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Abstract

The simulation of power distribution networks is a diffi-
cult task owing to the large number of elements and ports
in such circuits. In this work, we elaborate on the com-
pressibility of power grid models. For this purpose, two
main options are available, namely sparse or hierarchical
model representations of such systems and equivalent re-
duced order models. A proxy for comparison is the number
of nonzero entries in system representation. The problem
with model order reduction methods is the large number of
ports of these networks, since the number of nonzero en-
tries of the reduced model is, in general, proportional to the
square of the number of ports. In this paper, we propose for
the first time the utilization of a specific hierarchical model
representation, in which a Cholesky decomposition of the
system matrix can be efficiently computed and later used in
the simulation phase. Results show that for higher problem
sizes the hierarchical representation is more compact than
the sparse representation, while the reduced order models
are of no use.

1 Introduction

The simulation of power distribution networks is a diffi-
cult task owing to the large number of elements and ports of
such circuits. Power grid models are generally represented
in sparse matrices, where the number of nonzero entries is
O(n), being n the number of nodes in the circuit. In a real-
istic power grid with several layers of metal, the number of
nodes can ascend to several millions, as the power distribu-
tion network must cover the whole area of the circuit. As for
the ports, these are either C4 bumps (if, for instance, a flip-
chip technology is used) and connections to transistor drains
(VDD network) and sources (GND network). In this way,

the number of ports can also reach the order of millions.
The computational cost associated with the time simulation
of power grids is proportional to the number of nonzero en-
tries in the models, so this number is usually used as a proxy
for measuring the efficiency of the models.

A common way to deal with the dimension of the prob-
lem is to reduce the large models resulting from the dis-
cretization of the three-dimensional structures that represent
the physical description of these networks [8, 3, 4, 13, 10].
Unfortunately, these reduced models consist in dense matri-
ces whose size is lower-bounded by the number of ports of
the circuit. Moreover, the number of entries in such models
is, in general, proportional to the square of the number of
ports, thus compromising the usability of the reduced order
models.

Alternatively, we can pursue a hierarchical matrix repre-
sentation [2] which takes advantage of the sparsity structure
of the original matrices. With this representation, we can ef-
ficiently compute a Cholesky decomposition of the system
matrix which can be directly used in the simulation phase.
The increase in matrix density that results from the factor-
ization can be managed, according to the desired accuracy,
to obtain a reduced storage data structure. It is demonstrated
that this kind of representation is of almost linear complex-
ity. Results show that for higher problem sizes, which re-
flect the dimension of real power grid models, the hierarchi-
cal representation of the Cholesky factors is more compact
than using a sparse matrix representation or reduced order
models.

The remaining of this paper is organized in the follow-
ing manner: in Section 2 we present the methods used to
deal with the compression of power grid models. Then, in
Section 3, we present the comparison between compression
of the system resulting from the formulation of the problem
with model order reduction methods and the proposed hier-
archical representation. In Section 4 some conclusions are
drawn.
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2 Methods

In this section we briefly overview some of the most rel-
evant model order reduction (MOR) methods as well as the
technique for hierarchical matrix representation.

We will use the following power grid model formulation:

Cv̇ + Gv = Mu
y = NT v

(1)

where C,G ∈ Rn×n and M,N ∈ Rn×p, being n the num-
ber of nodes and p the number of ports. For the sake of
argument, we assume the number of ports in a power grid
to be O(n1/2).

We will be interested in a time simulation of the model,
so Backward Euler could be used, for instance. Applying
Backward Euler, we can write Equation (1) in the time do-
main like:(

C

h
+ G

)
︸ ︷︷ ︸

A

v(t) = Bu(t)− C

h
v(t− h) (2)

where h is the time step and A is a constant matrix.

2.1 Model Order Reduction Methods

2.1.1 PRIMA

Projection-based reduction methods such as PRIMA [9]
have been shown to produce excellent compression in many
scenarios involving on- and off-chip interconnect and pack-
aging structures.

PRIMA reduces a state-space model in the form of (1)
by use of a projection matrix V through the following oper-
ations:

C̃ = V T CV

G̃ = V T GV

M̃ = V T M

Ñ = V T N

(3)

to obtain a reduced model in the form of:

C̃ż + G̃z = M̃u

y = ÑT z
(4)

where z = V T v. The projection matrix V is chosen as an
orthogonal basis of a block Krylov subspace:

Kq(A, p) = span{p, Ap, . . . , Aq−1p} (5)

When the projection matrix is obtained in this way, the
moments of the reduced model match the moments of the
original model at least to order q. If, for accuracy reasons,
we need to match q moments, the size of the reduced model
is then q×p = q×n1/2. This model is however full, which

means that the number of nonzero elements to work with is
around q2n. Therefore, the cost of factoring this matrix is
around q3n3/2. As expected, this immediately raises some
concerns over using PRIMA at all. For this many ports,
O(n1/2), even a small size model will lead to a model with
more nonzeros than using the original model.

2.1.2 SVDMOR

The SVDMOR [3] algorithm was developed to address the
reduction of systems with a large number of ports, like
power grids. While the size of a reduced model produced
via PRIMA is directly proportional to the number of ports
in the circuit, SVDMOR theoretically overcomes this prob-
lem using singular value decomposition (SVD) analysis in
order to truncate the system to a smaller order.

The main idea behind SVDMOR is to assume that
there is a large degree of correlation between the circuit
ports. SVDMOR further assumes that such a correlation
can be captured quite easily from observation of some sys-
tem property, involving matrices M and N . This corre-
lation matrix can be, for instance, the DC moment matrix
NT G−1M , which contains only DC information, or more
complicated response correlations such as k-order moment
matrices

NT (G−1C)kG−1M

If we let B be the appropriate correlation matrix, and if the
basic correlation hypothesis holds true, then B can be ap-
proximated by a low rank matrix. This low rank property
can be revealed by computing the SVD of B:

B = UΣWT (6)

where U,W are orthogonal matrices and Σ is the diagonal
matrix containing the singular values ordered by magnitude.
Assuming correlation, there will be only a small number,
r � p, of dominant singular values. Therefore,

B ≈ UrΣrV
T
r (7)

where truncation is performed leaving the r most significant
singular values. The method then approximates:

M ≈ bmV T
r = MVr(V T

r Vr)−1V T
r

N ≈ bnUT
r = NUr(UT

r Ur)−1UT
r

(8)

where bm and bn are obtained using the Moore-Penrose
pseudo-inverse, resulting in:

H(s) ≈ Ur bT
n (G + sC)−1bm︸ ︷︷ ︸

Hr(s)

V T
r (9)

Standard MOR methods, like PRIMA, can now be applied
to Hr(s), resulting in the final reduced model:

H(s) ≈ Hk(s) = UrH̃r(s)V T
r (10)
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We observe that in most cases the assumption of highly cor-
related ports is not valid. In this case, r ≈ p, which leads to
the same problems faced by PRIMA.

2.1.3 RecMOR

In order to further improve the theoretical sparsifying ca-
pabilities of SVDMOR, RecMOR [4] was introduced. This
algorithm can recursively sparsify sub-blocks of the transfer
function. The idea is quite simple. Assuming an appropriate
partitioning of the network ports can be obtained, the ma-
trix transfer function can likewise be partitioned into sub-
blocks. To simplify the description assume that M = N
and that M is partitioned as M = [M1,M2]. Then the
matrix transfer function can be written as:

H(s) =
[

MT
1 (G + sC)−1M1 MT

1 (G + sC)−1M2

MT
2 (G + sC)−1M1 MT

2 (G + sC)−1M2

]
(11)

At this point one could perform a model order reduction
technique separately on the four components of the transfer
function to obtain a reduced system:

Hk(s) =[
M̃T

1 (G̃11 + sC̃11)−1M̃1 M̃T
1 (G̃12 + sC̃−1

12 M̃2

M̃T
2 (G̃21 + sC̃21)−1M̃1 M̃T

2 (G̃22 + sC̃22)−1M̃2

]
(12)

Since the reductions are all done separately, one can con-
struct a reduced state-space model for each of the compo-
nents and evaluation of the full model can be performed by
parallel evaluation of the component models. Furthermore,
if any of the sub-matrices is low-rank, then it can be sparsi-
fied, meaning represented by a smaller model. However, if
it is not low-rank, then one can recursively apply the same
technique in order to split it into sub-blocks, some of which
are likely to be low-rank. Obviously, the final model will
consist of a large set of separate state-space representations
for each of the individual sub-blocks, but hopefully enough
reduction is done on them that the overall model will be less
costly to manipulate.

Suppose that clusters of inputs can be found for each of
which reduction is performed. Assume there are d such
clusters, thus leading to d2 blocks in the system transfer
matrix. For each of these sub-blocks we can compute a re-
duced model. Let us assume that for the diagonal blocks
we generate a reduced model doing q PRIMA iterations.
Then we have, just for the diagonal blocks, d models of size
q p

d = q n1/2

d , each of which is full. Therefore, the number
of nonzeros of the total of such models is around q2 n

d .
Of course RecMOR advocates doing the reduction using

SVDMOR to take advantage of correlations and produce
sparsified models. For the method to provide real sparsifi-
cation, however, not only must q be small, but dependence
on n has to be dropped fairly quickly as there are indeed

O(d2) functions to approximate. In practice, it is not clear
under what conditions this will happen and, as we will see
in Section 3, this in general will not lead to useful reduc-
tions.

2.1.4 BSMOR

BSMOR [13] is a generalization of SPRIM [5] where a 2×2
partitioning of the state matrices was proposed. BSMOR
consists in partitioning the complete domain in d blocks,
and applies an accordingly partitioned PRIMA projection
matrix to reduce the system, preserving its block structure.
If the projection matrix from PRIMA is given by:

V =


V

(n1×p)
1

V
(n2×p)
2

...
V

(nd×p)
d

 (13)

then the matrix used in BSMOR obtained in the following
way:

Ṽ =


V

(n1×p)
1

V
(n2×p)
2

. . .
V

(nd×p)
d

 (14)

which is a Rn×dp matrix. While a q order PRIMA pro-
jection matches q moments, BSMOR matches q × d mo-
ments, although the model is also d times larger. While
BSMOR clearly needs a smaller order for the same accu-
racy as PRIMA, in terms of matrix entries it behaves much
like PRIMA, as we shall see in the results section.

2.1.5 PMTBR

The PMTBR algorithm [10, 12] was motivated by a con-
nection between frequency-domain projection methods and
approximation to truncated balanced realizations (TBR [7]).
The method is less expensive in terms of computation, but
tends to TBR when the order of the approximation in-
creases. The actual mechanics of the algorithm are akin to
multi-point projection. In a multi-point rational approxima-
tion, the projection matrix columns are computed by sam-
pling in several frequency points along a desired frequency
interval:

zi = (G + siC)−1M (15)

where si, with i = 1, 2, . . . , N , are N frequency sample
points. The frequency-sampled matrix thus obtained can
then be used to project the original system in order to obtain
a reduced model.

In the PMTBR algorithm, a similar procedure is used.
The connection to TBR methods is made by noting that an
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approximation X̂ to the Gramian X can be can be computed
as:

X̂ =
∑

i

wiziz
H
i (16)

where si = jωi and the ωi and wi can be interpreted
as nodes and weights of a quadrature scheme applied to
a frequency-domain interpretation of the Gramian matrix
(see [10] for details). If we let Z be a matrix whose columns
are the zi, and W is now the diagonal matrix of the square
root of the weights, Eqn. (16) can be written more com-
pactly as:

X̂ = ZW 2ZH (17)

If the quadrature rule applied is accurate, X̂ will con-
verge to X , which implies the dominant eigenspace of X̂
converges to the dominant eigenspace of X . If we compute
the singular value decomposition of ZW ,

ZW = VZSZUZ (18)

with SZ real diagonal, VZ and UZ unitary matrices, it is
easy to see that VZ converges to the eigenspaces of X , and
the Hankel singular values are obtained directly from the
entries of SZ . VZ can then be used as the projection matrix
in a model order reduction scheme. The method was shown
to perform quite well in a wide variety of settings [11].

An interesting additional interpretation, and quite rele-
vant for our purposes, was recently presented (ICTBR [12]).
It has been shown that if further information revealing time-
domain correlation between the ports is available, this vari-
ant of PMTBR can be used leading to significant efficiency
improvement. The idea is akin to the basic assumptions
in SVDMOR and related to exploiting correlation between
the inputs. Unlike SVDMOR, however, in ICTBR it is as-
sumed that the correlation information is not contained in
the circuit directly, but rather in its inputs. In this variant
of PMTBR, a correlation matrix K is formed by columns
which are samples of port values along the time-steps of
some interval. Those samples, should characterize as well
as possible the values expected at the inputs of the system,
i.e. K should be a suitably representative model of the pos-
sible inputs. An SVD is then performed over K in order
to retain only the most significant components of the input
correlation information:

K ≈ UKΣKV T
K (19)

With this additional correlation information, the samples
relative to multi-point approximation become:

zi = (G + siC)−1MUKΣK (20)

Using the zi above as columns of the Z matrix in Equa-
tion (17) leads to the input-correlation truncated balanced
realization algorithm, ICTBR. See [11] for details and a

more thorough description of the probabilistic interpreta-
tion of both PMTBR and ICTBR.

Notwithstanding, and as we shall see in Section 3, while
for the same accuracy PMTBR yields a smaller order q than
the other methods, the reductions thus obtained are still not
advantageous over the original model.

2.2 Direct Matrix Representations

2.2.1 Sparse Representation

Sparse representations are generally used in iterative meth-
ods, but they can also be used in a Cholesky decomposi-
tion A = LLT which requires only a backward substitution
for solving each time-step. The sparse model representa-
tion complexity is O(n) and the Cholesky factor L takes
O(n3/2) space.

2.2.2 Hierarchical Representation

Hierarchical matrix representation [2] was used in [6, 14]
and as an inspiration to RecMOR. In this approach, the aim
is not to reduce the model size, but to obtain an efficient
factorization of the system matrix which can be directly ap-
plied when solving the system. The size of the hierarchi-
cal representation of the model is the same and the num-
ber of nonzero entries increases, but this increase is un-
correlated to the number of ports of the circuit, contrarily
to what happened with MOR methods. Moreover, for the
larger sized models the number of nonzero entries in the hi-
erarchical Cholesky factors is smaller than the number of
nonzero entries in a sparse factorization. The space com-
plexity of the hierarchical representation of the Cholesky
factors is O(n× log(n)).

In the next section, we shall see the results of applying
the described methods and techniques for the compact rep-
resentation of power grid models.

3 Results

We conducted experiments on a bi-dimensional RC mesh
consisting on

√
n ×

√
n nodes. Conductances and capaci-

tances were randomly generated in [0, 1). All capacitances
are grounded. The number of ports is around

√
n and they

are randomly positioned (cf. Figure 1).
In Table 1 we show results from applying PRIMA, SVD-

MOR and PMTBR to the grid. As we can see, SVDMOR
cannot take advantage of any port correlation, so it falls
back to PRIMA. PRIMA needs an order of q = 5 for ac-
curacy, while for PMTBR q = 4 is enough. The number
of nonzeros in all models is much larger than the number of
entries of the original sparse model.

We can try to sparsify the models taking advantage of
the correlation between sub-blocks of the original matrix.
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Figure 1. Port positioning in the experimental
32× 32 RC mesh.
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Table 1. Reduction of 32×32 RC mesh with 34
ports with PRIMA, SVDMOR and PMTBR.

size nnz error
original 1024× 1024 4992
PRIMA 170× 170 28900 4.576e-04

SVDMOR 170× 170 28900 4.576e-04
PMTBR 136× 136 18496 2.464e-05

In Table 2 we show the results of applying RecMOR and
BSMOR to the grid. We observe that with more sub-blocks,
BSMOR needs a smaller order to guarantee accuracy, al-
though that does not mean the model is more compact. On
the contrary, the sparsity of the models decreases as we use
more sub-blocks. This means the assumption of port corre-
lation is not valid in a densely port populated grid.

The proposed alternative is to use a hierarchical ma-
trix representation of the model matrices [1]. In order to
efficiently solve (2) we can use a Cholesky factorization.
In Table 3 we show results for the sparse and hierarchi-
cal representations of matrix G as well as for the Cholesky
G = LLT factorization. We see that while using a Cholesky
factorization does not help in reducing the number of nonze-
ros in the matrices, the advantage in the simulation phase is
obvious. Nevertheless, the hierarchical representation for
larger sized problems, which are the ones of real interest,
has fewer nonzeros entries than the sparse representation.
This is due to some controlled accuracy lost. Overall, the
hierarchical representation is a good alternative to MOR

Table 2. Reduction of 32 × 32 RC mesh with
34 ports with RecMOR and BSMOR (d is the
number of sub-blocks used).

d q size nnz error
original 1024× 1024 4992

RecMOR 2 8 49792 3.546e-04
RecMOR 4 8 50176 1.186e-03
BSMOR 2 5 340× 340 115600 1.412e-04
BSMOR 4 4 544× 544 184960 3.335e-04
BSMOR 8 4 1088× 1088 406912 9.213e-04

methods, since in most cases these are not capable of pro-
ducing useful reductions, yielding models more computa-
tionally intensive than the hierarchical Cholesky factoriza-
tion.

4 Conclusions

Power distribution networks are large linear circuits with
many ports. Model order reduction methods have an ex-
treme difficulty in dealing with this kind of circuits, due to
the fact that the reduced models are full and its size propor-
tional to multiples of the number of ports. Even the recent
methods that claim to take advantage of a low rank repre-
sentation of sub-blocks of the system matrices fail to do so
unless in unrealistic cases. The proposed alternative is to
use a hierarchical representation of the Cholesky factors of
the system matrices. While this does not help reducing the
number of entries in the model matrices, results show this
hierarchical representation of the Cholesky factors is more
compact than the sparse representation with obvious bene-
fits in the simulation phase.
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