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Abstract—
Reduced order modeling is a well-known methodology for linear

system modeling. In the past decade it has risen to prominence in the
VLSI electronic design area as the de facto standard set of techniques
for interconnect and package modeling. With shrinking technologies
and faster operating frequencies, such previously ignored structures
can have a first order influence in the behavior of many electronic
systems. Reduced order modeling techniques can provide accurate,
robust, accuracy-controlled models of linear networks. Unfortunately,
most of these techniques have difficulty reducing networks with a large
number of ports, such as power grids, substrate models and coupled
data buses. In this paper we provide a characterization of this problem
and discuss the complexity of several previously proposed techniques for
handling this problem. We show that for most of these techniques there
is little hope to expect that considerable reduction can be achieved. We
also show that a simple, perhaps not obvious, approach can theoretically
provide better reduction than most of the other techniques.

I. INTRODUCTION

In the process of designing and verifying state-of-the-art electronic
circuits, one is often required to work with linear network models
which represent structures, such as interconnect, that have a first-order
impact on system behavior. Model order reduction (MOR) has be-
come the established methodology for this task, as it enables efficient
modeling and analysis of such large networks. Numerous algorithms
have been proposed for this task, covering multiple requirements
and ensuring appropriate properties of the underlying models. These
algorithms take as input a linear network model, and produce as
output a smaller model that is suitable for simulation in conjunction
with nonlinear circuit elements. The effectiveness of the model
reduction algorithm is sometimes measured in terms of the state-
space reduction. If a large linear system can be reduced to a system
with much fewer states, then the reduction is deemed successful
as analysis of the smaller model is expected to be performed at
lower computational cost. This reasoning is however not entirely
correct. Sometimes a larger model can be analyzed at lower cost,
if it exhibits some special structure that one can take advantage
of. A more appropriate measure is to judge the effectiveness of
the reduction process on the basis of the decrease in the reduced
circuit simulation time, compared to simulation with the full model,
assuming an acceptable error is incurred in the modeling process.
MOR algorithms rely on the fact that on a variety of contexts,
only an accurate approximation to the input-output behavior of a
dynamic linear system is necessary. It is quite typical for MOR
techniques to be able to reduce large interconnect networks with just
a few ports, to models with very few states, and still produce very
accurate approximations of frequency- and time-domain behavior. Of
course, it is reasonable to expect that when the number of ports
increases, the number of states to be retained must also increase.
Ultimately, however, if the number of retained states keeps increasing,
this appears to leave little room for compression as the size of

the matrix transfer function that characterizes all port interactions
also increases and may approach the complexity of working with
the original network equations. In this paper we will verify this
relation in a precise manner and discuss its implications. We will
discuss the reasons behind this loss of efficiency and relate it to the
mechanics of certain algorithms as we believe that knowledge of the
specific scenarios where each method may produce better results is an
important asset when determining how to perform the reduction. We
will work with power grids as a proxy for the type of networks that
we are concerned with. Power grids are highly regular, but also very
large networks that constitute a real problem of practical importance
but also provide for a good characterization for the type of structured
linear networks often encountered.

Recently, the efficient reduction of systems with a large num-
ber of ports has been addressed and several methods have been
proposed [1]–[3]. In this paper we show that for most of these
techniques there is little hope to expect that considerable reduction
can be achieved. We also show that a simple, perhaps not obvious
approach, can theoretically provide better reduction than most other
techniques. We start in Section II to summarize the main features
of the standard model-order reduction methods that are now in
widespread use in many applications in several fields, including
electronic design automation. In Section III we discuss the newly
proposed methods for handling massively-coupled linear dynamic
systems and, in Section IV, we characterize and compare them in
order to determine their effectiveness in terms of the reduction of
power grid networks. The measuring stick used for this comparison
is not the cost of model generation but instead the subsequent cost of
working with the model in a simulation environment. In Section V
we show results from applying the various methods in a variety of
settings to the power grid problem. Finally, conclusions are drawn in
Section VI.

II. BACKGROUND

Modeling a power grid as an RC network and using the nodal
analysis formulation leads to

Cv̇ + Gv = Mu
y = NT v

(1)

where C, G ∈ Rn×n are the capacitance and conductance matrices,
respectively, M ∈ Rn×p is a matrix that relates the inputs u ∈ Rp

to the states v ∈ Rn that describe the node voltages, N ∈ Rn×q

its counterpart with respect to the outputs y ∈ Rq , n is the number
of states, p the number of inputs and q the number of outputs. The
p×q matrix transfer function of the network is then given by H(s) =
NT (G + sC)−1M . Typically, matrices C and G are sparse but also
very large. For a typical power grid, the number of nodes will be in



the order of millions. Solving Eqn. (1) directly or using it inside a
circuit simulator is therefore too expensive.

The goal of model-order reduction is, generically, to determine a
reduced model,

Hk(s) = N̂T (Ĝ + sĈ)−1M̂ (2)

that closely matches the input-output behavior of the original model,
and where the state description is given by z = V T v ∈ Rk.
However, even if k � n, the reduced-order model may fail to
provide relevant compression. This may happen because, for large
networks, the matrices C and G are sparse, having a number of non-
zeros entries of order O(n). If the number of non-zero entries in the
reduced-order model increases with the number of ports, the benefits
of reduction may vanish with increasingly large p and q.

A. Projection-based framework

Projection-based Krylov subspace algorithms, such as PRIMA [4],
provide a general-purpose, rigorous framework for deriving intercon-
nect modeling algorithms and have been shown to produce excellent
compression in many scenarios involving on- and off-chip intercon-
nect and packaging structures. In its simplest form, they can be used
to compute individual approximations to each of the p × q matrix
transfer function entries. However, more commonly, they are used to
generate a single approximation to the full system transfer function.
The PRIMA algorithm [4], for instance, reduces a state-space model
in the form of (1) by use of a projection matrix V , through the
operations Ĝ = V T GV , M̂ = V T M , Ĉ = V T CV and N̂ = V T N
to obtain a reduced model in the form of (2). In the standard approach,
the projection matrix V is chosen as an orthogonal basis of a block
Krylov subspace, Km(A, p) = span{p, Ap, . . . , Am−1p}, a typical
choice being A = G−1C and p = G−1M . The construction of the
projection matrix V is done iteratively by blocks, with each block
being generated through a back-orthogonalizing procedure. When the
projection matrix is constructed in this way, the moments of the
reduced model can be shown to match the moments of the original
model to some order. There are two difficulties associated with
applying these algorithms for reduction. The first is that the model
size is proportional to the number of matched moments multiplied
by the number of ports. Furthermore, the reduced system matrices
will be dense. Therefore such methods are almost impractical for
networks with large numbers of ports as occur in substrate and
package modeling, as well as power grids.

B. Truncated Balanced Realization

An alternative class of reduction algorithms are based on Truncated
Balanced Realization (TBR). The TBR algorithm first computes the
observability and controllability Gramians, X and Y , by solving the
Lyapunov equations, and then reduces the model by projection onto
the space associated with the dominant eigenvalues of the product
XY [5]. Model size selection and error control in TBR is based on
the eigenvalues of XY , also known as the the Hankel singular values.
In the proper case, there is an a-posteriori theoretical bound on the
frequency-domain error for the TBR model. The existence of such
an error bound is an important advantage of the TBR-like class of
algorithms as there is no counterpart in the projection-based class of
algorithms. Theoretically, the model selection criteria, and therefore
the size of the generated model, can be done independently of the
number of inputs. However, there is an indirect dependence in most
problems and in particular for networks such as power grids, that
exhibit a large number of inputs, useful reductions are not achievable
(see [6] for a simple example that shows that for constant accuracy

the order needed grows with the number of inputs). Furthermore,
the solution of the Lyapunov equations required to obtain X and
Y is computationally intensive for large systems and as such the
technique is only of theoretical interest in this context. A variety of
approximate methods have been proposed that attempt to circumvent
this problem [6].

III. MASSIVELY-COUPLED PROBLEMS

In the previous section we briefly summarized the main techniques
for model order reduction of linear interconnect networks. As dis-
cussed, the standard projection-based techniques, present a problem
when dealing with networks with a large number of ports. In this
section, we briefly review some techniques aimed at solving some of
the issues related to reduction of such systems.

A. SVDMOR and RecMOR

The SVDMOR [1] algorithm was developed to address the re-
duction of systems with a large number of ports, like power grids.
While the size of a reduced model produced via PRIMA is directly
proportional to the number of ports in the circuit, SVDMOR theo-
retically overcomes this problem using singular value decomposition
analysis in order to truncate the system to any desired order. The
main idea behind SVDMOR is to assume that there is a large degree
of correlation between the various inputs and outputs. SVDMOR
further assumes that such input-output correlation can be captured
quite easily from observation of some system property, involving
matrices M and N . The method can, for instance, use an input-output
correlation matrix, like the one given by the DC moment matrix
SDC = NT G−1M , for instance. If we let B be the appropriate
correlation matrix, and if the basic correlation hypothesis holds true,
then B can be approximated by a low-rank matrix. This low rank
property can be revealed by computing the SVD of B, B = UΣW T

where U and W are orthogonal matrices and Σ is the diagonal matrix
containing the ordered singular values. Assuming correlation, there
will be only a small number, r � m = p + q, of dominant singular
values. Therefore B ≈ UrΣrV

T
r , where truncation is performed

leaving the r most significant singular values. The method then
approximates M ≈ bmW T

r = MWr(W
T
r Wr)

−1W T
r and N ≈

bnUT
r = NUr(U

T
r Ur)

−1UT
r where bm and bn are obtained using

the Moore-Penrose pseudo-inverse, resulting in H(s) ≈ Urb
T
n (G +

sC)−1bmW T
r . Standard MOR methods, like PRIMA, can now be

applied to Hr(s), resulting in the final reduced model Hr(s) =
UrH̃r(s)W

T
r .

SVDMOR can achieve considerable reduction when the matrix
transfer function is numerically low rank. Unfortunately this is not
often the case when the transfer function of a large network with
many ports is considered. A more realistic situation is to note that
the matrix transfer function can indeed contain many low-rank sub-
blocks. If such blocks are then identified, they can be reduced using
SVDMOR. Therefore in [2], the authors introduce RecMOR, an
algorithm for recursively detecting and sparsifying sub-blocks of the
transfer function. The idea is quite simple. Assuming an appropriate
partitioning of the network ports can be obtained, the matrix transfer
function can likewise be partitioned into sub-blocks. To simplify
the description assume that M = N and that M is partitioned as
M = [M1, M2]. Then the matrix transfer function can be written as

H(s) =

»
MT

1 (G + sC)−1M1 MT
1 (G + sC)−1M2

MT
2 (G + sC)−1M1 MT

2 (G + sC)−1M2

–
(3)

At this point one could perform model order reduction technique
separately on the four components of the transfer function. to obtain



a reduced system

Hk(s) =

»
M̂T

1 (Ĝ11 + sĈ11)
−1M̂1 M̂T

1 (Ĝ12 + sĈ12)
−1M̂2

M̂T
2 (Ĝ21 + sĈ21)

−1M̂1 M̂T
2 (Ĝ22 + sĈ22)

−1M̂2

–
(4)

Since the reductions are all done separately, one can construct a
reduced state-space model for each of the components and evaluation
of the full model can be performed by parallel evaluation of the
component models. Furthermore, if any of the sub-matrices is low-
rank, then it can be represented by a smaller model. However, if it is
not low-rank, then one can recursively apply the same technique in
order to split it into sub-blocks, some of which are likely to be low-
rank. Obviously, the final model will consist of a large set of separate
state-space representations for each of the individual sub-blocks, but
hopefully enough reduction is done on them that the overall model
will be less costly to manipulate. Exactly how much can be gained
will be discussed later.

B. Domain Decomposition MOR

Recently, a domain-decomposition technique [7] was proposed
for analysis of power grids. Based on that, we experimented a
different reduction algorithm. Consider the power grid equations
written as in (1). Now consider applying a domain-decomposition
type algorithm to the power grid. To simplify the notation assume
that the power grid is divided into two domains and that the matrix is
reordered such that nodes in each domain or partition, are clustered
together (obviously the number of partitions can be increased). We
then denote as vk, where k is the partition identifier, the nodes that are
internal to each partition, and vF , the nodes that are in the boundary
of all partitions. Then, the same equations can be written as:26664

C1

C2

CF

37775
26664

v̇1

v̇2

v̇F

37775+

26664
G1 E1

G2 E2

F1 F2 GF

37775
26664

v1

v2

vF

37775

=

24 B1

B2

BF

35 24 u1

u2

uF

35 (5)

Consider now partition k and let us rewrite the equations for that
partition.

Ckv̇k+Gkvk = Bkuk−EkvF = [Bk, −Ek]

»
uk

vF

–
= B̃kũk (6)

Nodes vk are all internal states to partition k. Eqn. (6) tells us that
if we consider that partition in isolation, the possible ways to excite
those nodes would come from setting sources at all ports inside that
partition, plus at any node in the boundary (leaving these nodes out
leads to accuracy loss, even at DC). Consider now applying some
model order reduction technique separately to each of the k partitions.
The resulting system can be written as:26664

Ĉ1

Ĉ2

CF

37775
26664

ż1

ż2

v̇F

37775+

26664
Ĝ1 Ê1

Ĝ2 Ê2

F̂1 F̂2 GF

37775
26664

z1

z2

vF

37775

=

24 B̂1

B̂2

BF

35 24 u1

u2

uF

35 (7)

where generically Ĉk = V T
k CVk, Ĝk = V T

k GVk, Êk = V T
k E, F̂k =

FVk. The interesting feature of this domain decomposition MOR
technique is that inherent parallelism is obtained due to the par-
titioning. A similar advantage was noted above in discussing the
RecMOR algorithm. Furthermore, there is inherent sparsity in the

structure of (7) which makes it quite attractive. On the other hand,
the reduced matrices are dense and the number of interface nodes is
incompressible and could be quite large. Exactly how much reduction
could be achieved will be discussed later.

IV. EFFECTIVENESS OF REDUCTION

In the previous sections we reviewed some of the techniques for
handling the reduction of networks with a large number of ports. The
actual reduction obtained with each technique is in general system-
dependent. Nevertheless, under some general assumptions they can
be characterized and compared.

Let us assume that we want to compute a reduced model of a
regular power grid of size n with p inputs. Further assume that
p is large, say p = O(

√
n), which is in practice a conservative

assumption. Let us start by characterizing the original full model and
use it as a yardstick for comparison. The matrix for this system has
O(n) nodes since it is basically a 2D (or 3D) discretization pencil.
It is known that in this case the cost of factoring this matrix will be
around O(n3/2) as fill-ins will generate a small block of size n1/2

at the bottom, which takes cubic effort to factor.
Consider now, as an initial alternative, that we decide to use

PRIMA to generate a reduced order model. If we decide to match
qP moments, we perform qP block orthogonalizations. The size of
the reduced model is then qP p = qP ×n1/2. This model is however
full, which means that the number of nonzeros elements to work
with is around q2

P n. Therefore, the cost of factoring this matrix is
around q3

P n3/2. As expected, this immediately raises some concerns
over using PRIMA at all. For this many inputs, even a moderate size
model (i.e. small qP ) will lead to a model with more nonzeros and
higher flop count than the original full system.

Consider now using a technique such as RecMOR and suppose
that clusters of inputs can be found for which reduction is performed
separately. Assume there are d such clusters, thus leading to d2

blocks in the system transfer matrix (actually, given the symmetry
one really needs to compute and store d(d − 1)/2 sub-blocks, but
that is a minor issue). For each of these sub-blocks we can compute
a reduced model. Let us assume that for the diagonal blocks (which
display the effects of approximately p/d ports) we generate a reduced
model doing qR PRIMA iterations. Then we have, just for the
diagonal blocks d models of size qRp/d = qRn1/2/d, each of
which is full. Therefore, the number of nonzeros of the total of
such models is around d(qRp/d)2 = q2

Rn/d. Of course RecMOR
advocates doing the reduction using SVDMOR to take advantage
of correlations and produce sparsified models. For the method to
provide real sparsification, however, not only must qR be small, but
dependence on n has to be dropped fairly quickly as there are indeed
O(d2) functions to approximate. In practice, it is not clear under
what conditions this will happen. Still, if enough correlation can be
procured, perhaps such dependence can be broken and the final model
be independent of p (i.e. n).

Suppose now that the domain-decomposition type algorithm is pur-
sued and that again d partitions are considered. Each of the d blocks
is reduced separately, perhaps using qD PRIMA-type iterations. The
ports to be considered for this partition are the ones that fall within
that partition plus the interface nodes. Unfortunately the number of
interface nodes is O(

√
n) which is the grid size in each dimension.

This implies that each of the individual models will be represented
by a dense matrix of size qD

√
n and therefore the cost of working

with this block alone is already q3
Dn3/2, already exceeding the cost of

working with the full system. Furthermore, the sub-matrices related



to the interface nodes also fill up and therefore the method presents
no advantage whatsoever.

As a final note consider an alternative technique going back to
the roots of MOR techniques. Consider, as in RecMOR, that we
try to approximate each entry of the transfer function individually
(in essence this is equivalent to the recursive RecMOR taken to the
extreme). Each individual transfer function entry relates the input
current at some port to the voltage at some other port. Therefore,
computing an approximate for each entry requires using only the
input vector corresponding to that input port. Actually it is known
that projections using that single vector can be used to generate
models at all outputs simultaneously. What this implies is that a
full column of the matrix transfer function can be generated from
approximations using a single input vector. So, for each of the p
ports consider computing an approximation to all the outputs relative
to that particular input. This can be achieved by doing qS iteration
of a PRIMA-type algorithm, but now with a single input vector
(corresponding to the column of M for that input port). This leads to
a model with qS states represented by a matrix that is full, i.e., with
q2

S nonzeros. Such a matrix will require q3
S effort to factor and work

with. Of course there are p such models, corresponding to the p inputs
(thus requiring the generation of p projection spaces), so the full
model of the power grid will be represented by p independent systems
with a total of pq2

S = q2
S × n1/2. Evaluation of the whole model

may therefore require an effort on the order of pq3
S = q3

S × n1/2.
Interestingly enough, this is the lowest complexity of all models
considered. Furthermore, it is the only one that even theoretically
has a good shot at improving over using the full model directly. Of
course, since now we want the approximation to be good not only
with respect to nearby outputs but also for far-away outputs, it is
possible that qS >> qP . In practice this is observed, and in fact it is
observed that for similar accuracy models, qS > qR > qD > qP , but
the differences between the required orders seems to increase very
slowly with n. In the results section we refer to this technique as
STFMOR (single transfer function MOR).

The conclusion of this analysis are therefore not entirely satisfac-
tory. It seems that for most methods proposed until now, there does
indeed seem to be little hope of improving over using the original
model. The main problem is that none of the proposed method seems
able to break the connection between model order and number of
inputs. In fact, recent results seem to indicate that such a connection
is indeed hard to avoid [3].

V. RESULTS

In the following, we show the results of applying PRIMA, Rec-
MOR and STFMOR on two types of grid models. The first one, Grid
A, is a 32 × 32 grid with 32 voltage ports on the left side and 32
current ports on the right side. The second one, Grid B, is a 32× 32
grid with 9 flip-chip C4 bumps and around 10% of the number of
nodes randomly distributed current sources, simulating transistors.

A. Grid A Results

This grid has 1024 nodes, so the full-model has 4992 non-zeros
(2D stamp sparsity). In order to achieve a reduced model with as
much as 10−3 maximum absolute error, we adjusted the order of the
models obtained by each method. The results are presented in Table I.
We can see that in order to stay below the maximum admissible error,
we had to set the order q of the models to high values which yielded
models with an increasing number of non-zeros. For the RecMOR
algorithm we used a number of 8 blocks.

TABLE I
RESULTS FROM REDUCING A 32× 32 GRID WITH 32 VOLTAGE PORTS ON

THE LEFT SIDE AND 32 CURRENT PORTS ON THE RIGHT SIDE.
q nnz max abs err

Full model - 4992 -
PRIMA 4 65536 2.322e-03
RecMOR 8 73728 5.463e-03
STFMOR 12 9216 7.687e-03

TABLE II
RESULTS FROM REDUCING A 32× 32 GRID WITH 9 VOLTAGE SOURCES

AND 107 RANDOMLY DISTRIBUTED PORTS.
q nnz max abs err

Full model - 4992 -
PRIMA 3 103041 7.508e-04
RecMOR 8 329280 7.902e-03
STFMOR 12 15408 5.275e-03

B. Grid B Results

On this grid setup, we had 107 current sources. The reduction
results are presented in Table II. We can observe that similarly to
the previous case no relevant sparsity can be obtained. Note that for
this case p ≈ 10% of n, which is nevertheless lower than

√
n. Still,

only STFMOR manages to come closer to the density of the original
system.

VI. CONCLUSIONS AND ACKNOWLEDGEMENTS

In this paper we provide a characterization of the problem of model
order reduction of networks with a very large number of ports. We
review the basic methods that have been presented to cope with this
problem and show that for most of these techniques there is little
hope to expect that considerable reduction can be achieved. We also
show that a simple, perhaps not obvious approach, can theoretically
provide better reduction than most of the other techniques. Still, the
end result seems to be that a method that can provide a representation
of such a network that is somehow independent of the number of ports
is yet to be found.
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