
36.2 

Malung Complex Timing Relationships Readable: 
Presburger Formula Simplification Using Don’t Cares 

http://www.cs.swt.edu/papers/dac98/ 

Tod Amont, Gaetano Borriellot, Jiwen Liut 

t Department of Computer Science 
Southwest Texas State University 

San Marcos, TX 78666 

TDepartment of Computer Science and Engineering 
University of Washington 

Seattle, WA 98 I95 
tod@cs.swt.edu gaetano@cs.washington.edu 

Abstract 
Solutions to timing relationship analysis problems are often reported 
using symbolic variables and inequalities which specify linear rela- 
tionships between the variables. Complex relationships can be ex- 
pressed using Presburger formulas which allow Boolean relations to 
be specified between the inequalities. This paper develops and ap- 
plies a highly effective simplification approach for Presburger for- 
mulas based on logic minimization techniques. 

1 Introduction 
Many problems in computer-aided design (ranging from physical 
placement to scheduling in behavioral synthesis) can be formulated 
using systems of linear inequalities. This is especially the case for 
problems that deal with temporal information. In the simplest cases, 
the inequalities must all hold and are derived from the delay ranges 
in the specification and the constraints (imposed by the user or envi- 
ronment) that must be satisfied for the system to function correctly. 
Graph algorithms have been effectively applied to determine the sat- 
isfiability (the ranges of allowable values for each variable) of these 
systems of inequalities [7, 131. 

In more complex cases, the temporal relationships may involve 
minimums and maximums which often lead to disjoint solution spaces 
and disjunctions between the linear constraints (e.g., { [x, Y] : x 
<= 3 0  or Y <= 3 0  or X + Y <= 70})[1,14]. Presburger 
formulas -which consist of affine constraints over integer variables, 
the logical connectives 7 ,  A, V, and the quantifiers V and 3, can be 
used to specify these types of relationships. 

Although Presburger formulas have not been widely used due 
to complexity concerns, they have been effectively used for prob- 
lems such as dependence analysis for advanced compiler optimiza- 
tions [9], model checking of infinite state programs [3], and me- 
chanical verification in theorem provers [4]. Some of the more re- 
cent uses have arisen because new software that can efficiently ma- 
nipulate Presburger formulas has been developed (Le,, the Omega 
libraries [ S ,  6, 10, 111). 

We have recently been using this software to perform symbolic 
timing verification of timing diagrams [2]. The promise of sym- 
bolic timing verification is that it can be used to derive constraints 
to be imposed on synthesis tools and/or enable the abstraction of 
complex timing relationships. Working with symbolic variables can 

Permission to make digital/hard copy of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distrib- 
uted for profit or commercial advantage, the copyright notice, the title of the publi- 
cation and its date appear, and notice is given that copying is by permission of ACM, 
Inc. To copy otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
DAC 98, San Francisco, Califomia 
0 1998 ACM 0-8979 1 -964-5/98/06. .$5.00 

also help humans understand and validate formal specifications of 
timing behavior. 

One problem is that the formulas reported by the Omega tools 
(and we suspect other libraries which support Presburger formulas) 
are in some cases not easy to read. This is a problem both for a hu- 
man designer that may be trying to interpret the result and make de- 
sign decisions as well as for synthesis tools that may work ineffi- 
ciently with a large Presburger formula that relates many variables 
(Le., delays in the circuit) with each other. In many cases, the re- 
sults reported by Omega can be simplified. Omega makes use of 
some important simplification strategies but these are often ineffec- 
tive even on formulas that a human can simplify in a few minutes. 
Many formulas require several hours of human manipulation before 
reaching their simplest form. 

In this paper, we report on a technique we have developed to 
automatically simplify quantifier free Presburger formulas obtained 
using the Omega libraries (our symbolic timing verification work 
results in these types of formulas) using techniques from logic min- 
imization that exploit don’t care information. Our results to date 
have been quite promising and we believe argue strongly that fu- 
ture implementations of Omega should support this simplification 
methodology. Because the formulas can be simplified efficiently, 
our results further support our belief that Presburger formulas can 
be effectively used to express and verify timing constraints for a va- 
riety of applications. 

Section 2 briefly describes how we use Presburger formulas to 
perform symbolic timing verification and presents examples which 
help motivate our work. Section 3 describes our methodology for 
simplifying Presburger formulas and how we derive the crucial don’t 
care information needed for minimization. Section 4 presents our 
results including examples of the simplifications our tools can ac- 
complish and the execution times required. Section 5 presents our 
conclusions. 

2 Symbolic Verification of Timing Diagrams 
We have been using Presburger formulas to perform symbolic veri- 
fication of timing diagrams, e.g., see Figure 1. Because we include 
support for symbolic variables, our verification problem consists of 
determining the requirements that the symbolic variables must meet 
in order for the timing constraints to be satisfied assuming that the 
other temporal relationships (e.g., specified propagation delays) are 
maintained. 

The problem description takes the form of a set of integer n- 
tuples where n is the number of symbolic variables. Within the for- 
mula we quantify variables which represent times at which signal 
transitions take place and use inequalities to express all of the tem- 
poral relationships (see [2] for details). We use the Omega libraries 
to remove the quantifications (using Fourier-Motzkin variable elim- 

586 

http://www.cs.swt.edu/papers/dac98
mailto:tod@cs.swt.edu
mailto:gaetano@cs.washington.edu


ination) to obtain a description ofthe requirements that the symbolic 
variables must meet in order for the constraints to always be satis- 
fied. Some of these requirements are quite trivial while others rep- 
resent important discoveries that arise from transforming the spec- 
ification by removing the quantifications using Omega. Numeric 
bounds for the symbolic variables may result, or important relation- 
ships between the symbolic variables may be exposed. We present 
two examples. 

Figure 1 
A timing diagram with a single constraint requiring that the second 
edge on signal A occurs no more than 30 nanoseconds after the first 
edge on signal C. All other times (in the range of [low,high]) are 
propagation delays some of which are “unknowns” expressed using 
symbolic variables. Presburger fcrmulas are used to formally capture 
the semantics of the timing diagram The Omega libraries are used to 
help perform verification. 

2.1 A Simple Example 
Figure 1 contains a simple example taken from [ I ]  in which CLP(R) 
and symbolic linear programming are used to perform the verifica- 
tion. Using our methodology the timing diagram is analyzed and 
the following integer tuple set is obtained: 

{ [ACl,ACh,CDl,CDh] : 
Exists (A-l,A-2,B-l,C-l,D-l: 
0 <= AC1 <= ACh and 0 <= CD1 <= CDh and A-2 >= A-1 and 

AC1 <= (C-1-A-1) <= ACh and 
40 <= (B-1-A-1) <= 40 and 
CD1 <= (D-1-C-1) <= CDh and 

max(B-l+lO.D-l+lO) <= A-2 E =  max(B-l+lO.D-l+lO)) and 

0 <= AC1 <= ACh and 0 <= CD1 c =  CDh and A-2 >= A-1 and 
Forall (A-l.A-2,B-l,C-l,D-l: not ( 

AC1 <= (C-1-A-I) <= ACh ,and 
40 <= (B-1-A-1) <= 40 a.id 
CD1 <= (D-1-C-1) <= CDh ,and 

max(B-l+lO,D-1+10) <= A-2 <: max(B-l+lO,D-1+10) 
) or (0 <= (A-2-C-1) <= 30 ) )  

1 ;  

Our verification tools transform the above formula into a Pres- 
burger formula (by removing the maximizations) and then use the 
Omega libraries to remove all of the quantified variables (Le., the 
events in the timing diagram). The result is a greatly simplified Pres- 
burger formula which is obtained using .2 seconds of CPU time and 
specifies the requirements that the symbolic variables must meet in 
order to satisfy the constraint (i.e., 0 5 A2 - C1 5 30): 

([ACl,ACh,CDl,CDh]! 20 C- AC:l <= ACh <= -CDht39 and 

{[ACl,ACh,CDl,CDh]: 0 <= CD.1 <= CDh <= 20 and 
0 <= CDL <= CDh) union 

20 <= AC:l <= ACh and 
40 <= ACh+CDh) 

We can, however, use Omega to formally prove that this solu- 
tion is equivalent to a solution obtained by manual inspection: 

([ACl,ACh,CDl,CDhl: 0 <= CD1 <= CDh <= 20 and 
20 <= AC1 <= ACh) 

Interestingly enough, we have on occasion found that the Omega 
libraries can produce this simplified answer. There are some simpli- 
fication algorithms built into Omega but they are not as general as 
the one we describe in this paper. Omega always presents solutions 
as unions of sets containing no disjuncts (Le., in sum of products 
form). 

2.2 Interface Verification Example 
This second example is taken from [15] which contains two speci- 
fications for a memory controller and a bus. Here, we consider only 
the read protocol and the combined specification as shown in Fig- 
ure 2. Using symbolic variables we can easily perform experiments 
which might, for example, help us to select another memory con- 
troller. We have added a constraint (i.e., ResponseTime) to the spec- 
ification to ask the question: “Given these values (some of which 
are symbolic) what will the overall length of the read cycle be?” 

Omega reports (using .6 seconds of CPU time to analyze a fairly 
complex Presburger formula) an answer that is difficult to read. One 
extension we have added to our tools is the ability to map Presburger 
formulas by introducing mapped variables in place of inequalities. 
Our tool can also replace unions by disjunctions. Using these sim- 
ple tools, we can report the result in a more readable form as: 

I [  RR1 , RRh , PW1 , PWh , RT1 , RTh I :  ( 
( a and b and c and d and e and f and g and h ) o r  
( i and b and c and h and ! f  and d and g ) o r  
( b and !a  and c and e and f and g ) o r  
( b and c and j and d and k and e and f and g ) or 
( i and b and c and j and d and e and ! f and g ) ) 1 

a : RT1 <= RR1 + 160 
b : RR1 >= 30 
c : RRh >= RR1 
d : PW1 >= 0 
e : PWh >= PW1 

map 

f : RT1 <= 10 + RR1 + PW1 
g : RTh >= 30 + RRh + PWh 
h : PWh >= 150 
i : RT1 <= RR1 + 150 
j : RTh >= 180 + RRh 
k : PW1 <= 150 

By inspection one can note that many of the inequalities appear 
multiple times in the result. One of our original intentions was to 
use a logic minimization tool to support factoring and algebraic ma- 
nipulation of the resulting formulas. This can help present answers 
in a more readable form and also help one to manually simplify the 
formula. Over the course of several days spent working with this re- 
sulting formula, we obtained a much simpler formula which Omega 
verified was identical to the result reported above (the same map- 
ping applies): 

{ [  RR1 , RRh , PW1 , PWh , RT1 , RTh I :  
b and c and d and e and g and j and (f o r  ( i and k)) 1 

Automatically obtaining simplified answers such as this one is 
the purpose of the work reported in this paper. Using simple an- 
swers one can more easily and efficiently uncover important and in- 
teresting relationships than would be possible with the more com- 
plex results reported by Omega. 

3 Simplification Methodology 
Our simplification methodology is based upon mapping Presburger 
formulas and then extracting don’t care information so that we can 
better use logic minimization tools such as SIS (Espresso) to per- 
form the actual simplification. Using this technique we can obtain 

587 



Addr 

Request 

Ready 

Data 

Type 
constraint 
constraint 
constraint 

delay 
delay 

guarantee 
guarantee 
guarantee 
guarantee 
guarantee 
guarantee 
guarantee 
guarantee 
constraint 
constraint 
constraint 

delay 
delay 

constraint 

Name 
mADDRsetup 
mR/Wsetup 
mA D D R h o 1 d 
mtReady Response 
mtDataValid 
mtDataDriven 
mReady Pulsewidth 
mtDataInvalid 
mtDataZ 
bADDRsetup 
bR/Wsetup 
bADDRhold 
bR/Whold 
btDataValid 
btDataInvalid 
bReadyDelay 
bReadyLReq 
bReady HReq 
ResponseTime 

Figure 2 
Combined timing diagram and tables for the bus and memory con- 
troller. The prefixes “b ’  and “mi’ indicate whether the relationship 
came from the bus specification or the memory specification. The re- 
sponse time constraint was added after the diagrams were composed. 

not only mimized sum-of-products form but also factored forms that 
tend to be more readable because the number of literals is minimized. 

As a simple example, consider the Presburger formula: { [ X] : 
X > 2 0 and x > 3 0) which should obviously be simplified and 
reported as { [ X I  : X > 30). Omega contains algorithms for 
eliminating redundant constraints and would in fact report this so- 
lution. We map this formula to produce: 

{ [ X I :  ( a  and b) 1 
map 
a : X > 2 0  
b : X > 3 0  

and thendiscover thedon’t care: a’ b (Le., not a and b) which 
when included for the minimization of a b  (i.e., a b  + a’ b) pro- 
duces b which corresponds to { [XI : X > 3 O } .  

The don’t cares we discover are reported as a mapped Presburger 
formula in sum-of-products form (each product is adon’t care). Dis- 
covering this information is potentially quite time consuming. Our 
initial efforts have been based upon the rather obvious and rather in- 
efficient method of considering every possible combination of mapped 
variables. If there are M mapped variables and one wishes to con- 
sider don’t cares containing n mapped variables there are: ( :: ) 
combinations. Each combination represents 2“ potential don’t cares 
because each mapped variable might appear in a don’t care in either 
negated or non-negated form. Each potential don’t care is analyzed 

using Omega which will reportfalse if there is no way to satisfy the 
conjunctedinequalities(e.g., { [ X I  : n o t  ( X  > 2 0 )  and X 

We have identified two optimizations we believe are quite im- 
portant and useful for making this computationally feasible. We also 
believe other optimizations and improvements to our algorithm are 
quite likely to be discovered (we intend to investigate a more con- 
structive approach to finding don’t cares which would avoid the need 
to even generate all of the combinations). 

One optimization uses previously discovered don’t cares to avoid 
generating don’t cares which are of no interest (e.g., if a b’ is adon’t 
care then obviously so is ab’ x where x is any mapped variable). 
For the examples we looked at, this optimization does not greatly 
reduce the time required to extract don’t cares because it requires a 
fair amount of computation time to implement. It does, however, re- 
duce the amount of time needed during logic minimization because 
fewer don’t cares are identified. 

Our most important optimization relies on an array that indi- 
cates which symbolic variables appear in each mapped variable. If 
there are M mapped variables and S symbolic variables we con- 
struct I N ,  an M x S array where: 

i 0 otherwise 

> 3 0  }. 

1 if mapped variable m includes 
symbolic variable s in i ts  inequality I N [ m ] [ s ]  = 

This array is consulted for each combination of mapped variables to 
determine whether or not we need to use this combination to gen- 
erate potential don’t cares. Although we do not implement our al- 
gorithm this way, we essentially compute the sum of each row cor- 
responding to a mapped variable in the combination being consid- 
ered. The resulting vector indicates how many times each symbolic 
variable appears in the combination. 

We do not construct potential don’t cares for combinations that 
have a 1 somewhere in their summation vector. This optimization 
is based on the observation that if a symbolic variable appears only 
once then there is only one inequality constraining that variable and 
thus it  is essentially a free variable. Given the presence of a free 
variable, Omega will not reportfalse, unless irrespective of the value 
of the variable, the result is false (and thus at least one mapped vari- 
able is not needed in order to cover this don’t care). 

Our simplification methodology allows users to specify a range 
of don’t cure levels, to specify the minimum and maximum num- 
ber of mapped variables appearing in potential don’t cares. Users 
can adopt a simplification methodology based upon iteratively in- 
creasing the maximum don’t care level until a reasonable solution 
is found or compute times grow to be too large. 

We have two tools we use to move between mapped Presburger 
formulas and SIS, a logic optimization tool developed at UC Berke- 
ley [ 121. Our tool eqnextract takes a mapped Presburger formula as 
input and produces a . eqn file for use by SIS. Our tool eqninsert 
takes a . eqn file and a mapped Presburger formula and replaces the 
formula with that specified by the . eqn file. 

Using SIS we can read an . eqn file and write the result back 
in the . bl i f format. We have a tool, blifmerge, which merges two 
. bl i f files assuming the second file specifies the onset of the don’t 
cares for the first (Le., we use the . exdc directive). We can then 
use SIS (Espresso) to read the combined blif file and minimize the 
function using thedon’t care information (Le., using full-simplifq 
If a factored form is desired it can be created and the minimized 
logic can be written back to an . eqn file and then incorporated back 
into a Presburger formula. Although the underlying minimization 
metric used by SIS is geared towards reducing the size of the re- 
sulting logic we believe it performs a reasonable job of simplifying 
expressions for human readability. 

588 



4 Results 
In this section we describe the result of applying our techniques to 
the examples described in Section 2. Our execution times are quite 
reasonable especially given that the code we have written is not very 
efficient and that we are running on a fairly old DEC 3000 worksta- 
tion with 32 MB of memory. Even more importantly, our algorithms 
sit on top of Omega. We maintain an intemal data structure similar 
to that used by Omega and a great deal of time is spenting copy- 
ing between our data structure arid the Omega data structure. If our 
methodology were to be implemented within the Omega libraries 
vast improvements in execution time should result. Mapping and 
logic minimization are quite efficient and took less than one second 
of CPU time for all of the examples reported below. 

4.1 Interface Timing Verification 
For the mapped formula in Section 2.2 we have: 

I N  = 

/ 1  0 0 0 1 0  
1 0  0 0 0 0 
1 1 1  0 0 0 0 
0 0 1 0  0 0 
0 0 1 1 0 0  
1 0  1 0  1 0  
0 1 . 0 1 0 1  
0 0 0 1 0 0  
1 0 0 0 1 0  
0 1 . 0 0 0 1  

\ 0 0 1 0 0 0  

The combination a f k would result in the summation of rows 
1 ,6 ,  and 11 and produce: 

( 2  0 2 0 2 0 )  

which indicates that symbolic variables RR1,  PW1, and R T 1  each 
appear twice in the mapped inequalities of a f k and that the sym- 
bolic variables RRh,  PWh, and RT’h do not appear at all. Because no 
symbolic variable appears only once the combination a f k would 
be used to generate potential don’t cares. Figure 3 summarizes the 
results of applying our don’t care (extraction methodology at various 
don’t care levels. Using the results from don’t care level 2, SIS sim- 
plified the formula but it still consisted of 5 product terms. Much to 
our surprise, using the additional results from don’t care level 3, SIS 
reports an even better result than the one we obtained by hand: 

( [  RR1 , RRh , PW1 , PWh , R‘P1 , RTh 1 :  
b and c and d and e and g and j and ( f  o r  i) 1 

4.2 Our Simple Example with More Symbolic Variables 
As a test of our methodology we complicated our first example (see 
Figure 1) by introducing more symbolic variables. Specifically, all 
numeric values were replaced with symbolic variables including the 
upper bound (Le., 30) of our consmint (we kept the lower bound of 
0 because we are assuming AZ 2; Cl). Using the Omega libraries 
to analyze this revised problem (which now contains 11 symbolic 
variables) we obtained the following solution (after mapping): 

{ [  AC1, ACh, AB1, ABh, CD1, CDh, DA1, DAh, BA1, BAh, CAh 1 :  
( ( a  and b and c and d and e and f and g 

and h and i and j and k and 1) o r  
(a  and b and c and d and e and f and g 

and h and i and j and m and n )  o r  
(a  and b and c and d and e and f and g 

and h and i and j and !m and 1 and !k and n ) ) )  
map 

[ level I analyzed I 
I 2 I 2 / 5 5  I 81220 I 0.04 I a’ i + d ’  k’ 

Omega I time I don’t cares 1 1 81 165 1 621 1,320 1 0:; 1 f ’  + a’f k + 1 
Figure 3 

d’ f i’ 
+ e h ’ k ’ + e ’ h k +  
g h j’ +g’ h’ j 

14 1330 174 15,280 
23 I 462 495 I 14,784 5.12 none 
35 1462 1496 I 29,568 17.24 none 

Results for the example in Section 2.2 reported for each don’t care 
level. We report the actual number of combinations that needed to he 
analyzed (based on our optimization) compared to the total number of 
combinations. We also report the number of Omega calls that were 
made compared to the number that would have been made if all of 
the combinations were considered. The CPU time and the don’t cares 
discovered at each level are also reported. 

a : AC1 >= 0 
b : ACh >= AC1 
c : AB1 >= 0 
d : ABh >= AB1 
e : CD1 >= 0 
f : CDh >= CD1 
g : DA1 >= 0 
h : DAh >= DA1 
i : BA1 >= 0 
j : BAh >= BA1 
k : ACh + CDh < AB1 + BAh - DAh 
1 : AC1 >= ABh + BAh - CAh 
m : AC1 + CD1 > ABh + BAh - DAh 
n : CDh <= CAh - DAh 

Don’t care analysis at levels 2 and 3 revealed nothing. Don’t 
care analysis at level 4 yielded two don’t cares and SIS reduced the 
answer to two product terms. Don’t care analysis at level 5 yielded 
twelve additional don’t cares and using SIS we obtained the follow- 
ing simplified answer: 

{ [  AC1, ACh, AB1, ABh, CD1, CDh, DA1, DAh, BA1, BAh, CAh I :  
(a  and b and c and d and e and f and g and 
h and i and j and 1 and n ) l  

Note that some of the mapped inequalities (i.e., k and m) disap- 
pear as a result of the simplification. The result is much easier to un- 
derstand, because most of the inequalities are quite trivial (Le., a to 
j simply state that the lower bounds on the delay ranges are greater 
than zero and that the upper bounds are greater than the lower bounds). 
The two non-trivial inequalities reflect the essence of the solution: 
in order for our constraint from C1 to A2 to be met we need an 
upper bound on the delay from C1 to D1 and D1 to AI (Le., in- 
equality n) and we need a lower bound on the delay from A1 to C1 
(Le., inequality 1) to ensure that C1 does not occur too soon with 
respect to B1. Readers may want to compare this solution to that 
reported in Section 2.1 (i.e., where CAh=30, ABh=40, DAh=10, 
and BAh=10) and note that this symbolic analysis tells us which 
numeric values were important in our original solution. 

Our optimization worked particularly well for this example. At 
don’t care level 4 we had to analyze one combination out of a possi- 
ble 1,001 and at don’t care level 5 we had to analyze four combina- 
tions out of a possible 2,002. The required execution times for this 
analysis were thus quite minimal. We believe this example demon- 
strates the benefits of using symbolic variables to obtain symbolic 
solutions to timing verification problems. Symbolic solutions can 
assist designers in evaluating tradeoffs and make it easier to vali- 
date and understand their formal specifications. 

589 



5 Conclusions 
The best known upper bound on the performance of an algorithm for 
verifying Presburger formulas is O(2”” ) [8] and Omega may have 
an even larger upper bound For this reason, Presburger formulas 
have not been used very much for timing analysis We believe that 
this will change because the Omega libraries have demonstrated that 
manipulations can often be efficiently performed and because the 
type of analysis that can be provided is quite useful. Our simpli- 
fication algorithms also have ternble worst case complexity yet are 
quite capable (given simple optimizations) of greatly improving the 
results reported by Omega using reasonable amounts of computa- 
tion 

We intend to make immediate use of our results to help us con- 
tinue exploring symbolic timing verification of timing diagrams and 
other timing abstractions Our simplification methodology will quite 
likely be of great benefit in other application areas as well, both for 
users of Omega (I e , as of February 1994 over 400 researchers had 
obtained copies of the Omega software libraries [lo]) and for other 
users of Presburger formulas (many theorem provers contain algo- 
rithms for analyzing Presburger formulas) 

Our tools need to be further refined in addition to being made 
more efficient The refinements are needed not only to more auto- 
matically translate between forms but also to give users a suite of 
manipulation routines so that results can be presented in the form 
most appropriate for the domain of application and intended use 
For example, in interface circuits, it might be especially valuable 
to identify “trivial” inequalities (such as those that require lower 
bounds to be smaller than upper bounds or that require delays to 
be greater than zero) and provide users the option of omitting them 
from displayed solutions Efficiency improvements revolve around 
identifying further optimizations in don’t care extraction and more 
tight integration with the Omega libraries 

6 Acknowledgements 
This work was supported by an NSF RIA Award (MIP-9410279). 
We wish to thank Wilbon Davis for several interesting discussions 
and Ellen Sentovich for help with SIS. 

References 
[ I ]  T Amon and G Bomello An approach to symbolic timing venfi- 

cation In Proc ACM/IEEE Design Automation Conference (DAC), 
June 1992 

[2] T Amon, G Bomello, D Hu, and J Liu Symbolic timing venfication 
of timing diagrams using presburger formulas In Proc ACM/IEEE 
Deyign Automation Conference (DAC), June 1997 

[3] Tevfik Bultan, Richard Gerber, and William Pugh Symbolic model 
checking of infinite state programs using presburger anthmetic Tech- 
nical Report UMIACS-TR-96-66, University of Maryland, Septem- 
ber 1996 

[4] D C Cooper Programs for mechanical program veqfication In Ma- 
chine Intelligence 6,  197 1 

[5]  Wayne Kelly and William Pugh Determining schedules based on per- 
formance estimation In Parallel Proceswg Letters, September 1994 

[6] Wayne Kelly and William Pugh Finding legal reordenng transfor- 
mations using mappings In Seventh International Workshop on Lan- 
guage? and Compiler? for Parallel Computing, August 1994 

[7] K L McMillan and D L Dill Algonthms for interface timing ven- 
fication In Proc International Conf Computer Design (ICCD), Oc- 
tober 1992 

[ S I  Derek Oppen. A 222pn upper bound on the complexity of presburger 
arithmetic. In Journal of Computer and System Sciences, July 1978. 

[9] William Pugh. A practical algorithm for exact array dependence anai- 
ysis. Communications of the ACM, 35(8) ,  August 1992. 

[lo] William Pugh et al. The omega project. In URL: 
http:/hww. cs. umd. edu/projects/omega. 

1 I] William Pugh and David Wonnacott. An exact method for the anal- 
ysis of value-based array data dependences. In Proc. 6th Workshop 
on Programming Languages and Compilersfor Parallel Computing, 
August 1993. 

121 E. M. Sentovich et al. SIS: A system for sequential circuit synthesis. 
Technical Report UCBERL M92/41, UC Berkeley, May 1992. see 
http://www-cad.eecs.berkeley.edu/Software/. 

[13] P. Vanbekbergen, G. Goossens, and H. De Man. Specification and 
analysis of timing constraints in signal transition graphs. In European 
Design Automation Conference, March 1992. 

[ 141 E. Walkup and G. Bomello. Interface timing verification with applica- 
tion to synthesis. In Proc. ACM/IEEE Design Automation Conference 
(DAC), June 1994. 

[I51 Elizabeth A. Walkup. Optimization of Linear Max-Plus Systems with 
Application to Timing Analysis. Ph.D. thesis, University of Washing- 
ton, 1995. 

590 

http:/hww
http://www-cad.eecs.berkeley.edu/Software

