
Speedpath Prediction Based on Learning from a Small Set of Examples ∗

Pouria Bastani1, Kip Killpack2, Li-C. Wang1, Eli Chiprout2
1University of California - Santa Barbara

2Intel Corporation, Hillsboro, OR

ABSTRACT
In high performance designs, speed-limiting logic paths (speedpaths)
impact the power/performance trade-off that is becoming critical in
our low power regimes. Timing tools attempt to model and predict
the delay of all the paths on a chip, which may be in the millions.
These delay predictions often have a significant error and when sil-
icon is measured there is a large variation of path delays as com-
pared to the prediction of the tools. This variation may be caused by
process, environmental or other effects that are often unpredictable.
It is therefore desirable to use early silicon data to better predict
and model potential speedpaths for subsequent silicon steppings. In
this paper, we present a novel machine learning-based approach that
uses a small number of identified speedpaths to predict a larger set
of potential speedpaths, thus significantly enhancing the traditional
timing prediction flows post-silicon. We demonstrate the feasibility
of this approach and summarize our findings based on the analysis
of silicon speedpaths from a 65nm P4 microprocessor.

Categories and Subject Descriptors
B.8.2 [Hardware]: Performance Analysis and Design Aids

General Terms
Algorithm, Performance, Reliability

Keywords
Speedpath, Timing analysis, Learning

1. INTRODUCTION
In high-performance chip design, timing analysis and optimiza-

tion does not stop at first silicon. Silicon information is often ana-
lyzed carefully to drive further speed or power improvements. This
process of silicon steppings, allows the detection and fixing of speed
limiting paths (speedpaths). A speedpath is a path that limits the
performance of a chip where the performance can be defined by
observing the result of applying functional legacy tests. Because
speedpaths can be observed at different cycles of a functional test
sequence where different parts of the chip are exercised, a chip can
have multiple speedpaths [1].

∗This work supported in part by CA Micro/Intel project No. 07-079

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2008, June 8–13, 2008, Anaheim, California, USA.
Copyright 2008 ACM 978-1-60558-115-6/08/0006 ...$5.00.

Speedpaths are not well-predicted by the timing flows. The defi-
ciency of these CAD flows comes about due to a multitude of pro-
cess, design and environmental effects that are either unknown or
too difficult to model and simulate for millions of paths. It is there-
fore sometimes easier to uncover speedpaths in silicon and fix them
to produce a new silicon stepping. Simultaneously, based on the sil-
icon feedback to the timing flows, other potential speedpaths can be
modeled more accurately and fixed even before they are detected in
the next silicon. These iterations may continue until performance
is pushed to a satisfactory level, at which time design changes are
frozen and the design is introduced to the market in high volume.

Each silicon stepping has significant associated manufacturing
cost. Moreover, silicon speedpath detection demands a large amount
of engineering effort. It is economical therefore to be able to utilize
silicon data effectively for improving subsequent silicon steppings.
This may be done by enhancing the CAD for timing and path pre-
diction flows with the silicon data. However, it is not obvious how to
best use the information obtained from the few detected speedpaths
to accomplish this.

Speedpaths

Modeling/
Methodology

Improvements

Additional
paths for

improvement

DeductionRoot-Cause
Analysis

Speedpath prediction

(Focus of this work)

Figure 1: Two approaches to utilize speedpaths

Once a set of speedpaths are found, there are two fundamental
ways by which one may enhance the delay prediction of all paths on
the die. Figure 1 illustrates the two approaches. In the first approach,
one tries to get to the root cause(s) of speedpath mis-prediction. A
root cause may lead to improvements in delay modeling or in tim-
ing methodology or both. Based on the improved model and/or the
improved methodology, more accurate design optimization can be
carried out before the next stepping.

While the first approach is intuitive, it may not be the most de-
sirable approach when time-to-market is considered. This is be-
cause finding root causes and improving modeling can be hard and
time-consuming. The interesting point to observe is that, if the goal
is simply to isolate potential speedpaths one need not improve the
modeling and methodology first. Instead, a second approach can
be employed, which can take place in parallel to the first, that pre-
dicts other potential speedpaths based only on observed properties
of known speedpaths instead of enhanced models.

The second approach is attractive because it avoids the difficulty
of finding the root causes of mispredicted timing paths. However,
it may not be as effective as the first approach, if it does not con-

217

12.3

form to true root cause effects. To enhance the effectiveness of the
second approach, it is therefore desirable to develop a methodology
that can search the design and identify all paths that have similar
characteristics to those found speedpaths. With such a methodology
in place, the second approach can potentially have the same effec-
tiveness of the first approach, without the high cost associated with
finding the root causes. This may then be a complimentary approach
to the standard timing flows.

In this paper, we present a novel methodology that utilizes a ma-
chine learning technique called support vector analysis [10] to learn
from the characteristics of speedpaths. The result of learning is a
model of speedpaths. This model can then be used to search the de-
sign and collect additional paths whose characteristics are similar to
the speedpaths.

The challenge of building such a learning methodology lies in the
fact that the number of speedpaths used in the analysis is often small,
in the 100’s. Hence, it is difficult to treat the problem as a binary
classification problem [2] and try to learn a model that can differ-
entiate between speedpaths and non-speedpaths. Instead, we need
to develop a method that focuses the learning only on the speed-
paths. This is called one-class learning. In this paper, we describe
how to apply one-class learning to solve the speedpath prediction
problem where the number of speedpaths given is small. We will
discuss how to derive path "characteristics," how to define the simi-
larity between paths, and how to build an effective model to predict
additional speedpaths.

In order to check the validity of the proposed learning methodol-
ogy, we conducted detailed analysis on a set of speedpaths, i.e. the
root-causing step shown in Figure 1. Our objective was to see if the
result of this detailed analysis would confirm the result given by the
learning approach. In particular, we were interested in observing if
the paths identified by the learning would also be the paths suggested
from the detailed analysis. We systematically consider three poten-
tial sources of root cause: (1) multiple input switching (MIS), (2)
coupling noise and (3) localized powergrid noise. For some of the
speedpaths, we discovered convincing evidences that they may be
due to one of the above three reasons. Then we manually inspected
the paths identified by the proposed methodology and observed that
those paths shared the same characteristics as the speedpaths, which
lead to the reasons that caused them to be speedpaths.

The rest of the paper is organized as the following. In Section 2
we give an overview of our speedpath data collection. Section 3 ex-
plains the theoretical foundation for how we use support vector anal-
ysis to build a model and use it to predict potential speedpaths. In
Section 4 we describe what path characteristics are and how we use
them in our analysis. In Section 5, we present the results from our
searching method. In section 6 we validate our proposed methodol-
ogy by conducting root cause analysis and in section 7 we conclude
our work and point to future work.

2. SPEEDPATH DATA COLLECTION
In microprocessor silicon steppings, speedpaths are identified us-

ing functional testing. This process employs various intrusive and
non-intrusive methods such as shmoo, LADA, TRE, LVP, pico-probe,
FIB, On-Die-Clock-Shrink (ODCS), and programmable clock-edge
skewing [5]. In addition to the traditional method, [4] proposes us-
ing logic and timing CAD to identify speedpaths. This CAD method
takes tester shmoo data as input and identifies the corresponding
speedpaths. Using tester shmoo data from a 65nm P4 microproces-
sor and the method described in [4], we analyzed 56 sightings ob-
served in four large functional blocks. For each of the 56 sightings
we identified a single speedpath, out of which 15 were topologically
unique (same physical path, but on different clock cycles).

The fact that a path shows up as a speedpath, leads to the logical
conclusion that there are some special things happening on the path
to cause it to become a speedpath (during the particular cycle and
under the particular vector). This special combination of "things" is
the root cause and usually it is not easy to uncover.

As mentioned in the Introduction, to eliminate a speedpath and
thus improve silicon frequency, it is not necessary to know the root
cause. Hence, even without knowing the root causes for the 56
speedpaths, we can still improve them so that they do not show up
as speedpaths in future revisions. This is recommended, but is not
the only way we can take advantage of the 56 speedpaths. For the
purpose of improving design, it would be more effective if one can
also identify additional paths similar to the 56 speedpaths, in the
sense that these additional paths have the potential to be speedpaths
in future revisions. By improving the delays also on these additional
paths, we take away the chance of them being the speed limiting
paths in future revisions of the design. This can be done in an effort
to improve performance of the design over silicon steppings. In the
following, we describe such a methodology.

3. SUPPORT VECTOR ANALYSIS
Suppose that a path p can be described as a vector!v = (f1, . . . , fn)

of n numerical values, where each fi is called a feature. !v describes
the characteristics of the path. For now, we postpone the discussion
of how to generate these features. It will be discussed in section 4
later. Given the 56 speedpaths, we assume that we have 56 vectors
V = {!v1, . . . ,!v56} describing the characteristics of these paths.
Our goal in this section is to develop a method that can learn from
V and produce a model M which can be used in the following way.

M(!v) for any path p described by !v, gives us a value telling us
how likely the path p may become a speedpath. The "likeliness"
is evaluated based on how similar path p is to one or more of the
56 speedpaths. The similarity between path p to a speedpath pi is
evaluated based on a kernel function k(!v, !vi), which takes the two
vectors as inputs and produces a value that measures the degree of
the similarity between them.

To see how M might look, consider two naive examples. In the
first example, M can be the following simple function: M(!v) = 1 if
!v is identical to any!vi; otherwise M(!v) = 0. If we use this model to
search the design, essentially we try to find all paths that have iden-
tical characteristics to one of the speedpaths. Intuitively, this naive
model does not work well. Consider that we do find a path whose
description is exactly the same as one of the speedpaths. The fact
that the path is not an observed speedpath implies that our method to
describe the path characteristics (feature generation method) is not
complete. If all the information required to determine if a path is a
speedpath is contained in the path description vector, this would not
have happened. From this perspective, the naive model should not
be used to find potential speedpaths. However, it might be used for a
sanity check on the completeness of the feature generation method.

In the second example, one can try to generalize from the char-
acteristic descriptions of the 56 speedpaths to establish an average
speedpath characteristic. Note that each vector !vi can be seen as
a point in an n dimensional space. For any two such points v, v′,
we can compute its Euclidean distance d(v, v′). Let the similarity
function be k(v, v′) = 1

d(v,v′) . Then, given the 56 points, we can
find its center mass which is also a point !vc in the n dimensional
space. A center mass is the point !vc such that the total distance∑56

i=1 d(!vc,!vi) is the minimum.
Given any path description !v, then we can compute its similarity

to the center mass as k(!vc,!v). Then, the model M is nothing but the
function k(!vc, ·) that measures how similar the path is to the average
speedpath characteristic represented by the point of the center mass.

218

While in the first example, we have a model that is too specific,
which does not give us any result, in the second example we may
have a model that is too general, which can mislead the result. For
example, the 56 points may spread widely in the n dimensional
space. As a result the center mass may be far from any of the points.
Then, any path vector close to the center mass may not be similar to
any one of the speedpaths.

The two naive examples illustrate how one can learn from the 56
path descriptions and construct a learned model. Because neither
of them works effectively, we need to develop a more sophisticated
algorithm. In this work, we develop such an algorithm based on
support vector analysis [10].

3.1 Support vector unsupervised learning
There are three types of support vector algorithms [11]: regres-

sion, classification and one-class. Regression and classification be-
long to supervised learning and one-class belongs to unsupervised
learning. Typical unsupervised learning problems include cluster-
ing of data points as well as finding outliers in a given set of data
points. In this work, we use the support vector one-class algorithm.
In our application, a support vector model takes the form:

M(!v) =
56∑

i=1

αik(!vi,!v) (1)

In this model, some αi’s are zero. Only path vectors with αi != 0,
are used to build the model. These vectors are called support vec-
tors. Others are called non-support vectors. For a path!vi, a larger αi

indicates that the path is more important for determining the value
of M . We see that the model M computes a weighted average of
the similarity between the path vector !v and all the support vectors.

If we take a threshold value t and consider all vectors !v such that
M(!v) ≥ t, essentially this defines a subspace (possibly discontinu-
ous) in the n dimensional space. We can then call this subspace the
region of potential speedpaths because any path whose description
vector falls inside the region, is at least t-similar to the speedpaths.

For a support vector model, its model complexity can be measured
by the number of support vectors [11]. The larger this number is, the
more complex the model becomes. A more complex model is also
more specific. A less complex model is more general. In essence,
we can think that a more complex model is more strict in predicting
a path as a potential speedpath. On the contrary, a less complex
model is less strict in doing so.

To illustrate the concept of model complexity, Figure 2 shows
three possible models for a simplified path vector set on a two di-
mensional space.

SV

SV

(a) Model 1 (b) Model 2 (c) Model 3

Figure 2: Illustration of model complexity

Figure 2(a), shows the simplest model that is a circle region de-
fined based on only two support vectors. The remaining dots are
non-support vectors. All these vectors represent speedpaths. If we
consider all other points inside the circle as being similar to the
speedpaths, we observe that the area defined by this model is the

largest. Figure 2(b), shows a more complex model, where the num-
ber of support vectors defining the region is increased. This model is
more specific than the previous because its area is smaller, i.e. there
exist paths determined as potential speedpaths by the first model but
not by the second one. Figure 2(c), shows the most complex model,
where every training sample becomes a support vector. This model
spans the minimal space needed to cover all the speedpaths.

Note that a more general model reduces the chance of false pos-
itive, i.e. the chance of rejecting a path that is actually a potential
speedpath. A more specific model, on the other hand, reduces the
chance of false negative, i.e. the chance of accepting a path that is
actually not a speedpath. Intuitively, one would think that we want
a model with a reduced chance of false positive. This is because we
do not want to miss any potential speedpath.

This intuitive strategy makes sense only if the accuracy of the
model is also high, meaning that it does not predict too many good
paths as potential speedpaths. For example, if we identify 1000 po-
tential speedpaths and only 10 of them are real, then the remaining
990 paths lead to a waste of engineering effort on improving them.
Moreover, speeding up these paths may result in increased power
consumption with little gain on the actual frequency.

As discussed before, speedpaths usually are due to special things
not explicitly considered by models and simulation. As a result, we
would expect their characteristic descriptions !v1, . . . , !v56 to be quite
unique, meaning that they may spread widely in the n dimensional
space. If we try to build a general model shown in Figure 2(a), this
model may potentially cover a large region in the space. Conse-
quently, many paths would be considered as potential speedpaths.
On the other hand, if we try to build a very complex model shown in
Figure 2(c), this model covers a very small space. Thus, only paths
that are identical to a observed speedpath are going to be considered
as potential speedpaths. We would like to find a optimal point in
between these two extreme cases.

To summarize, because the number of speedpaths used to build
the model is small and because the characteristics of these paths
are diverse, it is unrealistic to expect we can learn a general model
that captures only potential speedpaths without including other good
paths. Therefore, in our algorithm we do not try to build a general
model. Instead, our strategy is to start by building the most complex
model, followed by a sequence of models with gradually reduced
model complexity. Then, we develop a method to decide when to
stop and use the model at the stopping point as our optimal model.

Suppose that Mi and Mi+1 are built in two consecutive steps
where Mi is more complex than Mi+1. Suppose we use these two
models to search the design and identify the top k paths that have
the highest potential to be speedpaths. Let these two sets of paths
be Si and Si+1, respectively. We can check to see if Si ≈ Si+1.
If the two sets almost agree with each other, then we have a higher
confidence that Mi and Mi+1 are good models to use.

Although in this paper we do not provide a theoretical reason why
Si ≈ Si+1 can be a good heuristic to use, we do experimentally
validate that it does lead to more meaningful results. Sections 5
and 6 explain the experimental results and the validation process.
Moreover, it is intuitive to see that if Si differs from Si+1 much,
it cannot be the case that both of them are good. Even though one
of them may be a good model to use, we would not have a clear
way to judge which one. Hence, the logical choice is to continue on
building Mi+2.

In this work, our heuristic is based on checking the five sets Si−2,
Si−1, Si, Si+1, Si+2 for every model Mi (i.e. two before and two
after). We determine the model Mi such that these five sets agree
with each other the most. Then, we consider Mi our best model.
The effectiveness of this heuristic will be discussed in section 5.

219

3.2 Kernel Function
In support vector analysis, the resulting model complexity can

be controlled by how we define the kernel function. As explained
before, a kernel defines how to measure the similarity between two
path vectors. One common kernel is a radial based function:

k(!vi,!v) = e
−‖!vi−!v‖

σ (2)

Suppose that we have four paths, described by !vSV ,!v1,!v2,!v3,
where each vector consists of two values: !vSV = (1, 0.2), !v1 =
(1.02, 0.19), !v2 = (3, 0.1), and !v3 = (5, 1.2). Suppose that !vSV

describes a speedpath. If we were to select potential speedpath(s)
from the other three, by observing the values in the vectors, we
would pick !v1. Suppose that we build a model using !vSV as the
only support vector and let its α, from eq. (1), be 1. Then the model
is simply k(!vSV , ·). Table 1 shows the similarity values given by
the model based on three different chosen σ’s in the kernel function.

Table 1: Three different similarity calculations
σ = 1/40 σ = 1 σ = 40

k(!vSV ,!v1) 0.3011 0.9704 0.9992
k(!vSV ,!v2) ≈ 0 0.1224 0.9488
k(!vSV ,!v3) ≈ 0 0.0067 0.9048

It is interesting to observe that for a very small σ, it is easy to de-
cide that !v1 is similar to !vSV , and !v2, !v3 are not similar to !vSV . For
a large σ, we see that the similarity values for all three vectors are
large (above 0.9). Note that the maximum value possibly reported
by this kernel function is 1. For σ = 1, the value for !v1 is signifi-
cantly larger than the other two. If we believe that only !v1 should be
called a potential speedpath, then we see that using a small σ helps
to make this decision more easily. However, if we believe that all
three vectors should be potential speedpaths, then using a large σ
helps make this decision.

p3

p2
p1

pSV

Figure 3: Radial-based kernel similarity example

It is interesting to note that a small σ leads to a more specific
model (a more complex model), i.e. a path is considered to be sim-
ilar to the speedpath if their description vectors only differ by very
little. This is illustrated in Figure 3 where Pi represents the paths
in the radial space. On the other hand, if a large σ is used, we are
building a more general model.

4. FEATURE GENERATION
In this section we explain how a path can be described as a vector.

To do so, we first discuss the potential sources of modeling mis-
match. Based on these sources we describe how the actual features
used in the experiment were selected.

For speedpath prediction it is necessary to analyze situations with
potentially unaccountable effects. Unaccountable effects refer to
special situations where silicon behaves unexpectedly. Typically
these effects are not accounted for due to their rarity of occurrence
along with the large additional cost of modeling them. We group
them into five categories of effects:

• Topological effects are modeling issues related to location,
orientation, ordering and configuration. This can include, XY
location, layout orientation, neighboring elements, metal layer
connectivity, and/or number of via connections.

• Dynamic effects are modeling issues based on input patterns.
These effects show up during regular operation of a design.

Examples are: Multiple input switching, cross coupling noise,
dI/dt voltage droop, RC voltage droop, temperature variation.

• Static effects are modeling issues that are independent of in-
put patterns. These effects will appear everywhere the static
element is placed. An example of this is if a specific cell
is mis-modeled. Everywhere the cell appears it will be mis-
modeled independent of the patterns used to activate it. Other
examples are during RC extraction, specific shapes or layers
can be mis-modeled due to the extraction methodology.

• Statistical effects are modeling issues dealing with system-
atic variations in the physical characteristics of devices and in-
terconnects related to the process. These effects include intra-
die and inter-die variations due to lithography, dopant fluctu-
ations and/or chemical mechanical planarization (CMP).

• Random effects include any effects that are not based on
a statistical system. Examples of these are alpha particles
present during manufacturing or seismic activity during CMP.
These effects cannot be predicted or modeled.

From the set of effects described above, an engineer can develop
a set of features that can be used to differentiate between good paths
and speedpaths. This step is called feature generation. For ex-
ample the authors in in [2] [3] use "delay entity" to describe paths
to facilitate the learning of sources of timing uncertainty. In this
work we use "features" to describe paths to facilitate the measure-
ment of similarity among them. In addition we want this similarity
measurement to be in such a way that if a path is very similar to a
speedpath, then the unaccountable effects associated with the speed-
path are also likely to show up on the path. Keep in mind that the
feature definitions are entirely up to the user and can depend on the
application scenario. For example, if we have prior knowledge that
all the speedpaths are due to a power related issue then when apply-
ing the proposed methodology we may intentionally exclude other
sources of effects in the feature definitions.

In this work, based on our domain knowledge and application
scenario we choose the following features:

1. Active device type in a path due to logic sensitization. These
are based on four different flavors of N and P MOS transistors.

2. The predicted arc or stage delay for a particular cell in the
path. This is a function of input transition time, output load
and net resistance and capacitance.

3. Percent of total path delay due to the nets as opposed to cells.
%Net = NetDelay/(TotalPathDelay)

4. Dynamic switching activity in the region.
5. Cross coupling aggressor impact.
6. Temperature variation, using Infrared Emission Microscopy

to obtain a temperature map during functional operation [7].

With these feature definitions every path can now be described as
a vector. In the next section we describe the results of applying our
proposed methodology to identify potential speedpaths.

5. RESULTS
A large design can have millions or even billions of different paths

and we may not be interested in searching all of them. In this work,
we select 19,000 paths that were sensitized during functional testing.
Our goal is therefore to select potential speedpaths from this list.

Using a radial-based kernel and the heuristic described in sec-
tion 3.1, we learned a sequence of models and determined the op-
timal model complexity. In the heuristic each path set Si is the 50
most potential speedpaths resulting from model Mi. Figure 4, shows
the results from the most complex model consisting of 56 support
vectors to the least complex model consisting of 8 support vectors.
The optimal model occurs at 24. Where 48 out of 50 paths are shared
by the five models M22, M23, M24, M25, M26.

220

It is interesting to note that with more than 26 support vectors
(higher model complexity) there is little agreement between learned
models. In other words, above 26 the model is unstable in the sense
that a small change in complexity results in a large change in how
the model determines the potential speedpaths. As complexity falls
to between 23 and 19 support vectors there is no agreement between
models, showing that the model becomes unstable again. Although
model complexity below 19 support vectors tends to produce stabil-
ity, those models are not chosen because: 1) the number of shared
paths is much smaller than the 48 given by the optimal model, and
2) as mentioned before we prefer a more specific (higher complex-
ity) model than a general one (lower complexity). It is interesting
to note that if we only compare three models during our complexity
heuristic, Mi−1, Mi, Mi+1, the results are very similar to Figure 4,
with 24 support vectors again being optimal.

0

10

20

30

40

50

54 50 46 42 38 34 30 26 22 18 14

Optimal
of SVs

of support vectors

N
um

be
r

of
 s

ha
re

d
pa

th
s

Figure 4: Sweeping model complexity

Using the optimal learned model M24, we search all the 19,000
paths. For each path vector !v we compute its similarity M24(!v) and
we sort all the similarity values and the result is shown in Figure 5.
To select potential speedpaths for further improvement it is very easy
to define a similarity threshold based on the knee of the curve. For
example in Figure 5 we show such a threshold. From the figure we
can see that there are 6 paths that clearly stand out from the rest.
Furthermore, when zooming in on the right of Figure 5, we observe
7 additional paths that stay above the threshold. Using our searching
methodology, we identified 13 paths that we deemed to be potential
speedpaths. In the next section we will describe how we did root
cause analysis to verify our results.

Similarity Threshold Cut
Similarity Threshold Cut

Sorted Path Indices

S
im

ila
ri

ty
 M

ea
su

re These paths
clearly stand out

Figure 5: Result of support vector similarity ranking

6. ROOT CAUSE ANALYSIS
After identifying speedpaths and seeing the large discrepancy be-

tween predicted and measured results, we analyze them for potential
root causes. We initially suspected three dynamic effects: multiple
input switching, cross coupling noise and localized voltage droop.

6.1 Multiple input switching pushout
Multiple input switching occurs when multiple inputs of a gate

switch in temporal proximity, in which the max (min) delay is more

(less) than the pin-to-pin delays [6]. To analyze this effect, we sim-
ulate the entire logic cone for each speedpath using the test vectors
from the cycle on which the speedpath is observed in silicon. We
use a SPICE-accurate Monte Carlo statistical simulation, mentioned
in [4], to determine which gates have an impact on cone arrival time.
If two or more paths influence the cone arrival time, then we can
conclude that there are MIS effects within the logic cone.

Many of the cones do not have MIS situations such as: 1) the path
was only comprised of single input switching gates, or 2) the path
had gates with more than one input switching, but the secondary
signal switched to a non-controlling value and had no impact on the
gate functionality. On the other hand, some cones had gates with
multiple inputs switching but the pushout impact was negligible due
to the low probability of alignment of the switching signals. In fact,
only 4 cones had MIS inputs aligned close enough to impact cone
arrival time. But even on those 4 cones, the alignment was such that
the MIS impact was small. This analysis implies that MIS is not the
reason that these 56 paths show up slower than predicted in silicon.

6.2 Cross coupling noise
Cross coupling noise is when the capacitance between two neigh-

boring wires cause a logic event on one wire to induce noise onto
the other wire [8]. The cross coupling delay pushout for a stage is
a function of the victim and aggressor slopes, victim and aggressor
drive strengths, coupling capacitance, signal alignments, and direc-
tion of the transitions. For an accurate measure of the impact of
cross coupling noise all these parameters must be known. Due to the
size of the potential aggressor space this can be costly to calculate. If
we are only interested in bounding potential cross coupling effects,
we can greatly simplify this calculation by making a few assump-
tions. Since, we are only interested in coupling slowdown, we nar-
row down the aggressor space to only aggressors with opposite tran-
sitions than the victim wires during the cycle on which the speedpath
is sensitized. For this subset of total aggressors, we assume a worst-
case aggressor slope and alignment and use a noise-based coupling
model to compute an upper bound on coupling pushout.

Using this simplified model we compute the coupling pushout as a
function of the number of aggressors assumed to align on each stage
of the speedpath. The results of the delay pushout, as a percentage
of the total path delay, are shown in Figure 6.

0

5

10

15

20

25

30

35

0 1 2 3 4 5

Aggressors Assumed to Align

p1
p2
p3
p4
p5
p6
p7
p8
p9
p10
p11
p12
p13
p14
p15

C
ha

ng
e

in
 P

at
h

D
el

ay
 [

%
]

Figure 6: Aggressor Impact

Each line p1, ..., p15 represents the delay pushout for a single
speedpath. The x-axis shows the number of aggressors assumed
to align per stage (from 0 to 5). The aggressors are sorted based
on their impact. Even under our worst-case alignment and slope
assumptions, along with our worst-case 5 aggressor alignment per
stage, 11 of the 15 unique speedpaths experience a delay pushout of
less than 5%. For these paths, coupling noise can be ruled out as the
reason the paths show up slow in silicon. The other 4 paths show
a much higher delay pushout due to coupling noise, thus coupling
noise can be a potential reason why these paths became speedpaths.

221

6.3 Localized voltage droop
Localized voltage droop occurs when there is a sudden current

draw (dI/dt) on a localized region on the die. If the change in the
current is large enough, the power delivery system cannot supply
the required current fast enough to the gates. This results in a droop
in the expected voltage for those gates. The authors in [9], show
that in order for dI/dt voltage droop to occur, there must be a large
current ramp that hits either a local or global resonant frequency of
the power-grid and package. Without a large ramp, dI/dt droop is
not possible.

To approximate this effect, we analyze the switching activity of a
functional block for each cycle when speedpaths are observed. From
the functional test patterns we know which cells are transitioning for
a given cycle. Using logic transitions, capacitive load values and XY
layout location for each cell, we can approximate the current draw
in terms of switching capacitance. A large ramp in local switching
capacitance implies a large ramp in current draw. Without this ramp
we can assume that there is no change in current draw.

Figure 7 shows the results of this analysis for one of the speed-
paths located in the white circle. We divided a 1100um × 1500um
functional block into a grid, where each individual grid is a 125um
× 125um square. For each grid we analyzed the switching activ-
ity over a range of 9 cycles, starting at cycle 0 and back 8 previous
cycles. Cycle 0 in Figure 7(a), shows the speedpath when it ap-
peared as a speed-limiting path on silicon. The key thing to notice
is the change in switching activity at the location of the speedpath
between cycle −3 and cycle 0 when the speedpath was sensitized.
During cycle −3 there is almost no switching activity, shown by the
dark blue color. Then by cycle 0 there is a large amount of switching
activity, shown by the red color. Within 4 clock cycles this particular
functional block went from no activity to large activity. This clearly
shows a case where there would be a large ramp in current draw.

Cycle 0 Cycle -1 Cycle -2

Cycle -3 Cycle -4 Cycle -5

Cycle -6 Cycle -7 Cycle -8
(a) Droop

Cycle 0 Cycle -1 Cycle -2

Cycle -3 Cycle -4 Cycle -5

Cycle -6 Cycle -7 Cycle -8
(b) No Droop

Figure 7: Switching activity for a speedpath

Figure 7(b) shows the switching capacitance when the same speed-
path was sensitized on a different cycle, however this time it was not
a speed-limiting path. Again the speedpath is sensitized on cycle 0.
The key thing to notice in this picture is that even though there is
a large amount of switching activity in cycle 0, there is no change
in activity between each cycle. This means that the current draw
would have been constant, and there would have been no dI/dt volt-
age droop. We did this analysis for all identified speedpaths and 18
out of 56 showed potential dI/dt droop. Each of these 18 sightings
came from the same functional block and each time the path was
speed-limiting there was also a large ramp in switching activity.

6.4 Summary
In the previous sections we presented three different dynamic ef-

fects that we suspected to contribute to the measured silicon mis-
match. MIS analysis showed very little potential impact on silicon

and can be ruled out. Cross coupling analysis showed that a few
speedpaths are sensitive to coupling noise and it could be problem-
atic on silicon. Similarly, localized voltage droop analysis showed
that the paths in a particular functional block became speed-limiting
when there was a large ramp in switching activity.

7. CONCLUSION
After learning the results from our potential root cause analysis,

we inspected the characteristics of the 13 paths identified by our
support vector methodology. Not only did the paths share similar
characteristics to one or more speedpaths, but also if we were to
select potential speedpaths manually, after the root cause analysis
these 13 paths would have been selected.

In particular, all the paths had either identical or very similar
combination of active device types as one or more of the speed-
paths. In addition to the active devices: 1) Six paths showed high
delay pushout due to coupling noise. The amount of coupling noise
pushout is equal to or greater than the calculated pushout for 21 of
the 56 speedpaths. 2) Four paths had a large percent of total path
delay due to the net delay as opposed to cell delay. The net delay
was greater than 9.5% of the total path delay which is similar to 9 of
the 56 speedpaths. 3) Two paths showed high amounts of switching
activity. The level of the switching activity for these paths is similar
to 15 of the 56 speedpaths. Note that 2 of the 13 paths selected had
both a large pushout and a large net delay.

Of the thirteen paths that were selected, three of them did not
show any potential root causes. However, each of these paths has
similar active device types, net delays, coupling noise pushout and
switching activity to at least one speedpath. It is important to note
that for these speedpaths no potential root causes were also found.
This further emphasizes our earlier point that even without knowing
the root cause information, our methodology can search the design
and select potential speedpaths. Although our proposed heuristic to
select the optimal model works well in the experiment, the theoreti-
cal reason behind its effectiveness is not explained in this work. We
plan to provide such theoretical analysis in future work.

8. ACKNOWLEDGMENTS
We acknowledge the following people at Intel for their contribu-

tions to our speedpath identification and root cause analysis in the
form of guidance, discussions and implementation: Chandramouli
Kashyap, Suriyaprakash Natarajan, Arun Krishnamachary and Praveen
Parvathala.

9. REFERENCES
[1] L.Lee, L. Wang, P. Parvathala, TM Mak, "On Silicon-Based Speed

Path Identification," Proc. VTS 2005.
[2] P. Bastani, B. Lee, L. Wang, M. Abadir, "Analyzing the risk of timing

modeling based on path delay test," Proc. ITC, 2007.
[3] Li-C. Wang, P. Bastani, M. Abadir, "Design-silicon timing correlation

– a data mining perspective," Proc. DAC, 2007.
[4] K. Killpack, C. Kashyap, E. Chiprout, "Silicon Speedpath

Measurement and Feedback into EDA flows," Proc. DAC, 2007.
[5] B. Gottlieb, et al, "Silicon Debug: What Do You Do When Your ASIC

Does Not Work as Fast as Expected?" Proc. DAC, 2004.
[6] A. Agarwal, D. Blaauw, and F. Dartu, "Statistical Gate Delay Model

Considering Multiple Input Switching," Proc. DAC, 2004.
[7] D.Barton, P. Tangyunyong, J. Soden, A. Liang, F. Low, et al, "Infrared

Light Emission From Semiconductor Devices," ISTFA Proc. 1996.
[8] P. Larsson and C. Svensson, "Noise in digital dynamic CMOS

circuits," IEEE J. Solid-State Circuits June 1994, pp. 655-663.
[9] Sanjay Pant, Eli Chiprout, "Power Grid Physics and Implications for

CAD," Proc. DAC 2006.
[10] N. Cristianini, and J. Shawe-Taylor, "An Introduction to Support

Vector Machine," Cambridge University Press, 2002.
[11] Vladamir Vapnik, "The nature of Statistical Learning Theory," 2nd

editions, Springer, 1999.

222

