
Efficient Representation and Analysis of Power Grids

João M. S. Silva
INESC ID - ECE Dept.

IST / TU Lisbon
Lisboa, Portugal

jmss@algos.inesc-id.pt

Joel R. Phillips
Cadence Berkeley Labs

Cadence Design Systems
Berkeley, California, U.S.A.

jrp@cadence.com

L. Miguel Silveira
Cadence Labs/INESC ID -

ECE Dept.
IST / TU Lisbon
Lisboa, Portugal

lms@inesc-id.pt

ABSTRACT
Modern deep sub-micron ULSI designs with hundreds of mil-
lions of devices require huge grids for power distribution.
Such grids, operating with increasingly low-power voltages,
are a design limiting factor and accurate analysis of their
behavior is of paramount importance as any voltage drops
can seriously impact performance or functionality. As power
grid models have millions of unknowns, highly optimized
special purpose simulation tools are required to handle the
time and memory complexity of solving for their dynamic
behavior. In this work, we propose a hierarchical matrix
representation of the power grid model that is both space
and time efficient. With this representation, reduced storage
matrix factors are efficiently computed and applied in the
analysis at every time-step of the simulation. Results show
an almost linear complexity growth, namely O(n loga(n)),
for some small constant a, in both space and time, when
using this matrix representation. Comparisons of our aca-
demic implementation with production-quality code proves
this method to be very efficient when dealing with the sim-
ulation of large power grid models

1. INTRODUCTION
In recent years, the relentless trend for high-performance

with low-power consumption has raised new challenges to
designers. Higher performance has meant increased func-
tionality fueled often by technology scaling. Achieving lower
power has been met by specialized design techniques to-
gether with supply voltage scaling. However, adding more
functionality implies that more devices must be powered,
and thus huge power distribution networks are now deployed
throughout the design. Moreover, lower supply voltage makes
potential voltage drops a more serious concern, as they may
seriously impact performance or functionality of the whole
design by reducing noise margins and slowing down devices [15].
Ultimately, this may lead to circuit failure due to excessive
delay or simply malfunctioning devices. Therefore, it has
become clear that in modern circuits, proper design and be-
havior of power grids is a performance limiting factor. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007 San Diego, California USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

efficient verification of such grids is thus seen as an essential
step in predicting and ensuring correct behavior and perfor-
mance.

The simulation of power distribution networks is a dif-
ficult task owing to the huge number of elements in such
circuits [17, 19]. Much research and development has been
devoted to this problem, both in the modeling and simula-
tion phases. In this paper we concentrate on the analysis
or simulation part of the problem. We will assume a typical
model of a power grid to consist of an extremely large RC
network, sometimes with millions of nodes, with a complex
set of excitation sources and drains. Inductance is some-
times also included in the model, typically to model wire
bonding, but by comparison it represents a very small subset
of the overall model. In this paper we will restrict ourselves
to the RC portion of the model as its analysis is always neces-
sary even if inductance is included. Block techniques can be
used to handle the coupling between the large RC block and
the inductance-modeled packaging/wiring sub-circuit. The
network excitations usually consist of the biasing sources,
generally modeled as constant voltage sources, and the con-
nection to the designed-in devices, which act as sources
or drains depending on their electrical state. A simplified
model for such sources is to consider them as time-varying
independent current sources, but more complex models that
take into account loading and feedback into the network are
sometimes used. This simplified modeling approach has the
important implication that the grid model becomes a lin-
ear system, thus much easier to simulate. Commercial large
scale power grid simulators in use nowadays typically assume
a model as described.

From a simulation standpoint, there are two families of
techniques for the time analysis of the linear description
of the power grid: iterative or direct methods. For DC-
type problems that require a single system solution, iterative
problems are preferred. However, robust verification tech-
niques require that dynamic analysis be performed, which
implies solving for the time-evolution of the system along
a given simulation interval. Taking advantage of the prob-
lem structure and inspired by knowledge gained in solving
similar problems resulting from discretized elliptic partial-
differential equations (PDE), efficient algorithms have been
proposed based on preconditioned conjugate gradient [5] or
Multigrid [16, 20]. These methods show good convergence
ratios, but require several iterations for recomputing the so-
lution of the system for each time-point (in essence the
dynamic problem is similar to solving systems with multiple
right-hand sides). Direct methods, on the other hand, find

an a-priori system matrix decomposition which can then be
used in accelerating the solution at each time-step. Even
though the resulting matrix factors are very costly to store
and compute, most commercial power grid analysis tools
available nowadays use some form of highly optimized di-
rect solver technology.

In this paper, we explore an approach based on using di-
rect methods to solve the linear subset of equations which
results from the formulation of a power distribution network.
The novelty of the proposed technique is related to how we
address the issues of storage and computational cost. While
we still compute a factorization of the system matrix and
apply the resulting factors to obtain the solution at each
time-step, we propose to use a hierarchical matrix repre-
sentation of the underlying system based on an H-Matrix
representation [3]. With this representation, the increase in
matrix density that comes from the factorization is managed
to obtain a reduced storage data structure. Such a repre-
sentation is then efficiently applied to generate the system
solution at each time-step in the simulation window. H-
Matrices show almost linear complexity in both storage and
evaluation. The initial hierarchical factorization procedure,
while having a slightly higher complexity, is nevertheless also
almost linear. The efficient storage and evaluation proper-
ties of the proposed method, characterized by complexities
growing as O(n loga(n)) for some small constant a, imme-
diately pay-off in the fast evaluation that results from the
application of the matrix factors to repeatedly obtain the
solutions at every time-step in the analysis interval.

The remainder of this paper is organized in the follow-
ing manner: in Section 2 we present some background on
the power grid simulation problem and in Section 3 we in-
troduce H-Matrices theory to the extent required for this
paper. Existing codes that support H-Matrices representa-
tions [3] assume geometrical information is available which
may not always be the case. Therefore an algebraic ver-
sion of the H-Matrices formulation was developed and will
be described. In Section 4, we compare our academic im-
plementation against a highly optimized direct solver using
state-of-art storage and reordering algorithms on several 2D
and 3D, regular and irregular synthetic systems. Results in-
dicate this method to be very efficient when dealing with the
simulation of large power grid models. Finally, in Section 5
conclusions are drawn.

2. BACKGROUND
For this work we assumed a simplified three-dimensional

power grid model like the one depicted in Figure 1. An ar-
bitrary number of metal layers dedicated to power delivery
can be considered. This model also assumes that VDD and
GND strips, as well as vias, are modeled resistively (Rstrip

and Rvia, respectively). The coupling resulting from the
overlapping between metal strips in different levels is mod-
eled through Coverlap. Notwithstanding, other kinds of par-
asitic effects, such as coupling between strips in the same
level, etc can be included. While simplified, this type of
model is to some extent representative of what is used in
commercial tools.

Assuming the extracted netlist consists of n nodes, the
network equations can generally be written as:

C
dv(t)

dt
+ Gv(t) = i(t) (1)

where C, G ∈ Rn×n are the matrices modeling the dynamic
and static network components, respectively, v ∈ Rn is the

VDD

GND

C_overlap

C_overlapR_via

R_via

R_strip

VDD GND power distribution network

nonlinear circuitry. . .

Figure 1: Power grid model.

vector of voltages at the grid nodes, and i ∈ Rn the vector of
currents imposed at those same nodes. If time-varying inde-
pendent current sources are assumed at the sources/drains
of the network, then the formulation is akin to nodal analy-
sis (NA). In this case, G, which may reflect an unstructured
grid, is a sparse matrix very similar to those encountered
in (finite-difference) discretized 3D problems (no more than
7 elements per row). For power grids however, the third
dimension is shallow, compared to the other dimensions, as
chip height is much smaller and less dense than the die area.
On the other hand, and since in the assumed model we only
have capacitances between different planes in the z direc-
tion, C is a 3-diagonal sparse matrix. Both matrices are
therefore extremely sparse and fairly regular. Adding addi-
tional capacitance coupling increases the density in the C
matrix, but most of the properties are retained.

In order to analyze the grid in the time domain, we can
use, as an example, Backward Euler’s method and discretize
the time interval of interest in steps of constant size h, ob-
taining: „

C

h
+ G

«
| {z }

A

v(t) = i(t) +
C

h
v(t− h)| {z }

b

(2)

where b is the right hand side at each time-step. Analysis of
the power grid then entails solving the above system, Av = b
at every time step in the analysis interval.

The trivial solution to Eqn. (2) is v = A−1b. Unfortu-
nately, although A is sparse, A−1 is full and its inversion
is prohibitive. Iterative methods, such as Conjugate Gra-
dient (CG), preconditioned CG (e.g. ICCG – Incomplete
Cholesky preconditioned CG [5]) or Multigrid (MG) can be
used to solve (2). Multigrid type algorithms are interesting
in that they possess optimal theoretical complexity proper-
ties. However, in practice, the setup costs and the constant
terms associated with the complexity estimates do not seem
to provide much advantage, as discussed in [16]. For dy-
namic analysis of power grid systems, direct methods are
still the method of choice, as the cost of computing matrix
factors is amortized over all time-step solutions.

3. HIERARCHICAL MATRICES
Hierarchical Matrices, or H-Matrices [10, 12], enable ma-

trix operations in almost linear complexity, where “almost
linear” means linear up to logarithmic factors. H-Matrices
are the algebraic counterpart of panel clustering techniques [13]
for integral operators. Due to the existence of Green’s func-
tion for elliptic problems, these techniques can be extended
to inverses [2] and factorizations [1, 4] of finite-element and
finite-difference type matrices. Given the already noted

structural similarity between the power grid formulation
and those resulting from elliptic PDEs [16], this implies
that efficient representations exist for the inverse and the
LU/Cholesky factors of the underlying matrix describing
the power grid model. Once that representation is formed,
efficient, almost linear computations are within grasp. The-
oretical and practical results indicate both storage and com-
putational complexity to grow as O(n × loga(n)), for some
small constant a. In this section we discuss how to generate
such a representation and how to operate with it.

3.1 H-Matrix FundamentalsH-Matrices are super-matrices (in the sense they may con-
tain either full, low-rank and other super-matrices) with an
inherent hierarchy of block splitting. Consider the splitting
of A from Eqn. (2) in 2× 2 blocks:

A =

»
A11 A12

A21 A22

–
(3)

If, for instance, A11 and A22 are fairly dense (large number of
nonzero entries), they should be represented by full matrices.
On the other hand, if A12 and A21 are fairly sparse they can
be represented in a factorized form:

As×t ≈ MNT (4)

where M ∈ R#s×k, N ∈ R#t×k and k is the rank of the
block up to some accuracy, eps. This representation will be
most efficient if k � #s, #t. Obviously, not all blocks will
allow such a representation. The goal of finding a H-Matrix
representation is akin to determining the right reordering
and blocking of nodes (rows/columns), that maximizes the
number of blocks that can be represented in factorized form.
Note that the low-rank block representation in (4) is approx-
imate. According to the pre-specified accuracy parameter
eps, we can automatically control the rank-k used to repre-
sent the low-rank blocks in factorized form. An error bound
for the low rank approximation of matrix blocks is given in
terms of the Frobenius norm as [3]:

‖A− Ã‖F ≤
3

2
n−13−k (5)

If a block is not represented in factorized form, it may be
further split and its sub-blocks recursively tested for such
a representation. So, H-Matrices are matrices which result
from the recursive multilevel splitting of matrix blocks, until
low-rank blocks are found and represented in the factorized
form, or no further sparsity is available and full matrices
must be used. Of course the optimum storage scheme for
a sparse stiffness matrix such as A in (2) is well known,
with only nonzero elements being stored in an efficient way.
The more interesting question is how to represent the corre-
sponding LU or Cholesky factors. While a matrix resulting
from an FD discretization in 1D yields no LU or Cholesky
fill-in, the same does not apply to 2D matrices and certainly
not to 3D matrices, whose factors tend to fill up quickly.

3.2 H-Matrix Splitting Approaches
In this work we use H-Matrix to represent the Cholesky

factorization of power grid models. This can be achieved in
two distinct approaches: geometrically and algebraically.

3.2.1 H-Matrix Geometric Splitting
In the geometric approach, the criteria to decide whether a

block allows a low-rank approximation is based on the geom-
etry of the underlying medium discretization. This criteria
is called admissibility, meaning whether the block admits to
be represented by a low-rank factorization or not. The ad-
missibility check procedure, and therefore the reordering and

clustering of nodes, must be such that blocks are obtained
that allow for a low-rank factorization in terms of the LU or Cholesky factors,
not on the original sparse matrix. Consider two sets of
nodes in the physical domain, which we term as clusters,
and assume that each cluster has a radius corresponding
to a bounding box that includes all nodes. If the physi-
cal distance between clusters is much larger than the clus-
ter radius, it is likely that the interaction between nodes in
separate clusters can be represented by a low-rank approx-
imation (this type of reasoning is akin to a multipole type
approximation). If the cluster size is too large to satisfy
the admissibility criteria, it is split and each resulting sub-
cluster is then checked. The splitting process is repeated
until a minimal block size is reached, (nmin), or the blocks
can be approximated in a low-rank sense. Large blocks are
inefficiently approximated by (4) and must be split whenever
possible in order to give origin to smaller low rank blocks.
This approach is the right one when handling regular struc-
tures where geometrical distance is a good criteria for esti-
mating (electrical) influence.

The current release of the HLib package [11] provides code
for dealing with matrices where the underlying geometri-
cal information pertaining to the discretizations is available.
Therefore the library is readily used for experiments in Sec-
tion 4.

3.2.2 H-Matrix Algebraic Splitting
An alternative approach is based on the algebraic infor-

mation of the matrix. This is the technique of choice for ir-
regular structures and likely the best one for common power
grids. Whenever two nodes in the matrix are “connected”
by an entry exhibiting a large magnitude, this means that
the nodes are indeed tightly connected and should be kept
together in the splitting process. This approach is akin to
the standard heavy edge matching algorithm [14]. In these
methods, used for instance in the publicly available graph
partitioning tool Metis [14], nodes connected by a large con-
ductance and/or capacitance are favored to be clustered to-
gether through the multilevel splitting process. The advan-
tage of this method over the previous one is that no ge-
ometric information on the problem is required, since the
structure of the H-Matrix relies solely on the matrix entries.
On the other hand, being able to follow geometric admissi-
bility conditions leads to a slightly better approximation of
the representation. The duality between geometric and al-
gebraic splitting is quite similar to that found when consid-
ering Multigrid methods and Algebraic Multigrid methods.

In order to work with matrices from which we have no
underlying physical information, we implemented on top
of HLib an algebraic approach based on [18]. In the al-
gebraic approach we use the information of the matrix it-
self and multilevel clustering methods, in this case Heavy
Edge Matching (HEM) [14], to obtain the corresponding H-
Matrix . In terms of efficiency, this approach is comparable
to the geometric approach based on Nested Dissection [4].

3.3 H-Matrix Representation
To build an H-matrix corresponding to a sparse matrix,

we first need to build a cluster tree over the matrix index
set. This cluster tree describes the hierarchical clustering of
the nodes of the matrix (from bottom to top) which yields
the hierarchical partitioning of the matrix. Note that the
clusters are composed of nodes which may not be adjacent,
which implies row-column reordering may be required.

The difference between the algebraic and the geometric

approaches for building the cluster tree is that in the geo-
metric approach we use geometric conditions (admissibility
conditions) to determine whether or not a block of the ma-
trix will be partitioned further. If a block is admissible,
then it can be approximated by a low-rank matrix. On the
other hand, in the algebraic approach, the construction of
the cluster tree is based on multilevel clustering methods
which are widely used in graph partitioning. The basic idea
of multilevel clustering is to start from the finest graph which
represents the matrix and build clusters over its nodes, then
build a coarse graph by merging the nodes in the same clus-
ter, and continue this coarsening process on the coarsened
graphs until the graph obtained is small enough. This pro-
cedure uses the edge weights from the coarse graphs to make
decisions on the merging of nodes. In essence, the cluster
tree, is a format to represent and store the matrix. The
H-Matrix representation has the same tree structure as the
cluster tree. The matrix entries are in fact the leaves of the
cluster tree.

3.4 H-Matrices Arithmetic and Complexity
As discussed, our goal is to efficiently compute a hierar-

chical LLT Cholesky factorization of the symmetric matrix
A in Eqn. (2) and then proceed with forward and backward
solves at each time-step (for non-symmetric formulations,
an LU factorization is generated in a similar fashion). In
this work, this Cholesky factorization is performed with the
proper arithmetic functionality provided by the H-Matrices
library, which is established in [9].

In terms of complexity, the storage of a rank-k factor-
ized n × n matrix requires 2 × k × n (instead of n2) ele-
ments. For the H-Matrix , the storage is O(n× log(n)× k),
in which k is the worst-case rank of the sub-matrices of
the H-Matrix [9]. The Cholesky decomposition in the H-
Matrix format requires O(n× log2(n)× k2) operations and
the evaluation of the LLT factors in each time-step requires
O(n × log(n) × k) operations, which is proportional to the
storage requirements of the H-Matrix representation of the
Cholesky factors.

In Section 4 we will see how well these H-Matrix based
methods compare with other well-known method for exam-
ple problems of increasing dimension.

4. RESULTS
In the following, we present the experimental setup used

in our work and the corresponding results. The following
methods were tested for solving the system resulting from
the nodal analysis formulation of power grid models: i) hier-
archical Cholesky based on geometric admissibility (gCh),
ii) hierarchical Cholesky based on algebraic admissibility
(aCh) and iii) sparse Cholesky (sCh). We have decided
to account for three measures of efficiency. The first is
the setup time, where the hierarchical methods compute
the super-matrix structures and the Cholesky decomposi-
tion, while sCh computes a matrix row/column permuta-
tion which tends to minimize Cholesky factors fill-in and
the decomposition itself. The second is the solve time, where
the Cholesky factors are used to obtain the solution to the
desired time-steps in a time analysis. We also measured
storage requirements for all methods. Finally, we discuss
how the accuracy parameter eps affects the approximation
error.

4.1 Experimental Setup

Since our work focuses on the efficiency of power grid sim-
ulation, and for the sake of complexity analysis, we decided
to work with artificially generated matrices. These repre-
sent the main characteristics of a system resulting from the
model extraction of a power grid structure. By choosing
artificial matrices, we can easily control their size and char-
acteristics in a meaningful way. In the following we will
show results for 2D and 3D problems, representing regular
and irregular grids, of increasing sizes. In the 3D grids, the
number of metal layers has been fixed at 8 (z direction). Ir-
regularity is emulated by generating random matrix entries
in the interval [0, 1[and discarding entries smaller than 0.5.

The algorithms tested were implemented in C upon the
libraries HLib [3] and Cholmod [6, 7, 8]. HLib provides some
code for 2D FEM problems, which has been modified to han-
dle our 2D FD problems. The code related to the algebraic
approach, aCh, was implemented on the HLib data struc-
tures and uses library functions for H-Matrix arithmetic.
We will use it for 3D problems. Cholmod, from the SuiteS-
parse package from the University of Florida (which also
provides UMFpack among other well known tools) was used
to implement the sCh method and was compiled with the
supernodal option for maximum performance. Both HLib
and Cholmod used the same versions of the widely known
Lapack and Blas libraries. All codes were integrated in a sin-
gle executable. The comparisons we establish are thus rea-
sonably fair even though HLib is not a commercial-quality
code and our implementation is only a prototype. sCh on
the other hand, has a slight edge since it is based in highly
optimized code.

Finally, experiments were run on a Dual AMD Opteron
operating at 2.4 GHz with 16 GB of memory for increasing
discretization sizes. In all experiments, the norm of the solu-
tion vector was computed in order to verify the correctness
of the solution. Time was measured with the function clock

from glibc).

4.2 Setup Time
The setup time corresponds to the time spent in creating

matrix and vector structures, and computing a-priori fac-
torizations. The results for the setup time are presented in
Table 1 respectively for 2D and 3D regular grids and for a
2D irregular grid. From the table, we observe that the hier-
archical approaches are more efficient than the sparse solver.
For 2D problems at about 1 million nodes, this becomes no-
ticeable. Even though it is difficult to see from the tables,
the setup time of the hierarchical methods is also growing
at a lower rate than the sparse approach. Theoretically this
should be O(n loga(n)) for small constant a. For the 3D
problem this behavior is not so clear since fewer points are
available. Interestingly enough, the irregularity of the grid
does not seem to affect the sparse solver as much as it af-
fects the geometric hierarchical solver. Still the same type
of behavior is noted in this example.

4.3 Solve Time
To compute the solve time, the Cholesky factors were used

to solve for a given right-hand-side. Results for solving a
single right-hand-side are presented in Table 2 respectively
for 2D and 3D regular grids and for a 2D irregular grid. In
terms of the solve time, we notice a similar pattern as in
the setup time. However, the efficiency of the sparse solver
slightly delays the advantage of the hierarchical methods
for larger problems. In the 2D cases, only for problems with

Table 1: Setup times (in sec.).

2D

number sparse hierarchical
of nodes (Cholmod) (geometric)
16384 0.11 0.68
65536 0.71 3.52
262144 6.27 16.70
1048576 124.27 72.61
4194304 1285.64 375.41
16777216 9921.41 4068.08

3D

number sparse hierarchical
of nodes (Cholmod) (algebraic)
131072 39.09 81.86
524288 467.99 415.58
2097152 5137.12 2230.62

2D irreg.

number sparse hierarchical
of nodes (Cholmod) (geometric)
16384 0.12 0.64
65536 0.70 3.27
262144 7.15 15.04
1048576 130.38 66.95
4194304 1307.74 555.93
16777216 9296.28 7425.37

around 4 million nodes, do we see a clear advantage. For
the 3D problem, the size of the grid is not sufficient for the
hierarchical approach to show an advantage. Extrapolating
the data in the table it is acceptable to assume this will
happen for larger size problems.

4.4 Storage Requirements
Finally we look at the storage requirements of the various

methods. Only matrix structures were taken into account
(since vectors do not add that much to the total memory)
and among these, only matrices used repeatedly in the time
analysis. We assume other matrix structures can be freed
after setup, and only evaluation matrices matter. The stor-
age requirement results are shown in Table 3 again for the
2D and 3D regular grids and for the 2D irregular grids. The
results in the tables are again similar to the other measures,
but here the sparse solver is more competitive. This is likely
a result of the sparse solver targeting lower fill-in in the ma-
trix factors, while the hierarchical approaches, even though
they also indirectly attempt to minimize fill-in, their main
target is to compress the representation itself.

4.5 Approximation Error
In Table 4 one can see how the parameter eps affects the

accuracy of the solution as well as the resource requirements.
We can observe that as we increase the accuracy of the ap-
proximation, the demand for resources grows minimally. Of
course, if the example grid was larger (with several millions
of nodes, for instance) the resource needs would increase
more strongly with the accuracy. Nevertheless, these exam-
ples show quite clearly that the time and space complexities
are rising much slower compared to the added precision in
the solution. It is also possible to infer that an eps = 10−3

seems to be a reasonable initial choice for most of the prob-
lems, as confirmed experimentally.

As a final conclusion, we believe that the hierarchical ap-
proaches are indeed quite promising when compared to a
state-of-the-art sparse direct solvers. We observe that gCh
can solve 16 million node grids with around 14 GB of RAM
at a rate of almost 1 million nodes per second.

Table 2: Solve times per time-step (in sec.).

2D

number sparse hierarchical
of nodes (Cholmod) (geometric)
16384 0.01 0.01
65536 0.05 0.05
262144 0.21 0.24
1048576 0.92 0.93
4194304 4.02 3.72
16777216 21.72 17.74

3D

number sparse hierarchical
of nodes (Cholmod) (algebraic)
131072 0.27 0.39
524288 1.43 1.80
2097152 7.26 8.58

2D irreg.

number sparse hierarchical
of nodes (Cholmod) (geometric)
16384 0.01 0.02
65536 0.05 0.05
262144 0.20 0.21
1048576 0.92 0.87
4194304 4.03 3.45
16777216 21.68 16.22

5. CONCLUSIONSH-Matrices are hierarchical matrix representation schemes
whereby blocks of the matrix are represented by low rank
factorizations in a compact form. This representation en-
ables computations and storage in almost linear time. In
this way, Cholesky factors can be efficiently computed and
represented, leading to fast system storage and solution. Ex-
perimental results show that using the hierarchical Cholesky
representation requires n loga(n), for some small constant
a, in both space and time, when using this matrix rep-
resentation, which proves this method to be very efficient
when dealing with the simulation of large power grid mod-
els. Comparisons against a state-of-the-art sparse Cholesky
code, using a very efficient reordering scheme, shows that
the hierarchical matrix representations is very competitive
and efficient. Very large problems can be solved with stor-
age proportional to the number of nodes at a rate of about
1 million nodes per second.

6. REFERENCES
[1] M. Bebendorf. Hierarchical LU decomposition-based

preconditioners for BEM. Computing, 2004.
[2] M. Bebendorf and W. Hackbusch. Existence of H-matrix

approximants to the inverse FE-matrix of elliptic operators
with L∞-coefficients. Numerische Mathematik, 2002.

[3] S. Börm, L. Grasedyck, and W. Hackbusch. Hierarchical
matrices. Max Planck Institute for Mathematics in the
Sciences, June 2006.

[4] S. L. Borne, L. Grasedyck, and R. Kriemann.
Domain-decomposition based H-LU preconditioners.
LNCSE, 2005.

[5] T.-H. Chen and C. C.-P. Chen. Efficient large-scale power
grid analysis based on preconditioned krylov-subspace
iterative methods. In Proceedings of the ACM/IEEE
Design Automation Conference (DAC), pages 559–562, Las
Vegas, Nevada, U.S.A., June 2001.

[6] T. A. Davis and W. W. Hager. Modifying a sparse cholesky
factorization. SIAM Journal on Matrix Analysis and
Applications, 1999.

[7] T. A. Davis and W. W. Hager. Multiple-rank modifications
of a sparse cholesky factorization. SIAM Journal on Matrix
Analysis and Applications, 2001.

Table 3: Storage requirements (in megabyte).

2D

number sparse hierarchical
of nodes (Cholmod) (geometric)
16384 8 11
65536 39 49
262144 175 210
1048576 772 873
4194304 3361 3555
16777216 14559 14351

3D

number sparse hierarchical
of nodes (Cholmod) (algebraic)
131072 286 339
524288 1528 1559
2097152 7818 7022

2D irreg.

number sparse hierarchical
of nodes (Cholmod) (geometric)
16384 8 10
65536 39 47
262144 175 199
1048576 772 821
4194304 3361 3258
16777216 14559 13191

Table 4: H-Matrix approximation error ‖(LLT)−1 ×
A− I‖2 and required resources vs. the accuracy pa-
rameter for a 1024× 1024 grid.

eps
setup solve space

error
time (s) time (s) (Mbyte)

10−2 45.50 0.54 491 9.282e-04
10−3 45.43 0.54 498 5.797e-04
10−4 45.47 0.55 501 1.984e-05
10−5 47.69 0.55 502 6.425e-07
10−6 48.93 0.55 502 6.404e-07

[8] T. A. Davis and W. W. Hager. Row modifications of a
sparse cholesky factorization. SIAM Journal on Matrix
Analysis and Applications, 2005.

[9] L. Grasedyck and W. Hackbusch. Construction and
arithmetics of H-matrices. Computing, 70(4):295–334, 2003.

[10] W. Hackbusch. A sparse matrix arithmetic based on
H-matrices. part I: Introduction to H-matrices. Computing,
1999.

[11] W. Hackbusch, S. Börm, and L. Grasedyck. Hlib package.
http://www.hlib.org/hlib.html/.

[12] W. Hackbusch and B. N. Khoromskij. A sparse H-matrix
arithmetic. part II: Application to multi-dimensional
problems. Computing, 2000.

[13] W. Hackbusch and Z. P. Nowak. On the fast matrix
multiplication in the boundary element method by panel
clustering. Numerische Mathematik, 1989.

[14] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar.
Multilevel hypergraph partitioning: Applications in VLSI
domain. IEEE Transactions on VLSI, 7(1):69–79, 1999.

[15] D. Kouroussis and F. N. Najm. A static
pattern-independent technique for power grid voltage
integrity verification. In Proceedings of the ACM/IEEE
Design Automation Conference (DAC), pages 99–104,
Anaheim, California, U.S.A., June 2003.

[16] J. N. Kozhaya, S. N. Nassif, and F. N. Najm. A
multigrid-like technique for power grid analysis. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits (TCAD), pages 1148–1160, October 2002.

[17] S. R. Nassif and J. N. Kozhaya. Fast power grid simulation.
In Proceedings of the ACM/IEEE Design Automation
Conference (DAC), pages 156–161, Las Vegas, Nevada,

U.S.A., June 2000.
[18] S. Oliveira and F. Yang. An algebraic approach for

H-matrix preconditioners. Technical report, University of
Iowa, 2006.

[19] S. Pant and E. Chiprout. Power grid physics and
implications for cad. In DAC ’06: Proceedings of the 43rd
annual conference on Design automation, pages 199–204,
New York, NY, USA, 2006. ACM Press.

[20] Z. Zhu, B. Yao, and C.-K. Cheng. Power network analysis
using an adaptive algebraic multigrid approach. In
Proceedings of the ACM/IEEE Design Automation
Conference (DAC), pages 105–108, Anaheim, California,
U.S.A., June 2003.

