
GRID-BASED STATISTICAL TIMING ANALYSIS

Luı́s Guerra e Silva and L. Miguel Silveira
IST / INESC-ID

Lisboa, Portugal

{lgs,lms}@algos.inesc-id.pt

ABSTRACT

Timing analysis is concerned with modeling and computing the delay of digital integrated circuits (IC), prior to fabrication.
The delay will determine the maximum operating frequency of an IC, and its computation is of paramount importance in
electronic system design. As feature sizes decrease in IC technologies, the number of components that can be integrated
on a single IC is very large. However, their precise behavior, including their delay, becomes increasingly sensitive to
fabrication and operating variations. Standard deterministic techniques for delay analysis are quickly becoming inadequate,
because they produce extremely conservative worst-case delay estimates. In this context, several statistical timing analysis
algorithms have recently been proposed, based on analytical models. However, neither of them is able to correctly capture
and model all the correlations and variations that influence the delays. Up to date, the only method that can produce
accurate, yet approximate, delay estimates, taking into account fabrication and operational variations, is based on Monte
Carlo simulation. In this paper we study the parallelization of such method, on a distributed infrastructure for parallel
computation, based on the grid computing paradigm. Since this is currently the only accurate method available to perform
statistical timing analysis of ICs, and given that ICs carry millions of logic blocks, the possibility of dealing with such large
designs by using parallel computing is of tremendous practical interest.

KEYWORDS

Statistical timing analysis, Monte Carlo techniques, parallelization, grid computing

1. INTRODUCTION

Most complex integrated circuits (ICs), like microprocessors, microcontrollers, etc, are sequential circuits,
consisting of registers interleaved by blocks of combinational logic, as illustrated in Figure 1. Each block of
combinational logic implements a specific logic function, and itself consists of smaller blocks. At each clock
cycle, new logic values are presented at the block’s inputs and, after a delay ∆, the corresponding results are
available at the block’s outputs, to be latched on the next clock cycle. When the clock signal is activated,
the registers read their input’s logic values and set their outputs accordingly. If the period of the clock signal
were smaller than the delay of any block of combinational logic, the values latched by the registers could be
incorrect, and proper functioning would be in jeopardy. It is therefore of paramount importance that the largest
delay ∆ of any block be known since that is the deciding factor in determining the maximum operating clock
frequency.

Obviously, the most accurate way of verifying the maximum clock frequency of a given circuit is to build
it and test it in its target environment. However, this option is almost never used due to the time and expense
it involves. One therefore resorts to methods that can determine as accurately as possible, before fabrication,
whether the delay requirements are satisfied. Detailed transistor level simulation while able to generate highly
accurate estimates, is beyond feasibility due to the problem size (Intel’s Itanium 2 processor has 410 million
transistors). To overcome the computational problem, researchers have come up with less accurate, but much
more efficient algorithms.

As we have mentioned, each logic block is made of smaller simpler logic blocks that implement basic logic
functionality (AND, OR, NAND, NOR, NOT, etc). The delays of these simple blocks (known as logic gates)
are tabulated, and provided by IC foundries, for a given IC technology. By adding the delay values over all
the paths, from a block’s inputs to its outputs, it is possible to compute the delay of a block, in a linear-time

∆

combinational
block

registers

registers

clock

Figure 1: The architecture of a sequential circuit.

procedure. This group of algorithms, known as timing analysis algorithms, is particularly efficient, producing
reasonably accurate delay estimates.

Over the last two decades timing analysis has been of great importance, and is at the heart of digital circuit
design. Foundries provide average and worst-case nominal delay figures for every logic gate and, using that
information, timing analyzers are able to compute estimates of average and worst-case delay for combinational
blocks. By comparing the estimated worst-case delay value with the required clock period, the designer can
assert if the circuit will function properly, prior to fabrication.

Even though these worst-case timing analysis techniques have been successfully employed for many years,
they are quickly becoming inadequate. New generations of deep submicron IC technologies exhibit signifi-
cant sensitivity to process and environmental variations, introducing a large variability in the timing behavior
of logic blocks. As a result, such techniques targeting guaranteed design functionality produce extremely pes-
simistic delay estimates, and are unable to provide quantitative information, such as yield estimation, necessary
to effectively guide design optimization.

To overcome these limitations, several statistical timing analysis (STA) algorithms have recently been pro-
posed [3, 1]. By computing delay distributions instead of single worst-case values, these algorithms are a first
attempt to correctly handle the impact of process and environmental uncertainties in newest deep submicron IC
technologies, simultaneously providing the necessary quantitative information. In this context, several statisti-
cal timing analysis algorithms have recently been proposed, based on analytical models. However, neither of
them is able to correctly capture and model all the variations that influence the delays. As an alternative, Monte
Carlo-based methods are know to produce accurate, yet approximate, delay estimates, taking into account fab-
rication and operational variations. In this paper we study the parallelization of such method, on a distributed
infrastructure for parallel computation, based on the grid computing paradigm. Since this is currently the only
accurate method available to perform statistical timing analysis of ICs, and given that ICs carry millions of
logic blocks, the possibility of dealing with such large designs by using parallel computing is of tremendous
practical interest.

This paper is organized as follows. In the next section we describe the timing analysis problem, and provide
some context and background information necessary to understand the remainder of the paper. In the following
section, the statistical approach to the timing analysis problem is introduced. A Monte Carlo-based algorithm is
presented, and implementation details are explained. In the next section, we discuss a parallel implementation
of the same algorithm. In order to validate the proposed approaches, the next section describes experimental
results, for the parallel execution of the statistical timing analysis algorithm, for 16 benchmark circuits. Finally,
in the last section we present some conclusions and topics for future research work.

2. TIMING ANALYSIS

In this section we introduce the problem of timing analysis of combinational circuits. We start by defining
a combinational circuit and related concepts. Next, we describe the modeling framework used in the charac-
terization of the timing behavior of a combinational block. Finally, we state the timing analysis problem and
describe a simple intuitive analysis method.

2.1 Combinational Circuit
A combinational circuit or combinational block is an aggregate of combinational logic that implements a given
logic function. The logic function receives its arguments from the block inputs and produces its results in
the block outputs. Internally, a combinational block is made of simpler combinational blocks, each of which
implements a given logic functionality. The overall logic function of a combinational block is implemented by
appropriately connecting the inputs and outputs of these simple blocks.

a

b

c

d

e

f

a

b

c

d

e

f

Figure 2: Block and graph representation of a combinational circuit.

In following we will represent a combinational circuit or block as an annotated directed acyclic graph,
C = (V,E), referred to as the circuit graph, composed of simple combinational blocks and primary inputs,
represented by nodes (vertices) in the graph, and connections, represented by edges between them. V and E
denote respectively, the set of nodes and the set of edges. The primary inputs are nodes with no incoming
edges. All the nodes with no outgoing edges are primary outputs (note that there may be some primary output
nodes with outgoing edges). A path is an alternating sequence of nodes and edges, connecting any two nodes.
A complete path connects a primary input to a primary output.

2.2 Timing Characterization

In simple terms, the timing analysis of a combinational block, consists in determining the time instants at
which the logic values set at the primary inputs of a combinational block, will propagate to its internal nodes
and finally produce the desired result in its primary outputs. In the following, we will describe the framework
employed in modeling this process.

x y

atyat
x

dx,y

x

y

Figure 3: Timing characterization of a combinational block.

Let us consider a simple block, with an input node x and an output node y, illustrated in Figure 3. The
most important property that characterizes the temporal behavior of this block is its delay, represented by dx,y

(meaning the delay between nodes x and y). This measures the length of the time interval that elapses since a
logic value is set at input node x, until the corresponding block response is observed at the output node y. The
instants at which results arrive to a certain node are designated by arrival times. The arrival times for x and y
are represented by atx and aty, respectively.

2.3 Problem Statement

Let us consider the combinational block presented in Figure 4, with primary inputs a, b, c, d, e and f , and
primary outputs y and w. Assuming that new logic values are set at the primary inputs at time instant 0, the tim-
ing analysis problem is concerned with computing the time instants (arrival times) at which the corresponding
logic results are produced at either primary output.

a

b

c

d

y

w
e

f

at
x1

dx1,y

dxn,y

at
xn

aty

x1

x
n

y

combinational block

simple
combinational block

Figure 4: Arrival time computation at the outputs of a combinational block and simple block.

As mentioned before, combinational blocks are themselves made of simpler combinational blocks that
implement basic logic functions. In Figure 4 all the simple blocks that belong to any path that ends in primary
output y, and their connections, are represented in strong line. In order to compute the arrival time at node y
we must progressively compute the arrival times at the output nodes of every simple block, starting from the
primary inputs. Therefore, for every n-input simple combinational block, as the one represented in Figure 4,
with inputs x1,x2, ...,xn and one output node y, given the values of the arrival times at each of these nodes
atx1 ,atx2 , ...,atxn and aty, and the values of the simple block delays between nodes x1,x2, ...,xn and y, we will
be concerned with computing, for each simple block the arrival time at its output, given by,

aty = max(sum(atx1 ,dx1,y),sum(atx2 ,dx2,y), ...,sum(atxn ,dxn,y)) (1)

By analyzing this expression becomes immediately clear that two operations must be performed: sum and max.
Clearly, if the delays and arrival times are real numbers this timing analysis procedure can be performed in
linear time, by computing arrival times at simple block outpus in a levelized breadth-first traversal of the circuit
graph.

3. STATISTICAL ANALYSIS

In this section we present a statistical version of the deterministic timing analysis problem presented in the
previous section. We start by shortly describing the sources of variation in the performance of newest IC tech-
nologies, that motivate the use of a statistical approach to the timing analysis problem. Further, we explain how
statistical correlations are induced on problem variables (delays and arrival times). Next, we state the statis-
tical timing analysis problem. Further, we propose a Monte Carlo-based statistical timing analysis algorithm,
subsequently describing some of its implementation issues.

3.1 Sources of Variation and Correlation
No two ICs are equal. The fabrication of an IC is a sequence of hundreds of operations, each of which will
be performed a little differently on each IC. Manufacturing process variations are one of the main sources of
variability in the performance of ICs. An example is the fact that frequently one IC is significantly faster than
another. Another source of variation are the environmental operating conditions of the IC, such as changes
in power supply voltage or operating temperature. Finally, a more subtle source of variation are device fa-
tigue phenomena. Examples are electromigration, hot electron effects and NBTI (negative bias temperature
instability).

The complexity of the formulation of the STA problem is mainly due to the statistical correlations between
problem variables. Both block delays and arrival times can exhibit correlation. Block delay are correlated
because, in general, they depend on the same sources of variation. Arrival times are also correlated, because

x at
x

aty

at
z

atw
w

y

z

Figure 5: Arrival time correlations due to reconvergent fanouts.

they are computed from block delays which, as we explained, are themselves correlated. Additionally, arrival
times can exhibit correlation due to the existence of reconvergent fanouts, which are common in any optimized
circuit. As illustrated in Figure 5, the existence of reconvergent fanouts, like from node x to w, induces cor-
relation between arrival times in the corresponding fanout cone, as happens with aty and atz. Since they are
correlated and therefore not statistically independent, that increases the complexity of combining aty and atz
to compute atw. An ideal STA algorithm should be able to efficiently and accurately handle all the types of
correlation mentioned.

3.2 Problem Statement

The problem of STA is very similar to the problem of simple, corner-based (average or worst-case), deter-
ministic timing analysis. In both cases, it consists in computing a sequence of sum and max operations, in a
traversal over the circuit graph. However, their implementation is quite different, because the data they han-
dle is also different. A deterministic timing analyzer manipulates nominal values, while a statistical timing
analyzer manipulates distributions.

Given an n-input block, with input nodes x1,x2, ...,xn, and one output node y, given the random variables
that represent the arrival times at each of these nodes atx1 ,atx2 , ...,atxn and aty, and the random variables that
represent the block delays between them dx1,y,dx2,y, ...,dxn,y, we will be concerned in computing, for every
such circuit block

aty = max(sum(atx1 ,dx1,y),sum(atx2 ,dx2,y), ...,sum(atxn ,dxn,y)) (2)

If we consider that all the random variables are statistically independent, these operations are simple. However,
in the real world this is not true, and therefore the accurate implementation of this operations, accounting for
all variable correlations, is quite complex, and still an open topic of intense research.

3.3 Monte Carlo Stochastic Approach

The Monte Carlo method, described in [2], is used in many science and engineering fields for approximately
solving problems by the simulation of random quantities. In a Monte Carlo analysis, a series of deterministic
simulation runs (trials) are performed, replacing in each run the value of every stochastic input variable by a
randomly generated number, according to its predefined distribution. The final result will be the set of samples
generated in each trial, for each problem output variable, from which the desired problem solution can be
estimated. This method is computationally extremely expensive and only provides an approximate result, even
though it can be very accurate, given a large enough number of samples (trials). Therefore, it is mostly used
when no analytical solution is easy or even possible to obtain or implement. The error associated with the
estimated quantity is, as a rule, inversely proportional to the square root of the number of trials, meaning that a
large number of iterations is usually necessary in order to obtain statistically significante results.

In the context of STA, in each trial of the Monte Carlo simulation we will perform a deterministic timing
analysis run, as described ealier, but where block delays are replaced by randomly generated values, that obey
a known block delay distribution. As a result, for each circuit node, we will obtain a set of arrival time samples,
each of which was generated in a different trial. Given a sequence of n arrival time samples for a given circuit

node, ξ1,ξ2,,ξn, computed on n trials of a Monte Carlo simulation, then its sample mean, µ, and sample
variance, σ2, is given by,

µ =
1
n

n

∑
i=1

ξi (3)

σ2 =
1
n

n

∑
i=1

ξ2
i −µ2 (4)

3.4 Implementation Issues

The description of the circuit conectivity (e.g. the way the various simple blocks are connected within a
combinational block – the circuit) is stored in an OPENACCESS database. This open source framework provides
a database format for storing IC designs, which is acessable through a C++ API. The mean and variance of
simple block delay distributions is also stored in the database, and acessable through the same API.

In a preliminary stage, the analyzer generates a C source file with a function named circuit(), for the
circuit under analysis. This function encodes the various tasks that are necessary to perform on each STA
Monte Carlo trial. First, for every primary input node, it calls a setup input() function that receives as
argument the input node index, and sets the corresponding arrival time sample to 0. Afterwards, it calls a
process block() function, for each simple block found, which computes the arrival time at the block’s
output node, given the arrival times at its input nodes and a randomly generated block delay value which is
computed on-the-fly. The process block() function calls, for the various blocks, are inserted in the C
file in a order that corresponds to a forward levelized breadth-first traversal of the circuit graph. This specific
order assures that when the function is called for a given simple block, all the necessary arrival times of the
block’s input nodes have already been computed. In run-time, the setup input() and process block()
functions will store and retrieve the computed arrival times from the at array. This array consists in a sequence
of double values, that are the arrival times for every circuit node.

A second stage follows, when the generated C source file is compiled and linked with an object file that con-
tains the implementation of all the previously mentioned functions, including the execution entry point function
main(). Finally, the generated file is executed. During the execution, the main() function iteratively calls
the generated circuit() function, for the specified number of Monte Carlo trials. Finally, the sample mean
and variance of the delay distributions at every node are computed and presented to the user.

Instead of generating a program that performs the Monte Carlo simulations of each circuit, we could have
simply performed them by continously traversing the circuit graph obtained from the design database. Even
though this option has a smaller overhead, the run time of each trial is much larger. Since in general many
trials need to be performed in order to obtain statistically significant results, the initial overhead is widely
compensated by the better performance obtained in each trial.

At first glance, it may seem that in order to compute the sample mean and variance of the arrival time of
every node it would be necessary to store all the samples computed in each trial. However, that is not true. After
the execution of a single trial, all the samples can be destroyed if, for every node, we maintain two parameters,
between Monte Carlo trials. For a given node x, we will designate them by ωx and λx. They will both be
initialized at 0, before any Monte Carlo trials are performed. When, on a given trial i, the value of the arrival
time sample at node x, ξi, is computed, then ωx and λx should be updated as follows,

ωx = ωx +ξi (5)

λx = λx +ξ2
i (6)

After n Monte Carlo trials, that produced a sequence of arrival time samples for a given node x, ξ1,ξ2,,ξn,
the parameters ωx and λx are given by,

ωx =
n

∑
i=1

ξi (7)

λx =
n

∑
i=1

ξ2
i (8)

From this two parameters, the sample mean and variance at a given node x can easily be computed at the end,
as can be observed by the formulae below.

µx =
1
n

n

∑
i=1

ξi =
ωx

n
(9)

σ2
x =

1
n

n

∑
i=1

ξ2
i −µ2

x =
λx

n
−

(ωx

n

)2
(10)

By storing between trials only two arrays, containing ω and λ parameters for every node, instead of all the
arrival time samples generated at each trial, an enormous memory optimization is achieved.

4. EXPLOITING PARALLELISM

In this section we discuss the parallelization of the Monte Carlo-based statistical timing analysis algorithm. We
start by presenting the computing network which we used to conduct our experiments. Precise definitions of
what is meant by speedup and efficiency of a parallel computing environment are given. Finally we discuss
how to break up the problem into the various processing units.

4.1 Distributed Computing Environment

In this work, the distributed computing environment was a Grid of computers consisting of five machines inter-
connected in a grid-like fashion (www.gridforum.org). The Grid refers to an infrastructure that enables
the integrated and collaborative use of high-end computers, networks, databases, and scientific instruments
owned and managed by multiple organizations.

In essence, this is a loosely-coupled distributed memory machine, which uses standard Ethernet protocols
for communication. Grid computing has emerged recently as an interesting new paradigms for large scale
independent computations. The five machines on our Grid consist on two Intel Pentium IV at 2.60 GHz, two
Intel Pentium IV at 2.40 GHz, and a dual-processor Intel Xeon at 2.40 GHz. The first four have 1GB of RAM
and the last has 4GB of RAM. All the machines are running GNU/Linux. The Grid is setup using the Globus
toolkit from the Globus Alliance (www.globus.org)

The underlying communication interface was MPI, the Message Passing Interface standard. MPI standard
is the de facto industry standard for parallel applications. It was designed by leading industry and academic
researchers, and builds upon two decades of parallel programming experience.

For the computational Grid, we chose an implementation of MPI named MPICH-G2 which is a Grid-enabled
implementation of the MPI v1.1 standard. That is, using services from the Globus Toolkit (e.g., job startup
and security), MPICH-G2 allows one to couple multiple machines, potentially of different architectures, to
run MPI applications. MPICH-G2 automatically converts data in messages sent between machines of different
architectures and supports multi-protocol communication by automatically selecting TCP for inter-machine
messaging and (where available) vendor-supplied MPI for intra-machine messaging.

4.2 Parallel Computing Performance Metrics

When considering the performance of a parallelized algorithm, one must compare it with a serial, single-
processor implementation. To that end, if we denote by T (n, p) the time to solve a problem with n unknowns
on a parallel environment using p processors, then we can define the parallelization speedup as

S(n, p) =
T (n,1)

T (n, p)
(11)

Perfect utilization of resources is obtained when S(n, p) = p. Another relevant definition, containing similar
information, is the measure of efficiency, that can be computed as,

E(n, p) =
T (n,1)

p×T(n, p)
(12)

Perfect utilization of resources is obtained when E(n, p) = 1. Clearly, for effective utilization of resources, the
original code must be scalable.

4.3 Parallelizing Statistical Timing Analysis

The Grid infrastructure supplies each instance with two parameters: the total number of processors p and the
specific instance processor identifier id. In a first step, each instance, knowing if it is the master (id = 0) or
one of the slaves (id 6= 0), computes the number of iterations to perform. Given the total number of required
iterations, N, and given the number of processors available p, the number of iterations performed by the master
and slave machines is given by,

nmaster = N/p+N%p (13)

nslave = N/p (14)

where / is the integer division and % is the modulus. Notice that if the total number of iterations is not multiple
of the number of processors, then the master machine will perform the extra N%p iterations necessary to
achieve the total number required. Also using the instance processor identifier, id, each instance generates a
different seed for the random number generator, in order to prevent undesired correlations between samples
produces in different instances.

Next, each instance performs the number of Monte Carlo iterations previously computed. As in the non-
parallel version, the values of ω and λ are stored in each instance, for each circuit node. After completing the
simulation each slave instance sends their ω and λ arrays to the master, which receives them and adds the value
of each array position to the values in the corresponding position of its own ω and λ arrays. When all slaves
have sent their ω and λ arrays, the master computes the sample mean and variance for every node, printing
them on the output.

In this implementation, the communication cost between each slave and the master is the cost of sending
the ω and λ arrays, which corresponds to the cost of sending one double multiplied by twice the number of
nodes.

5. EXPERIMENTAL RESULTS

In this section we present experimental results for the standalone and parallel grid-based versions of the sta-
tistical timing analysis algorithm previously described, performing 20000 Monte Carlo trials. In the parallel
version, all the five available processor were used. The first 10 circuits belong to the well know ISCAS’85
benchmark suite. The remaining 6 circuit are carry-skip adders of various sizes. The first columns of the table
exhibit relevant information about each circuit, such the number of simple block it contains, the number of
nodes (internal + primary inputs + primary outputs), the number of primary inputs and the number of primary
outputs. The following columns present CPU time in seconds and memory in MB used in the standalone and
parallel grid-based versions of the statistical timing analyzer. For the grid version, the CPU time and memory
reported are the worst values among all the machine that integrate the grid. The last column shows the speedup
achieved with the parallelization.

As expected, both CPU time and memory increase with the number of blocks. Given the amount of infor-
mation processed, the memory seems to be kept very low. When comparing the memory usage between the
standalone and grid versions, it is noticeable that the grid infrastucture introduces an overhead of about 4MB,
which is harmless, since it seems to be unrelated with the problem size (number of blocks). In what concerns
to CPU time, the grid version effectively parallelizes the workload, achieving in certain cases an almost perfect
utilization of resources (speedup near 5).

In Figure 6, we present the variation of the sample mean and variance with the number of iterations, for a
node of the c432 benchmark circuit. As can be observed, both values only seem to achieve some convergence
after 10000 trials.

Benchmark #Blocks #Nodes #PIs #POs
Standalone Grid

Speedup
CPU MEM CPU MEM

c432 171 207 36 7 1.46 1.52 0.41 4.70 3.56
c499 218 259 41 32 1.82 1.53 0.41 4.71 4.44
c880 383 443 60 26 3.17 1.59 0.72 4.76 4.40
c1355 562 603 41 32 4.33 1.64 1.05 4.81 4.12
c1908 972 1005 33 25 7.15 1.73 1.48 5.02 4.83
c2670 1211 1445 233 140 10.05 2.83 4.11 5.11 3.55
c3540 1705 1755 50 22 13.36 1.95 2.76 5.21 4.84
c5315 2351 2529 178 123 19.61 2.15 4.04 5.44 4.85
c6288 2416 2448 32 32 20.59 2.28 4.33 5.57 4.76
c7552 3624 3832 207 108 30.19 2.52 6.19 5.75 4.88
csa.32.4 200 265 65 33 1.88 1.53 0.41 4.71 4.59
csa.64.4 400 529 129 65 3.75 1.61 0.80 4.78 4.69
csa.128.4 800 1057 257 129 7.54 1.77 1.77 5.04 4.25
csa.256.4 1600 2113 513 257 16.20 2.07 3.51 5.33 4.61
csa.1024.4 6400 8449 2049 1025 68.03 3.88 14.65 7.33 4.64
csa.8192.4 51200 67585 16385 8193 561.40 20.92 124.94 25.09 4.49

Table 1: Table of performance results for ISCAS’85 benchmarks and carry-skip adders.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

31

31.5

32

32.5

33

33.5
c432: output 431

number of trials

m
ea

n
(µ

)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4
c432: output 431

number of trials

va
ria

nc
e

(σ
2)

Figure 6: Variation of sample mean and variance with the number of trials.

6. Conclusions

This paper presents a parallel version of a Monte Carlo-based statistical timing analysis algorithm. As expected
for Monte Carlo-based methods, the experimental results show that the parallelization is highly effective, lead-
ing in certain cases to an almost perfect utilization of the computing resources. Clearly, a much larger grid
could be used in performing statistical timing analysis of present microprocessors, that have millions of blocks.

REFERENCES

[1] A. B. Agarwal, D. Blaauw, V. Zolotov, and S. Vrudhula. Computation and Refinement of Statistical Bounds
on Circuit Delay. In Proceedings of the ACM/IEEE Design Automation Conference, Anaheim, CA, June
2003.

[2] Nicholas Metropolis and Stanislav Ulam. The Monte Carlo Method. Journal of the American Statistical
Association, 247(44):335–341, September 1949.

[3] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, and S. Narayan. First-order incremental block-
based statistical timing analysis. In Proceedings of the ACM/IEEE Design Automation Conference, pages
331–336, San Diego, CA, June 2004.

