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ABSTRACT
The clock frequency of a digital IC is limited by its slowest
paths, designated by speedpaths. Given the extreme com-
plexity involved in modeling modern IC technologies, often
speedpath predictions provided by timing analysis tools are
not correct. Therefore, several practical techniques have re-
cently been proposed for design debugging, that combine
silicon stepping of improved versions of a circuit with sub-
sequent correlation between measured and predicted data.
Addressing these issues, this paper proposes a set of tech-
niques that enable the designer to obtain reduced subsets of
paths, guaranteed to contain all the speedpaths of a given
circuit or block. Such subsets can be computed either from
timing models, prior to fabrication, or incorporating actual
delay measurements from fabricated instances.

Categories and Subject Descriptors
B.7.2 [Hardware]: Integrated Circuits—Design Aids

General Terms
Algorithms, Design, Theory, Verification

Keywords
Speedpath analysis, Parametric timing models

1. INTRODUCTION
The performance of a digital IC is limited by its most

timing-critical paths, usually designated by speedpaths. Per-
formance is most often related to the maximum frequency
at which a given IC can be clocked, and can be measured
by applying a set of functional tests to the fabricated IC,
designed to exercise all the speedpaths. Above the limiting
clock frequency, some of these tests will fail.

Most ASICs are designed to operate at a particular clock
frequency, therefore all the fabricated ICs that meet that
clock frequency threshold are accepted, and the remaining
ones are rejected. Microprocessor designs are, in general,
more flexible and able to operate on a relatively wide range
of clock frequencies. Therefore, a binning scheme is usually
adopted, whereby every IC is tested and, according to its
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maximum clock frequency, is assigned to a given bin, or
rejected. Each bin corresponds to a speed rating, and ICs
with higher speed ratings are sold at higher prices.

Ideally, speedpaths would be correctly predicted by static
timing analysis (STA) tools, prior to fabrication. However,
accurately modeling all the effects present in modern IC
technologies is an overly complex task. Furthermore, such
technologies are increasingly sensitive to process variabil-
ity, which introduces additional uncertainty. Consequently,
most often speedpath prediction may not be entirely accu-
rate, some of the critical paths in the fabricated IC may ac-
tually be missed and, instead, other paths may be reported
with a distinct, yet relatively close, predicted delay.

The importance of correctly identifying the set of speed-
paths of a given circuit is two-fold. First, it enables timely
design correction, by fixing the speedpaths prior to fabrica-
tion, such that the design meets the target clock frequency.
Second, it improves the quality of test generation. Since it
is usually impossible to test the behavior of a given IC for
all possible test sequences, only the sequences that exercise
the critical aspects of the circuit, such as speedpaths, are
tested for the purpose of speed rating. By failing to exercise
the speedpaths of a given IC, the testing procedure may be
unable to correctly identify its limiting clock frequency.

Even though STA tools may fail to correctly identify all
the speedpaths, due to limited accuracy in modeling mod-
ern IC technology effects, they should at least be able to
provide a conservative set of paths, guaranteed to contain
all the speedpaths. Therefore, by fixing all such paths prior
to fabrication, designers could ensure that the speedpaths
would also be fixed. Addressing this problem, and given a
parametric timing model of a circuit, this paper proposes
a technique, built on top of [3], that enables the efficient
computation of its top k critical timing corners and paths.
By choosing k appropriately, the designer should be able to
obtain a set of paths that contains all the speedpaths.

Given the limitations of STA tools that have been dis-
cussed, several practical techniques [6, 1, 5, 8] have recently
been proposed for design debugging, that combine silicon
stepping (e.g. fabrication of increasingly optimized versions
of the same circuit) with subsequent analysis and corre-
lation of measured and predicted data. Such techniques
target the improvement of timing models by feeding back
such models with actual delay measurements from fabri-
cated instances. Speedpath isolation techniques, discussed
in [6], target the identification of speedpaths in fabricated
IC instances by correlating silicon delay measurements with
timing and functional models. In a slightly different ap-
proach, [1] employs learning techniques on a small set of
examples for improving circuit-wide speedpath prediction.
Another approach, recently proposed in [8], uses real de-
lay measurements, obtained from fabricated IC instances,
to rank the most likely combinations of speedpaths, from
within a set of user-supplied paths. This approach assumes
that the timing models are accurate, and therefore proposes
that the most likely combinations of speedpaths are the ones
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where the sum of quadratic errors between the model and
the measurements is the smallest.

This paper proposes a methodology that enables the ex-
traction, for each primary output of a combinational IC
block, of a reduced set of paths that is guaranteed to contain
the corresponding silicon speedpath. Unlike [8], no tedious
path selection is required by the user, since only the timing
graph of the block and the silicon delay measurements [6]
must be provided. Additionally, our approach takes the re-
alistic assumption of inaccuracies in the timing model. The
resulting set of candidate speedpaths can be used for de-
tailed analysis or even be fed back to [8] for ranking.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the parametric timing models underlying
the work present in this paper. Section 3 proposes an ex-
tension to [3] that enables the efficient computation of the
top k critical timing corners and paths of a given IC block.
Section 4 proposes a methodology for, given silicon delay
measurements of an IC block, computing a reduced subset
of paths that is guaranteed to contain all its speedpaths.
The experimental results are discussed in Section 5. Finally,
Section 6 presents brief concluding remarks.

2. PARAMETRIC TIMING MODELING
The timing information of a circuit is modeled by a timing

graph G = (V,E), where vertices, v ∈ V , correspond to pins
in the circuit, and directed edges, e ∈ E, correspond to pin-
to-pin delays in cells or interconnect. The primary inputs,
u ∈ PI(G), are vertices with no incoming edges. All vertices
with no outgoing edges are primary outputs, w ∈ PO(G),
but there may also be primary outputs with outgoing edges.
A complete path is a sequence of edges, connecting a primary
input to a primary output. A path is a sequence of edges
connecting any two vertices

Each edge of the timing graph is annotated with the cor-
responding delay, resulting from a delay calculation proce-
dure, whereby slews are forward propagated across the cir-
cuit and, using appropriate cell and interconnect models,
the delays and output slews for each component are com-
puted [4]. Since it is out of the scope of this paper to discuss
the delay computation procedure, in the following, we will
assume that the timing information of any circuit is already
made available in the form of an annotated timing graph.

This work assumes a parametrized static timing analysis
(PSTA) model [10, 8, 9], where delays are described by affine
functions of process and operational parameter variations,
corresponding to a first-order linearization of every delay, d,
around a nominal point, λ0, in the parameter space. Consid-
ering the parameter space to have size p, and representing d
as a function of the incremental parameter variation vector,
∆λ = λ− λ0, around a nominal value λ0, we obtain

d(∆λ) = d0 +
p∑

i=1

di∆λi (1)

where d0 = d(λ0) is the nominal value of d and di is the
sensitivity of d to parameter λi, i = 1, 2, . . . , p, computed at
the nominal point λ0.
When delays are given in the form of Eqn. (1), arrival

times can be exactly represented by piecewise-affine func-
tions, since they are the result of a sequence of min/max and
sum operations between piecewise-affine functions and affine
functions. Affine functions are convex [2]. Further, since
both min/max and sum operators produce convex functions
when operating on convex functions, the resulting piecewise-
affine arrival time functions are also convex. In the con-
text of timing analysis, convexity implies that the small-
est/largest delay or arrival time is obtained by setting each
parameter to one of its extreme values. For delays, that
are represented by affine functions, this value is fairly easy
to compute. Assuming that ∆λi ∈

[
∆λmin

i ,∆λmax
i

]
, if in

Eqn. (1) we set to∆λmax the parameter variations with pos-
itive sensitivities, and to ∆λmin the remaining ones, we are
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Figure 1: Example of worst-delay paths and corners.

maximizing the value of the affine delay function over the
parameter space, therefore obtaining the maximum value

max
∆λ

[d(∆λ)] = d(∆λ∗) = d0 +
p∑

i=1

di∆λ∗
i (2)

where the maximizing parameter variation assignment is

∆λ∗
i =

{
∆λmin

i if di ≤ 0
∆λmax

i if di > 0
, i = 1, 2, ..., p (3)

The min can be computed by symmetry. For affine functions
this computation takes linear time in the number of param-
eters, however, for piecewise-affine functions this computa-
tion is quite expensive, since it requires an implicit or explicit
enumeration of all the 2p possible solutions (corners), which
makes it exponential in the number of parameters.

3. K-MOST CRITICAL PATHS/CORNERS
Since path delays are affine functions, they can assume any

value between their minimum and maximum values, that oc-
cur at the corners specified by Eqn. (3) and its symmetrical.
Figure 1 illustrates the range of possible path delay values
for 6 paths of a given circuit, where 2 parameters were con-
sidered (and therefore 4 corners exist). Vertical lines cor-
respond to the delay range of each path. Small horizontal
lines mark the path delay values at each of the 4 corners.

The worst-delay path, or speedpath, of a circuit is the
path that exhibits the worst delay, among all paths, for ev-
ery possible assignment of the process parameter variation
vector. As discussed in Section 2, the worst delay of any
given path, and also of the speedpath, is achieved in a given
corner of the process parameter variation space. Therefore,
worst-delay corner is the corner of the process parameter
variation space that produces the worst delay in the worst-
delay path, as can be observed in Figure 1. However, the
second worst-delay corner can occur in the worst-delay path
or in the second worst-delay path. In this illustration it oc-
curs also in the worst-delay path, and the third worst-delay
corner occurs in the second worst-delay path, and so on.

The brute-force method for computing the k-worst de-
lay paths would consist in extracting the worst-delay from
the parametric delay formula of every path, by applying
Eqns. (2,3), and subsequently picking the paths that pro-
duced the k-worst values of the resulting path delay set. This
procedure is clearly unfeasible since the number of paths can
grow exponentially with the number of vertices. Comput-
ing the k-worst delay corners in a simplistic manner would
involve timing the circuit for every corner and subsequently
picking the corners that produced the k-worst values of the
resulting circuit delay set. This approach would also be un-
feasible, due to the exponential number of corners involved.

3.1 Worst-Delay Corner Computation
This section presents a brief overview of the automated

methodology proposed in [3] for computing the worst-delay
path/corner of a circuit, given a linear parametric character-
ization of cell and interconnect delays. This formulation will
be subsequently extended to enable the exact computation
of the k most critical paths of a circuit.
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Figure 2: Illustration of delay estimates.

Consider the timing graph of a combinational block with
n inputs and m outputs. Assuming that delays, annotated
in edges, are affine functions of the process parameters, as
in Eqn. (1), then any delay, di,j(∆λ), from input i to output
j can be accurately represented by a piecewise-affine func-
tion [3]. The worst-delay corner (WDC) problem, consists
in computing an assignment, ∆λ∗, to the parameter vari-
ation vector, ∆λ, that produces the worst delay, di,j(∆λ),
from any input i = 1, . . . , n to any output j = 1, . . . ,m. In
the following, and for the sake of clarity, we will assume late
mode operation, meaning that the worst delay will be the
largest delay. Assuming that di,j(∆λ) is the piecewise-affine
function of the delay from primary input i to primary output
j, then the WDC problem can be formulated as

max
∆λ

{
max

j=1,...,m

[
max

i=1,...,n
di,j(∆λ)

]}
(4)

The simplest exhaustive algorithm for computing theWDC
consists in calculating the affine delay function of each path
in the circuit, by adding the affine delay functions of its
edges, and subsequently computing the corner that produces
the worst delay for each path, using Eqns. (2) and (3). The
WDC is the corner that produces the worst delay among all
paths. This procedure exhibits linear run-time complexity
in the number of paths and parameters. However, since the
number of paths can grow exponentially with the number
of vertices, this procedure can have exponential run-time
complexity in the number of vertices, thus becoming overly
expensive even for moderately sized circuits.

In order to avoid the detailed analysis of every path in the
circuit, [3] proposes the use of branch-and-bound techniques
to prune the timing graph, thus significantly reducing the
number of paths requiring detailed analysis. Considering a
primary output at a time, the technique proposed in [3] per-
forms an explicit or implicit analysis of all the complete paths
that end at that primary output, that we will designate as
the active primary output. The timing graph is traversed in
a backward fashion, starting at the active primary output,
going through the internal vertices, and eventually ending at
the primary inputs (if no pruning is performed). The vertex
being visited in a given step is designated by current vertex.
The path taken to reach that vertex from the active pri-
mary output is designated by trail. If reconvergent fanouts
exist, the same vertex can be reached from the same primary
output, through distinct trails. The worst delay, d∗, found
among the complete paths already analyzed is continuously
updated, as well as the corresponding corner, ∆λ∗. For each
current vertex of the timing graph, v, the algorithm relies
on three parametric delay estimates:

• dinv is an upper bound on the delay from any primary
input to vertex v (e.g. in the fanin cone of v);

• doutv is the delay of the trail;

• dpathv = dinv + doutv , which represents an upper bound
on the delay of any complete path going through v,
that contains the trail.

The affine expression of dinv is calculated beforehand, through
a block-based analysis of the timing graph, for which the
bounding technique proposed in [9] can be used, as well as
other bounding techniques. An illustration of these esti-
mates is presented in Figure 2. The fanin cone of a vertex

v is pruned when the following condition is verified.

max
∆λ

[dpathv (∆λ)] ≤ d∗ (5)

In this case the delay of any complete path going through v
and containing the trail can never be larger than the worst
delay, already computed for some other complete path, d∗,
therefore it is useless to further explore the fanin cone of v,
as the worst delay, d∗, cannot be improved by such action. It
should be noted that this pruning is only valid for a specific
trail. If v is subsequently visited through another trail its
fanin cone may not be pruned. If a given current vertex is
not pruned all its fanin vertices are scheduled to be visited.
When the current vertex is a primary input, the trail is a
complete path, from a primary input to a primary output,
being doutv its affine delay function. If the worst delay of this
path is worst than the worst delay d∗ found so far, then both
d∗ and ∆λ∗ are updated. The procedure terminates when
every path of the circuit is either explicitly visited or pruned.
On termination, the procedure returns the worst delay, d∗,
as well as the worst-delay corner,∆λ∗. The worst-delay path
can also be returned if the trail is stored on every update of
d∗ and ∆λ∗. A similar set of branch-and-bound techniques
can be applied for searching the parameter space [3].

3.2 Modified Computational Procedure
The procedure reviewed in Section 3.1 can be slightly

modified to enable the extraction of the k-worst delay paths
rather than just the most critical path.

First, it is necessary to have a data structure, possibly a
list, of size k, for storing all the k paths, as well as their asso-
ciated worst delays. For convenience, in this data structure
the paths will be ordered by ascending order of their worst
delays. This means that among the elements stored in the
data structure, the least critical will be in the first position
and the most critical will be in the last position.

Surprisingly, the modifications that need to be introduced
in the algorithm described in Section 3.1 to enable the com-
putation of the k most critical paths are very few. Initially,
the data structure described in the previous paragraph is
empty. During the execution of the algorithm, while the
number of paths stored in the data structure is smaller than
k, no pruning is performed, and therefore all complete paths
visited are stored in the data structure. When the number
of elements in the data structure reaches k, the pruning is
activated. Afterwards, the pruning will be performed us-
ing the smallest worst delay present in the data structure
as the threshold, d∗. When a given path exhibits a worst
delay larger than the smallest worst delay present in the
data structure, that path is inserted in the proper position
in the data structure. Subsequently, the first path, which
exhibits the smallest worst delay among all the paths in the
data structure will be removed, in order to keep at most k
elements at any time. On termination, the k most critical
paths are stored in the data structure.

Clearly, the amount of pruning is correlated with the value
of k. For larger values of k, more paths are stored in the data
structure, and therefore the first path will have a smaller
worst delay value. This means that the pruning threshold,
d∗, will be a smaller number, and consequently less paths
get pruned. It is therefore expected that larger values of k
may lead to larger execution times.

The procedure proposed in [3] for computing the worst-
delay corner can be modified in a similar manner to enable
the computation of the k-worst delay corners.

4. SILICON SPEEDPATH SELECTION
This section proposes a methodology that, given a timing

graph of a combinational IC block and silicon delay mea-
surements [6] at the primary outputs of that block, extracts
a reduced set of paths, for each primary output, that is guar-
anteed to contain the corresponding silicon speedpath.
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4.1 Model Uncertainty
In the following we will assume that the delays computed

by our timing model, detailed in Section 2, are not entirely
accurate when compared to the ”real” delays of the fabri-
cated circuit. Therefore, if d′(∆λ) is the delay of a given
element of the fabricated circuit, at the parameter variation
setting, ∆λ, of the fabrication process, and d(∆λ) is the cor-
responding delay given by the timing model, then we assume
them to be related by the following expression,

d′(∆λ) = d(∆λ) + ε (6)

where ε ∈ [εmin, εmax]. This range is intended to account for
the uncertainty associated to the timing model. The values
of εmin and εmax can be independently set for each edge de-
lay in the model. This enables designers to set larger ranges
for elements, or regions of the circuit, which they know to
be modeled less accurately, and smaller ranges where model
accuracy is known to be good. Clearly, the wider the range
[εmin, εmax], the less effective the speedpath selection tech-
niques proposed in the following sections will be.

4.2 Delay Threshold Pruning
We start by computing for each vertex v its dinv estimate

(see Section 3.1), which must now consider the errors asso-
ciated with all the delays in the fanin cone of v. Afterwards,
for every primary output with a measured silicon delay D,
we perform a pruning procedure similar to the one reported
in Section 3.1, but where the fanin cone of a vertex v gets
pruned if the following condition holds,

max
∆λ

[dpathv (∆λ)] + εmax
path < D (7)

This means that the delay of any complete path going through
v and containing the trail can never reach D, even consid-
ering model uncertainty. Therefore, none of such paths can
be the speedpath of the corresponding primary output.

This procedure leads to the elimination of a huge number
of paths, thus becoming feasible to enumerate the remaining
ones, that are stored in an efficient data structure, contain-
ing the candidate speedpaths for each primary output. The
steps described in remainder of this section will target the
elimination of as many candidate speedpaths as possible.

4.3 Domination
If the delay of a candidate speedpath b, d′b(∆λ), is al-

ways larger than the delay of another candidate speedpath
a, d′a(∆λ), both related to the same primary output, then a
cannot be the speedpath, and thus can be eliminated from
the candidate list. In this case we say that d′b(∆λ) dominates
d′a(∆λ). Formally,

db(∆λ) + εmin
db > da(∆λ) + εmax

da (8)

This condition can be trivially verified by checking for,

min
∆λ

[db(∆λ)− da(∆λ)] + εmin
db − εmax

da > 0 (9)

Since this domination check is cheap, all the candidate speed-
paths, corresponding to the same primary output, are checked
against each other for domination. The dominated candi-
dates are then removed from the candidate list.

Even if the delay of a candidate speedpath a is not domi-
nated by the delay of another candidate speedpath b, it can
be dominated by the delays of all the other candidate speed-
paths b, c, . . . together. When that occurs, that candidate
speedpath can still be eliminated. This condition can be
verified by detecting if there is no assignment for ∆λ such
that d′a(∆λ) is simultaneously not smaller than the delays
of all the other candidate speedpaths, d′b(∆λ), d′c(∆λ), . . . ,
corresponding to the same primary output. This condition
holds if the following LP is infeasible [7],

s.t. da(∆λ) + εmax
da ≥ db(∆λ) + εmin

db

da(∆λ) + εmax
da ≥ dc(∆λ) + εmin

dc (10)

. . .

∆λmin
i ≤ ∆λi ≤ ∆λmax

i , i = 1, 2, . . . , p

4.4 Parameter Range Adjustment
Given the list of candidate speedpaths for a primary out-

put, and its silicon delay measurement, D, then the delay of
any of the candidates cannot exceed D. Formally,

d(∆λ) + εmin ≤ D (11)
This condition can be used to compute tighter bounds on
the parameter variation ranges. The bound, αk, for a given
parameter variation, ∆λk, is given by,

αk =
D − d0 −

∑p
i=1,i #=k di∆λ∗

i − εmin

dk
(12)

where ∆λ∗
i is the symmetrical of Eqn. (3) (e.g. the minimiz-

ing parameter assignment). If dk is positive, then∆λk ≤ αk.
Conversely, if dk is negative, then ∆λk ≥ αk. This simple
check is performed for every candidate speedpath.

4.5 Consistency
For a given candidate path a to be a speedpath, there must

be an assignment to ∆λ, that makes d′a(∆λ) exactly equal
to the measured delay in its corresponding primary output,
Da, and that makes the delays of all other candidate speed-
paths, d′b(∆λ), d′c(∆λ), . . . , not larger than the measured
delay at their corresponding primary outputs, Db, Dc, . . . .
This problem can be formulated as the following LP,

s.t. da(∆λ) + εmax
a ≥ Da

da(∆λ) + εmin
a ≤ Da

db(∆λ) + εmin
b ≤ Db (13)

dc(∆λ) + εmin
c ≤ Dc

. . .

∆λmin
i ≤ ∆λi ≤ ∆λmax

i , i = 1, 2, . . . , p

When the LP is feasible, the candidate speedpath a is said
to be consistent with the other candidates, and is kept. Oth-
erwise, it is eliminated from the candidate list.

4.6 Compatibility
A set of candidate speedpaths, a, b, c, . . . , corresponding

to different primary outputs, are said to be compatible if,
for a some ∆λ, they can all be the silicon speedpath of
their corresponding primary output. Clearly, the true sil-
icon speedpaths, for all the primary outputs, must be com-
patible. Compatibility check between candidate speedpaths
a, b, c, . . . can be performed by finding a feasible solution for
the following LP,

s.t. da(∆λ) + εmax
a ≥ Da

da(∆λ) + εmin
a ≤ Da

db(∆λ) + εmax
b ≥ Db

db(∆λ) + εmin
b ≤ Db (14)

dc(∆λ) + εmax
c ≥ Dc

dc(∆λ) + εmin
c ≤ Dc

. . .

∆λmin
i ≤ ∆λi ≤ ∆λmax

i , i = 1, 2, . . . , p

Checking for compatibility for all possible combinations of
candidate speedpaths can be overly expensive. Therefore,
relying on the fact that unconstrained versions of larger
problems can be generated, a branch-and-bound procedure
may be employed, similarly to the approach followed by [8].

271

17.2



5. EXPERIMENTAL RESULTS
The techniques proposed in Sections 3 and 4 were coded

in C++. Benchmark circuits, from the ISCAS combina-
tional suite were synthesized and mapped to a 90nm indus-
trial technology. As process parameters, we considered the
widths and thicknesses of the 8 metal routing layers, result-
ing in a total of 16 parameters. Variational cell and intercon-
nect delay computation was performed using the procedure
described in [4]. Finally, for each circuit a timing graph was
generated and affine cell and interconnect delays were anno-
tated as edge properties. Table 1 presents a brief characteri-
zation of the resulting benchmark circuits, where ”#PI” and
”#PO” columns report the number of primary inputs and
outputs, ”#Logic”and ”#Net”columns report the number of
combinational cells and the number of nets, and ”#Vertex”
and ”#Edge” report the number of vertices and edges in the
corresponding timing graph. ”#Path” reports the number
of complete paths, considering all Rise/Fall combinations.

All the results presented in this section were obtained in a
machine with an Intel Xeon @ 2.33GHz and 28GB of RAM.
For all the runs a single processor was used and none of
them took more than 200MB of memory. For the solution
of linear problems we have used LPSolve 5.5 API.

The left plot of Figure 3 presents the worst delay values
for the top 1000 critical paths in c6288. As can be observed,
there is a fair number of paths that exhibit a worst delay
close to the worst delay of the most critical path. The right
plot of Figure 3 presents the circuit delay values for the top
1000 critical corners in c6288. Clearly, there is a group of
approximately 70 corners that exhibit a circuit delay very
close to the circuit delay of the most critical corner. Both of
these observations justify the necessity of identifying sets of
speedpaths and critical corners, rather than just one speed-
path and the most critical corner.

Table 2 presents results for the computation of the top k
speedpaths and critical corners, as discussed in Section 3,
where the column names with ”1”, ”100” and ”1000” indicate
the number k of top speedpaths or critical corners requested.
”#S” reports the amount of search (visited vertices or ana-
lyzed corners). ”CPU” reports the total run-time in seconds.
As can be observed, the top 100 and 1000 speedpaths can
still be computed in a small amount of time, even though
pruning is obviously reduced (”#S” is larger). Even though
much less efficient, the computation of the top 100 and 1000
critical corners can still be performed in a fair amount of
time. That seems to hold even for c6288, that exhibits an
abnormally large number of paths.

Table 3, presents results for the silicon speedpath selec-
tion algorithm proposed in Section 4. Since we did not have
easy access to silicon delay measurements, we have gener-
ated an ”emulation” of such measurements by timing the
circuits for an unbiased ∆λ assignment (e.g. including pa-
rameter variations with values above/below and far/close
from their nominal value). Additionally, we have added to
each edge delay a random value, following a uniform dis-
tribution with range [εmin, εmax], in order simulate model
inaccuracies. The arrival times at the primary outputs were
used as silicon delay ”measurements”. The columns ”#P”,
”#D”, ”#I” and ”#R” report the number of delay threshold-
pruned paths, the number of dominated paths, the number
of inconsistent paths and the remaining paths, that were
not pruned, and that are viable speedpath candidates. The
”CPU” column reports the run-time in seconds.

Analyzing the results in Table 3 we can conclude that the
procedure proposed in Section 4 is able to select a small per-
centage of the total number of paths of each circuit, except
the huge c6288. While the delay threshold pruning strat-
egy seems to be, by far, the most effective; domination and
inconsistency checks also seem to be able to filter a non-
negligible amount of paths. Parameter adjustments are not
reported, as only the range of one parameter was adjusted,
for c7552. As expected, performance is highly depend on

the error range. CPU times are not too small, but given the
complexity of the task, we believe that they are acceptable.
An interesting feature of these techniques is that, by impos-
ing a smaller timeout to the LP feasibility checks, the user is
able to reduce run-time at the expense of obtaining a larger
number of candidate paths. A large amount of CPU time
is spent checking for LP feasibility. Since LPSolve is not
particularly efficient in this task, there is opportunity for
further performance improvements by using a commercial
solver, such as CPLEX.

6. CONCLUSIONS
This paper proposes an exact, yet efficient, method for

computing the top k critical paths (speedpaths) and the top
k critical corners of a digital IC, considering variability. The
computation of the top critical paths is of particular inter-
est in speedpath debugging, as there are several paths with
a worst delay close to the worst delay of the most critical
path. Additionally, the computation of the top critical cor-
ners can provide an automated process for picking the set
of corners that will be used during timing sign-off. Fur-
thermore, this paper also proposes a set of techniques that,
given a timing graph of a combinational IC block and silicon
delay measurements at the primary outputs of that block,
are able to extract a reduced set of paths, for each primary
output, that is guaranteed to contain the corresponding sil-
icon speedpath. Such techniques are easy to parallelize for
modern multicore systems, thus enabling their application
to larger and more complex industrial designs.
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Figure 3: Worst delay of the top 1000 critical paths and of the top 1000 critical corners, in c6288 (note that
the plots are in different scales).

Design #PI #PO #Logic #Net #Vertex #Edge #Path
c17 5 2 4 9 21 22 22
c432 36 7 88 124 415 575 550302
c499 41 32 133 174 633 886 253056
c880 60 26 147 207 674 908 13862
c1355 41 32 133 174 633 886 253056
c1908 33 25 178 211 756 1065 1011690
c2670 157 64 282 515 1321 1700 27426
c3540 55 22 443 494 1882 2756 9035812
c5315 178 123 554 734 2644 3701 1247156
c6288 32 32 1584 1653 5131 6998 90242948060
c7552 206 107 820 1031 3483 4807 979140

Table 1: Benchmark characterization.

Design
1 Path 100 Paths 1000 Paths 1 Corner 100 Corners 1000 Corners

#S CPU #S CPU #S CPU #S CPU #S CPU #S CPU
c17 20 < 0.01 72 < 0.01 72 < 0.01 3463 0.33 7761 0.71 12033 1.15
c432 510 < 0.01 6646 0.02 41664 0.31 853 2.46 1707 4.51 6435 17.39
c499 459 0.01 4702 0.03 19821 0.13 405 2.32 1271 6.66 6473 32.69
c880 523 < 0.01 4695 0.01 16900 0.15 315 1.60 1337 6.43 6371 30.58
c1355 354 0.01 4523 0.01 19962 0.18 647 3.39 1573 7.98 6483 33.75
c1908 755 < 0.01 10124 0.05 54852 0.47 301 2.05 799 4.95 5679 35.35
c2670 595 0.02 6411 0.03 27629 0.22 239 3.04 1077 13.30 6941 85.81
c3540 868 0.03 24605 0.11 131781 0.86 559 12.76 1735 39.08 6759 146.45
c5315 671 0.03 10789 0.08 55575 0.40 205 7.80 821 30.33 5799 213.71
c6288 18159 0.12 1056387 4.54 7878747 53.00 241 25.40 803 83.46 5677 580.72
c7552 746 0.04 11103 0.11 91632 0.68 411 23.65 1439 83.10 6453 365.96

Table 2: Results for the exact computation of the top critical paths/corners.

Design
ε ∈ [−1% d0 , +1% d0] ε ∈ [−3% d0 , +3% d0]

#P #D #I #R CPU #P #D #I #R CPU
c17 17 0 0 5 <0.01 16 1 0 5 < 0.01
c432 542175 7823 119 185 0.94 534859 11070 2027 2346 192.94
c499 249758 2642 78 578 4.02 247074 608 1408 3966 265.30
c880 13607 106 25 124 0.22 13358 234 86 184 0.64
c1355 249216 2928 212 700 7.09 245356 2012 1120 4568 350.68
c1908 1006661 4092 345 592 7.44 997977 3767 5144 4802 944.29
c2670 27276 66 17 67 0.08 27225 56 38 107 0.21
c3540 9026219 9232 155 206 1.24 9013233 17063 3584 1932 241.40
c5315 1239613 6747 267 529 5.65 1229638 10584 4434 2500 420.90
c6288 - - - - > 1000 - - - - > 1000
c7552 976853 1888 52 347 1.58 974982 2614 590 954 20.07

Table 3: Results for silicon speedpath selection.
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