9. The reduced models shown have
size k = 40 states (compare with size 104 used in Section 5.3).
From the plot it is clear that only the 40-states ICTBR model can
accurately mimic the voltage behavior of the port. This example
shows that significant reduction can be obtained by exploiting input
correlation.

6. CONCLUSIONS
In this paper we discuss several issues related to model order
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reduction of power grid networks and compare several standard
and other recently proposed methods for solving this problem. We
show that power grids present a strong challenge for model order
reduction techniques and discuss scenarios in which this reduction
might yield different compression ratios. We demonstrate through
simple examples that achieving relevant compression requires a
careful study of the grid characteristics and that no method pro-
duces the best solution in all scenarios. We also show that signif-
icant reductions can be achieved by exploiting known correlation
between the input ports.
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