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Abstract—Process variations are of increasing concern in to-
day’s technologies, and they can significantly affect circuit per-
formance. An efficient statistical timing analysis algorithm that
predicts the probability distribution of the circuit delay consid-
ering both inter-die and intra-die variations, while accounting for
the effects of spatial correlations of intra-die parameter variations,
is presented. The procedure uses a first-order Taylor series ex-
pansion to approximate the gate and interconnect delays. Next,
principal component analysis (PCA) techniques are employed to
transform the set of correlated parameters into an uncorrelated
set. The statistical timing computation is then easily performed
with a program evaluation and review technique (PERT)-like cir-
cuit graph traversal. The run time of this algorithm is linear in the
number of gates and interconnects, as well as the number of vary-
ing parameters and grid partitions that are used to model spatial
correlations. The accuracy of the method is verified with Monte
Carlo (MC) simulation. On average, for the 100 nm technology,
the errors of mean and standard deviation (SD) values computed
by the proposed method are 1.06% and −4.34%, respectively, and
the errors of predicting the 99% and 1% confidence point are
−2.46% and −0.99%, respectively. A testcase with about 17 800
gates was solved in about 500 s, with high accuracy as compared
to an MC simulation that required more than 15 h.

Index Terms—Circuit, deep submicron, timing analysis, VLSI.

I. INTRODUCTION

PROCESS variations have become an increasing concern
in integrated circuits as circuit sizes continue to increase

and feature sizes continue to shrink. As device and interconnect
parameters such as physical dimensions show variability, the
prediction of circuit performance is becoming a challenging
task. Conventional static timing analysis (STA) handles the
problem of variability by analyzing a circuit at multiple process
corners (MPCs). However, it is generally accepted that such an
approach is inadequate, since the complexity of the variations in
the performance space implies that if a small number of process
corners is to be chosen, these corners must be very conservative
and pessimistic. For true accuracy, this can be overcome by
using a larger number of process corners, but then the number
of corners that must be considered for an accurate modeling
will be too large for computational efficiency.
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The limitations of traditional STA techniques lie in their
deterministic nature. An alternative approach that overcomes
these problems is statistical STA, which treats delays not as
fixed numbers, but as probability density functions (pdfs),
taking the statistical distribution of parametric variations into
consideration while analyzing the circuit.

Process variations can be classified into the following two
categories: 1) inter-die variations are the variations from die to
die; and 2) intra-die variations correspond to variability within
a single chip. Inter-die variations affect all the devices on the
same chip in the same way, e.g., making the transistor gate
lengths of devices on the same chip all larger or all smaller,
while the intra-die variations may affect different devices dif-
ferently on the same chip, e.g., making some devices have
smaller transistor gate lengths and others larger transistor gate
lengths.

It used to be the case that the inter-die variations domi-
nated intra-die variations, so that the latter could be safely
neglected. However, in modern technologies, intra-die varia-
tions are rapidly and steadily growing and can significantly
affect the variability of performance parameters on a chip [1].
The increase in intra-chip parameter variations is due to the
effects such as microloading in the etch, variation in photoresist
thickness, optical proximity effects, and steeper within-field
aberrations as the manufacturing sizes approach the optical
resolution limit [2]. Intra-die variation is spatially correlated:
It is locally layout dependent and circuit specific, i.e., devices
with similar layout patterns and proximity structures tend to
have similar characteristics; it is globally location dependent,
i.e., devices located close to each other are more likely to have
the similar characteristics than those placed far away.

Due to the increasing effect of intra-die variations, several
commercial flows have begun to include intra-die variations in
the last few years, e.g., the on-chip variation (OCV) analysis
in Synopsys’s PrimeTime and the linear combination of delay
(LCD) mode of IBM’s EinsTimer. In the literature, a num-
ber of studies on statistical timing analysis have focused on
circuit performance prediction considering intra-die variation.
Continuous methods [3]–[6] use analytical approaches to find
closed-form expressions for the pdf of the circuit delay. For
simplicity, these methods often assume a normal distribution for
the gate delay, but even so, finding the closed-from expression
of the circuit distribution is still not an easy task. Discrete
methods [7]–[9] are not limited to normal distributions and can
discretize any arbitrary delay distribution as a set of tuples,
each corresponding to a discrete delay and its probability. The
discrete probabilities are propagated through the circuit to find
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a discrete pdf for the circuit delay. However, this method is
liable to suffer from the problem of having to propagate an
exponential number of discrete point probabilities. In [10], an
efficient method was proposed by modeling arrival times as
cumulative density functions (cdfs) and delays as pdfs and
by defining operations of add and max on these functions.
Alternatively, instead of finding the distribution of circuit delay
directly, several attempts have been made to find upper and
lower bounds for the circuit delay distribution [5], [7], [11].

Although many prior works have dealt with intra-chip varia-
tions, most of them have ignored intra-chip spatial correlations
by simply assuming zero correlations among devices on the
chip. The difficulty in considering spatial correlations between
parameters is that it can result in complicated path correlation
structures that are hard to deal with. Tsukiyama et al. [6] con-
sider correlation between delays among the transistors inside
a single gate (but not correlations between gates). The work in
[12] uses a Monte Carlo (MC) sampling-based framework to
analyze circuit timing on a set of selected sensitizable true
paths. Another method in [5] computes path correlations on the
basis of pairwise gate delay covariances and used an analytic
method to derive lower and upper bounds of circuit delay. The
statistical timing analyzer in [13] takes into account capacitive
coupling and intra-die process variation to estimate the worst
case delay of critical path. Two-parameter space techniques,
namely, the parallelepiped method and the ellipsoid method,
and a performance-space procedure, the binding probability
method, were proposed in [14] to find either bounds or the exact
distribution of the minimum slack of a selected set of paths.
The approach in [3] proposes a model for spatial correlation
and a method of statistical timing analysis to compute the delay
distribution of a specific critical path. However, the pdf for a
critical path may not be a good predictor of the distribution of
the circuit delay (which is the maximum of all path delays),
as explained in Section II. Moreover, the method may be
computationally expensive when the number of critical paths is
too large. In [15], the authors further extended their work in [3]
and [7] to compute an upper bound on the distribution of exact
circuit delay.

In this paper, an algorithm for statistical STA that computes
the distribution of circuit delay while considering spatial cor-
relations will be proposed. The circuit delay will be modeled
as a correlated multivariate normal distribution, considering
both gate and wire delay variations. In order to manipulate
the complicated correlation structure, the principal component
analysis (PCA) technique is employed to transform the sets
of correlated parameters into sets of uncorrelated ones. The
statistical timing computation is then performed with a program
evaluation and review technique (PERT)-like circuit graph tra-
versal. The complexity of the algorithm is O(pn(Ng + NI)),
which is linear in the number of gates Ng and interconnects
NI , and also linear in the number of varying parameters p and
the number of grid squares n that are used to model variational
regions. In other words, the cost is, at worst, pn times the
cost of a deterministic STA. It is believed that this is the first
method that can fully handle spatially correlated distributions
under reasonably general assumptions, with a complexity that is
comparable to traditional deterministic STA. This work can also

be extended, using the same framework of maximum of delays
(Section IV-C), to find the distribution of minimum of delays
that can be applied to analysis such as computing minimum
delay distributions for short-path analysis (to check for hold
time violations), for required arrival time (RAT) analysis, etc.

The remainder of the paper is organized as follows. Section II
formally formulates the problem to be solved in this work.
Section III explains the model used for process variation and
spatial correlation of intra-die variation. The algorithm is pre-
sented in Section IV, and its run time complexity analysis
is given in the following section. The extension to handle
interchip variation and spatially uncorrelated intra-die compo-
nents is introduced in Section VI. The extension to compute
minimum of delays is also presented in Section VI. Finally,
Section VII shows a list of experimental results and their
analysis.

II. PROBLEM FORMULATION

Under process variations, parameter values such as the gate
length, the gate width, the metal line width, and the metal line
height are random variables. Some of these variations such
as across-chip linewidth variations (ACLVs) are deterministic,
while others are random: This work will focus on the effects of
random variations and will model these parameters as random
variables. The gate and interconnect delays, as functions of
these parameters, also become random variables. Given appro-
priate modeling of process parameters or gate and interconnect
delays, the task of statistical STA is to find the pdf of the circuit
delay.

The STA works with the usual translation from a com-
binational circuit to a timing graph [16]. The nodes in this
graph correspond to the circuit primary inputs/outputs and gate
input/output pins. The edges are of two types, namely: 1) a set
that corresponds to the pin-to-pin delay arcs within a gate; and
2) a set that corresponds to interconnections from the drivers to
receivers. The edges are weighted by the pin-to-pin gate delay
and interconnect delay, respectively. The primary inputs of the
combinational circuit are connected to a virtual source node,
and the primary outputs to a virtual sink node with directed
virtual edges. In the case that primary inputs arrive at different
times, the virtual edges from the virtual source to the primary
inputs are assigned weights of the arrival times. Likewise, if
the required times at the primary outputs are different, the
weights of the edges from the outputs to the virtual sink are
appropriately chosen.

For a combinational logic circuit, the problem of STA is to
compute the longest path delay in the circuit from any primary
input to any primary output, which corresponds to the length of
the longest path in the timing graph. In STA, the technique that
is commonly 1referred to in the literature as PERT is commonly
used.1 This procedure starts from the source node to traverse the
graph in a topological order and uses a sum operation or max

1In reality, this is actually the critical path method (CPM) in operations
research. However, we will persist with the term “PERT,” which is widely used
in the STA literature.
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operation (at a multifanin node) to find the longest path at the
sink node. For details, the reader may refer to [16] and [17].

Since a PERT-like traversal will be employed to analyze the
distribution of circuit delay, a statistical timing graph of a circuit
is defined, as in the case of deterministic STA.
Definition 2.1: Let Gs = (V,E) be a timing graph for a

circuit with a single source node and a single sink node, where
V is a set of nodes and E is a set of directed edges. The graph
Gs is called a statistical timing graph if each edge i is assigned a
weight di, where di is a random variable, and where the random
variables may be uncorrelated or correlated. The weight asso-
ciated with an edge corresponds to gate delay or interconnect
delay. For a virtual edge, the weight is a random variable with
a mean of its deterministic value and a standard deviation (SD)
of zero, and it is independent from any other edges.
Definition 2.2: Let a path pi be a set of ordered edges from

the source node to the sink node in Gs and Di be the path length
distribution of pi, computed as the sum of the weights dk for
all edges k on the path. Finding the distribution of Dmax =
max(D1, . . . , Di, . . . , Dnpaths) among all paths (indexed from
1 to npaths) in the graph Gs is referred to as the problem of
statistical static timing analysis (SSTA) of a circuit.

Note that for the same nominal design, the identity of the
longest path may change, depending on the random values
taken by the process parameters. Therefore, finding the delay
distribution of one critical path at a time is not enough, and
correlations between paths must be considered in finding the
max of the pdfs of all paths. Such an analysis is essential for
finding the probability of failure of a circuit, which is available
from the cdf of the circuit delay.

For an edge-triggered sequential circuit, the statistical timing
graph can be constructed similarly by breaking the circuit into
a set of combinational blocks between latches, and the analysis
includes statistical checks on setup and hold time violations.
The former requires the computation of the distribution of the
maximum arrival time at the latches, which requires the solution
of the SSTA problem as defined above. On the other hand, the
latter problem needs the distribution of the minimum arrival
time at the latches to be computed, and this can be solved by
a trivial extension of the framework for the SSTA problem
proposed in the paper, using minimum operators, as will be
mentioned in Section IV-C, instead of maximum operators.

The proposed approach to solve the SSTA problem is based
on the following assumption on the distribution of the process
parameter values.
Assumption 1: The process parameter values are assumed to

be normally distributed random variables.
The gate and interconnect delays, being functions of the

fundamental process parameters, are approximated using a first-
order Taylor series expansion. It will be shown that as a result
of this, all edges in graph Gs are normally distributed random
variables. Since spatial correlations of the process parameters
are considered, it turns out that some of the delays are corre-
lated random variables. Furthermore, the circuit delay Dmax

is modeled as a multivariate normal distribution. Although the
closed form of circuit delay distribution is not normal, it is
shown that the loss of accuracy is not significant under this
approximation.

III. MODELING PARAMETER VARIATIONS

In this section, the model used for intra-die variations with
spatial correlation will be introduced. Although only intra-
die variations of parameters are considered at this point, the
extension of this work to handle inter-die variations will be
introduced later in Section VI-A.

A. Components of Intra-die Variations

The intra-die parametric variation δintra can be decomposed
into three components: 1) a deterministic global component
δglobal; 2) a deterministic local component δlocal; and 3) a
random component ε [18]

δintra = δglobal + δlocal + ε. (1)

The global component δglobal is location dependent. Across
the die or reticle field, it can be modeled by a slanted plane and
expressed as a simple function of its location

δglobal(x, y) = δ0 + δxx + δyy (2)

where (x, y) is its die location and δx and δy are gradients of
parameter indicating the spatial variations of parameter along
the x and y directions, respectively.

The local component δlocal is proximity dependent and lay-
out specific. The random component ε stands for the random
intra-chip variation and the vector of all random components
across the chip or reticle field has a correlated multivariate
normal distribution due to spatial correlation of the intra-die
variation

#ε ∼ N(0,Σ) (3)

where Σ is the covariance matrix of parameters. The detailed
model for this covariance matrix will be described in the next
section. For spatially uncorrelated parameters, Σ becomes a
diagonal matrix where the entries represent variances. If the
variances of the parameters described by this matrix are as-
sumed to be uniform across the chip, then Σ is a multiple of
the identity matrix.

In this paper, only the impact of global and random com-
ponents will be considered. However, the local component can
also be included in the model, given, for instance, the chip lay-
out and precharacterized spatial maps of parameters as in [19].

Under intra-die variation, the value of parameter p located at
(x, y) can be modeled as

p = p̄ + δxx + δyy + N(0,σ) (4)

where p̄ is the nominal design parameter value at die location
(0, 0).

In this way, all parameter variations are modeled as location-
dependent normally distributed random variables.

In this work, for transistors, the following process parameters
are considered [20] as random variables: transistor length Lg

and width Wg , gate oxide thickness Tox, and doping concen-
tration density Na; for interconnect, at each metal layer, the
following parameters are considered: metal width Wintl , metal
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Fig. 1. Grid model for spatial correlations.

thickness Tintl , and ILD thickness HILDl , where the subscript
l represents that the random variable is of layer l, where l =
1, . . . , nlayers. Among all the parameters listed above, Lg is
observed to exhibit largest parameter variability and also has the
most important impact on circuit performance when it shows
variations [20]. It is believed that this framework is general
enough that it can be applied to handle variations of other
parameters as well.

B. Spatial Correlations

To model the intra-die spatial correlations of parameters, the
region of die or reticle field2 is partitioned into nrow × ncol =
n grids. Since devices [wires] close to each other are more
likely to have more similar characteristics than those placed far
away, assume perfect correlations among the devices [wires]
in the same grid, high correlations among those in close grids,
and low or zero correlations in far-away grids. For example,
in Fig. 1, gates a and b (whose sizes are shown to be exag-
geratedly large) are located in the same grid square, and it is
assumed that their parameter variations (such as the variations
of their gate length) are always identical. Gates a and c lie
in neighboring grids, and their parameter variations are not
identical but highly correlated due to their spatial proximity
(for example, when gate a has a larger than nominal gate
length, it is highly probable that gate c will have a larger than
nominal gate length, and less probable that it will have a smaller
than nominal gate length). On the other hand, gates a and d
are far away from each other, and their parameters may be
uncorrelated (e.g., when gate a has a larger than nominal gate
length, the gate length for d may be either larger or smaller
than nominal).

The proposed algorithm makes a second assumption on the
distribution of process parameters.
Assumption 2: It is assumed that nonzero correlations may

exist only among the same type of process parameters in

2The same model can be used to model the parameter variations across a
reticle field containing multiple chips, in which case, these multiple chips can be
analyzed simultaneously and the maximum of the delays at the primary outputs
(POs) of all chips is the distribution of chip delay. This does not change the
complexity of the algorithm, since the number of dies in a reticle field is a
small integer.

different grids, and there is no correlation between different
types of process parameters.3

For example, Lg values for transistors in a grid are correlated
with those in nearby grids, but they are uncorrelated with
other parameters such as Wg or Wintl in any grid. (Note here
that interconnect parameters in different layers are considered
to be “different types of parameters,” e.g., Wint1 and Wint2 are
uncorrelated.)

Under this model, the parametric variation for a spatially
correlated parameter in a single grid at location (x, y) can be
modeled using a single random variable p(x, y). In total, this
representation requires n random variables, each representing
the value of a parameter in one of the n grids, and a covariance
matrix of size n × n representing the spatial correlations among
the grids. The covariance matrix could be determined from
data extracted from manufactured wafers. For example, a test
structure methodology was developed to support the evaluation
of process parameter variations in [22]. The number of grid
regions divided can also be determined using the test structure
methodology by refining the number of grids until delay dis-
tribution of test structure converges or changes only within a
small tolerance range. In this work, due to the lack of access to
real wafer data, the correlation matrix derived from the spatial
correlation model in [3] is used. However, it is believed that
the proposed model is more general than the model used in [3],
since it is purely based on neighborhood. For example, consider
again the case in Fig. 1, by the proposed model, the parameter
in grid (1, 2) has equal correlations with that in grid (1, 1) and
(1, 3). While by the model of [3], it will have higher correlation
with grid (1, 1) than grid (1, 3), i.e., the correlations are uneven
at the two neighbors of grid (1, 2).

For clarity of presentation, it is assumed here that all types
of parameters have spatial correlations. In manufacturing, due
to effects such as random dopant fluctuations, the intra-die
variations of some parameters are truly uncorrelated from tran-
sistor to transistor. The extension of this work to incorporate
the effect of spatially uncorrelated parameters will be shown in
Section VI.

IV. STATISTICAL TIMING ANALYSIS ALGORITHM

The core statistical STA method is described in this section,
and its description is organized as follows. At first, Section IV-A
will describe how the distributions of gate and interconnect
delays are modeled as normal distributions, given the pdfs
that describe the variations of various parameters. In general,
these pdfs will be correlated with each other. Section IV-B will
show how the complicated correlated structure of parameters
can be simplified by orthogonal transformations. Section IV-C
will describe the PERT-like traversal algorithm on the sta-
tistical timing graph by demonstrating the procedure for the
computation of max and sum functions. Finally, Section IV-D

3This assumption is not critical to the correctness of our procedure, but it is
used in our experimental results. In case the assumption is not strictly true [21],
our method is still general enough to handle correlations between parameters
of different types, either by decomposing the correlated parameters into an
uncorrelated set using an orthogonal transformation such as the PCA technique,
or by constructing a covariance matrix for all correlated parameters.
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will explain why orthogonal transformations are important in
the proposed method.

A. Modeling Gate/Interconnect Delay pdfs

This section will show how the variations in the process
parameters are translated into pdfs that describe the variations
in the gate and interconnect delays that correspond to the
weights on edges of the statistical timing graph.

In Section III, the geometrical parameters associated with
the gate and interconnect are modeled as normally distributed
random variables. Before introducing how the distributions of
gate and interconnect delays will be modeled, consider first an
arbitrary function d = F (#P ) that is assumed to be a function on
a set of parameters #P , where each pi ∈ #P is a random variable
with a normal distribution given by pi ∼ N(µpi ,σpi).

The function d can be approximated linearly using a first-
order Taylor expansion

d = d0 +
∑

∀ parameters pi

[
∂F

∂pi

]

0

∆pi (5)

where d0 is the nominal value of d, calculated at the nominal
values of parameters in #P , ∂F/∂pi is computed at the nominal
values of pi, ∆pi = pi − µpi is a normally distributed random
variable, and∆pi ∼ N(0,σpi).

In this approximation, d is modeled as a normal distribution,
since it is a linear combination of normally distributed random
variables. Its mean µd and variance σ2

d are

µd = d0 (6)

σ2
d =

∑

∀i

[
∂F

∂pi

]2

0

σ2
pi

+ 2
∑

∀i&=j

[
∂F

∂pi

]

0

[
∂F

∂pj

]

0

cov(pi, pj)

(7)

where cov(pi, pj) is the covariance of pi and pj .
It is reasonable to ask whether the approximation of d as

a normal distribution is valid, since the distribution of d may,
strictly speaking, not be Gaussian. It can be said that when∆pi

has relatively small variations, the first-order Taylor expansion
is adequate and the approximation is acceptable with little loss
of accuracy. This is generally true of intra-die variations, where
the process parameter variations are relatively small in com-
parison with the nominal values. For this reason, as functions
of process parameters, the gate and interconnect delays can be

approximated as a sum of normal distributions (which is also
normal) applying (5).
Computing the pdf of Interconnect Delay: In this work, the

Elmore delay model is used for simplicity to calculate the
interconnect delays.4 Under the Elmore model, the interconnect
delay is a function of the vector of resistances #Rw, the vector of
capacitances #Cw, of all wire segments in the interconnect tree,
and the vector of input load capacitances #Cg , of the fanout gates
or receivers

dint = Dint(#Rw, #Cw, #Cg). (8)

Since the resistances and capacitances above are determined
by the process parameters #P of the interconnect and the re-
ceivers, such as Wintl , Tintl , HILDl , Wg , Lg , and Tox, the
sensitivities of the interconnect delay to a parameter pi can be
found by using the chain’s rule

∂dint

∂pi
=

∑

∀Rwk
∈!Rw

∂Dint

∂Rwk

∂Rwk

∂pi

+
∑

∀Cwk
∈!Cw

∂Dint

∂Cwk

∂Cwk

∂pi
+

∑

∀Cgk
∈!Cg

∂Dint

∂Cgk

∂Cgk

∂pi
. (9)

The distribution of interconnect delay can then be approximated
on the computed sensitivities.

The factors that affect the interconnect delay associated with
edges in the statistical timing graph will now be specifically
considered. Recall that under the proposed model, the chip area
is divided into grids so that the parameter variations within a
grid are identical, but those in different grids exhibit spatial
correlations. Now, consider an interconnect tree with several
different segments that reside in different grids. The delay
variations in the tree are affected by the parameter variations of
wires in all grids that the tree traverses. For example, in Fig. 1,
consider the two segments uv and pq in the interconnect tree
driven by gate a. Segment uv passes through the grid (1, 1) and
pq through the grid (1, 2). Then the resistance and capacitance
of segment uv should be calculated based on the process pa-
rameters of grid (1, 1), while the resistance and capacitance of
segment pq should be based on those of grid (1, 2). Hence, the
distribution of the interconnect tree delay is actually a function
of random variables of interconnect parameters in both grid

4However, it should be emphasized that any delay model may be used, and
all that is needed is the sensitivity of the delay to the process parameters. For
example, through a full circuit simulation, the sensitivities may be computed by
performing adjoint sensitivity analysis.

dint = d0
int +

∑

i⊂Γg

[
∂Dint

∂Li
g

]

0

∆Li
g +

∑

i⊂Γg

[
∂Dint

∂W i
g

]

0

∆W i
g +

∑

i⊂Γg

[
∂Dint

∂T i
ox

]

0

∆T i
ox

+
nlayer∑

l=1

{
∑

i⊂Γint

[
∂Dint

∂W i
intl

]

0

∆W i
intl

+
∑

i⊂Γint

[
∂Dint

∂T i
intl

]

0

∆T i
intl

+
∑

i⊂Γint

[
∂Dint

∂Hi
ILDl

]

0

∆Hi
ILDl

}
(10)
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(1, 1) and grid (1, 2), and should incorporate any correlations
between these random variables. Similarly, if the gates that the
interconnect tree drives reside in different grid locations, the
interconnect delay to any sink is also a function of random
variables of gate parameters of all grids in which the receivers
are located.

In summary, the distribution of interconnect delay function
can be approximated by (10), shown at the bottom of the
page, where d0

int is the interconnect delay value calculated with
nominal values of parameters, Γg is the set of indices of grids
that all the receivers reside in, Γint is the set of indices of
grids that the interconnect tree traverses, and∆Li

g = Li
g − µLi

g

where Li
g is the random variable representing transistor length

in the ith grid. The parameters ∆W i
g , ∆T i

ox, ∆W i
intl

, ∆T i
intl

,
and ∆Hi

ILDl
are similarly defined. As before, the subscript “0”

next to each sensitivity represents the fact that it is evaluated at
the nominal point.
Computing the pdfs of Gate Delay and Output Signal Tran-

sition Time: The distribution of gate delay and output signal
transition time at the gate output can be approximated in a simi-
lar manner as described above, given the sensitivities of the gate
delay to the process parameters.

Consider a multiple-input gate, let dpini
gate be the gate delay

from the ith input to the output and Spini
out be the corresponding

output signal transition time. In general, both dpini
gate and Spini

out

can be written as a function of the process parameters #P of the
gate, the loading capacitance of the driving interconnect tree
#Cw and the succeeding gates that it drives #Cg , and the input
signal transition time Spini

in at this input pin of the gate

dpini
gate =Dgate

(
#P , #Cw, #Cg, S

pini
in

)
(11)

Spini
out =Sgate

(
#P , #Cw, #Cg, S

pini
in

)
. (12)

The distributions of dpini
gate and Spini

in can be approximated as
Gaussians using linear expressions of parameters, where the
mean values of dpini

gate or Spini
in can be found by using the mean

values of #P , #Cw, #Cg , and Spini
in in functions Dgate or Sgate, and

the sensitivities of either dpini
gate or Spini

in to process parameters
can be computed applying the chain’s rule. The derivatives of
#Cw and #Cg to the process parameters can be easily computed,
as #Cw and #Cg are functions of process parameters. The input
signal transition time Sin is a function of the output transition
time of the preceding gate and the delay of the interconnect
connecting the preceding gates and this gate, where both inter-
connect delay (as discussed earlier) and output transition time
of the preceding gate (as will be shown in the next paragraph)
are Gaussian random variables that can be expressed as a
linear function of parameter variations. Therefore, at a gate
input, the input signal transition time Sin is always given as
a normally distributed random variable with a mean and first-
order sensitivities to the parameter variations.

To consider the effect of nonideal input signal on gate delay,
the output signal transition time Sout at each gate output needs
to be computed in addition to pin-to-pin delay of the gate. In

conventional STA, Sout is set to Spini
out if the path ending at the

output of the gate traversing the ith input pin has the longest
path delay dpathi

. In SSTA, each of the paths through different
gate input pins has a certain probability to be the longest path.
Therefore, Sout should be computed as a weighted sum of the
distributions of Spini

out , where the weight equals the probability
that the path through the ith pin is the longest among all others

Sout =
∑

∀input pin i

{
Prob

[
dpathi

> max
∀j &=i

(
dpathj

)]
Spini

out

}

(13)
where dpathi

is the random path delay variable at the gate out-
put through the ith input pin. The result of max∀j &=i(dpathj

)]
is a random variable representing the distribution of maximum
of multiple paths. As will be discussed later in Section IV-C,
dpathi

and max∀j &=i(dpathj
) can be approximated as Gaussians

using the sum and max operators, and their correlation can eas-
ily be computed. Therefore, finding the value of Prob[dpathi

>
max∀j &=i(dpathj

)], i.e., Prob[dpathi
− max∀j &=i(dpathj

> 0)]
becomes computing the probability of a Gaussian random
variable greater than zero, which can easily be found from a
look-up table. As each Spini

out is a Gaussian random variable in
linear combination of parameter variations, Sout is, therefore,
also a Gaussian distributed random variable, and its sensitivities
to all process parameters ∂Sout/∂pi can easily be found from
its linear expression of parameters.

B. Orthogonal Transformation of Correlated Variables

In statistical timing analysis without spatial correlations,
correlations due to reconvergent paths has long been an ob-
stacle. When the spatial correlation of process parameters is
also taken into consideration, the correlation structure becomes
even more complicated. To make the problem tractable, the
PCA technique [23] is used to transform the set of correlated
parameters into an uncorrelated set.

PCA is a method that can be employed to examine the
relationship among a set of correlated variables. Given a set
of correlated random variables #X with a covariance matrix R,
PCA can transform the set #X into a set of mutually orthogonal
random variables, #X ′, such that each member of #X ′ has zero
mean and unit variance. The elements of the set #X ′ are called
principal components (PCs) in PCA, and the size of #X ′ is no
larger than the size of #X . Any variable xi ∈ #X can then be
expressed in terms of the PCs #X ′ as

xi =




∑

j

√
λjvijx

′
j



σi + µi (14)

where x′
j is a PC in set #X ′, λj is the jth eigenvalue of

the covariance matrix R, vij is the ith element of the jth
eigenvector of R, and σi and µi are, respectively, the mean and
SD of xi.

Since it is assumed that different types of parameters are un-
correlated, the random variables of parameters can be grouped
by types, and PCA can be performed in each group separately,
i.e., the PCs for #Lg , #Wg , #Tox, #Na, #Wintl , and #Tintl are computed
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individually. Clearly, not only are the PCs of the same type of
parameters independent, but so are the PCs of different type of
parameters.

For instance, let #Lg be a random vector representing transis-
tor gate length variations in all grids, and it is of multivariate
normal distribution with covariance matrix RLg . Let #L′

g be the
set of PCs computed by PCA. Then any Li

g ∈ #Lg representing
the variation of transistor gate length of the ith grid can then be
expressed as a linear function of the PCs

Li
g = µLi

g
+ ai1l

′1
g + · · · + aitl

′t
g (15)

where µLi
g

is the mean of Li
g , l′ig is a PC in #L′

g , all l′ig ’s are
independent with zero means and unit variances, and t is the
total number of PCs in #L′

g .
In this way, any random variable in #Wg , #Tox, #Na, #Wintl ,

#Tintl , and #HILDl can be expressed as a linear function of the
corresponding PCs in #W ′

g , #T ′
ox, #N ′

a, #W ′
intl

, #T ′
intl

, and #H ′
ILDl

.
Superposing the set of rotated random variables of parameters
on the original random variables in gate or interconnect delay
in (10), the expression of gate or interconnect delay is then
changed to the linear combination of PCs of all parameters

d = d0 + k1p
′
1 + · · · + kmp′m (16)

where p′i ∈ #P ′ and #P ′ = #L′
g ∪ #W ′

g ∪ #T ′
ox ∪ #N ′

a ∪ #W ′
intl

∪
#T ′
intl

∪ #H ′
ILDl

, and m is the size of #P ′.
Note that all of the PCs p′i that appear in (16) are independent.

Equation (16) has the following properties.
Property 1: Since all p′i are orthogonal, the variance of d can

be simply computed as

σ2
d =

m∑

i=1

k2
i . (17)

Property 2: The covariance between d and any PC p′i is
given by

cov (d, p′i) = kiσ
2
p′

i
= ki. (18)

In other words, the coefficient of p′i is exactly the covariance
between d and p′i.
Property 3: Let di and dj be two random variables

di = d0
i + ki1p

′
1 + · · · + kimp′m (19)

dj = d0
j + kj1p

′
1 + · · · + kjmp′m. (20)

The covariance of di and dj , cov(di, dj) can be computed by

cov(di, dj) =
m∑

r=1

kirkjr. (21)

In comparison, without an orthogonal transformation, the
value of cov(di, dj) has to be computed by a more complicated
formula as will be described in Section IV-D.

C. PERT-Like Traversal of Statistical STA

Using the techniques discussed up to this point, all edges
of the statistical timing graph may be modeled as normally
distributed random variables. In this section, a procedure for
finding the distribution of the statistical longest path in the
graph will be described.

In conventional deterministic STA, the PERT algorithm can
be used to find the longest path in a graph by traversing it in
topological order using the following two types of function:

1) the sum function;
2) the max function.

In the statistical timing analysis, a PERT-like traversal is
employed to find the distribution of circuit delay. However,
unlike deterministic STA, the sum and max operations here are
functions of a set of correlated multivariate Gaussian random
variables instead of fixed values:

1) dsum =
∑l

i=1 di;
2) dmax = max(d1, . . . , dl);

where di is a Gaussian random variable representing either gate
delay or wire delay expressed as linear functions of PCs in the
form of (19), and l is the number of random variables that the
sum or the max function is operating on.
Computing the Distribution of the Sum Function: The com-

putation of the distribution of sum function is simple. Since the
dsum =

∑l
i=1 di is a linear combination of normally distributed

random variables, dsum is a normal distribution. The mean
µdsum and variance σ2

dsum
of the sum are given by

µdsum =
l∑

i=1

d0
i (22)

σ2
dsum

=
m∑

j=1

l∑

i=1

k2
ij . (23)

Computing the Distribution of the Max Function: The max
function of n normally distributed random variables dmax =
max(d1, . . . , dl) is, strictly speaking, not Gaussian. However,
it has been found that, in practice, it can be approximated
closely by a Gaussian. This idea is similar in spirit to Berke-
laar’s approach in [4] and [24], although it is more general
since Berkelaar’s work restricted its attention to delay random
variables that were uncorrelated.5 In this work, the Gaussian
distribution is used to approximate the result of a max function,
so that dmax ∼ N(µdmax ,σdmax). dmax is also approximated as
a linear function of all the PCs p′1 . . . p′m

dmax = µdmax + a1p
′
1 + · · · + amp′m. (24)

Therefore, determining this approximation for dmax is equiva-
lent to finding the values of µdmax and all ai’s.

From Property 2 of Section IV-B, it is known that the
coefficient ar equals cov(dmax, p′r). Then the variance of the
expression on the right-hand side of (24) is computed as
s2
0 =

∑m
r=1 a2

r =
∑m

r=1 cov2(dmax, p′r). Since this is merely

5Many researchers in the community were well aware of Berkelaar’s results
as early as 1997, though his work did not appear as an archival publication.
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an approximation, there may be a difference between the value
s2
0 and the actual variance σ2

dmax
of dmax. To diminish the

difference, the value of ar can be normalized by setting it as

ar = cov (dmax, p
′
r)
σdmax

s0
. (25)

It can now be seen that to find the linear approximation
for dmax, the values of µdmax , σdmax , and cov(dmax, pi) are
required. In [6], similar inputs were required in their algorithm
and the results from [25] were applied and seen to provide
good results. In this work, the same analytical formula has been
borrowed from [25] for the computation of the max function.

According to [25], if ξ and η are two random variables, ξ ∼
N(µ1,σ1) and η ∼ N(µ2,σ2), with a correlation coefficient
of r(ξ, η) = ρ, then the mean µt and the variance σ2

t of t =
max(ξ, η) can be approximated by

µt =µ1 · Φ(β) + µ2 · Φ(−β) + α · ϕ(β) (26)

σ2
t =

(
µ2

1 + σ2
1

)
· Φ(β) +

(
µ2

2 + σ2
2

)
· Φ(−β)

+ (µ1 + µ2) · α · ϕ(β) − µ2
t (27)

where

α =
√
σ2

1 + σ2
2 − 2σ1σ2ρ (28)

β =
(µ1 − µ2)

α
(29)

ϕ(x) =
1√
2π

exp
[
−x2

2

]
(30)

Φ(x) =
1√
2π

x∫

−∞

exp
[
−y2

2

]
dy. (31)

The formula will not apply if σ1 = σ2 and ρ = 1. However, in
this case, the max function is simply identical to the random
variable with the largest mean value.

Moreover, from [25], if γ is another normally distributed
random variable and the correlation coefficients r(ξ, γ) = ρ1,
r(η, γ) = ρ2, then the correlation between γ and t = max(ξ, η)
can be obtained by

r(t, γ) =
σ1 · ρ1 · Φ(β) + σ2 · ρ2 · Φ(−β)

σt
. (32)

Using the formula above, all the values needed can be found.
As an example, notice how this can be done by first starting with
a two-variable max function, dmax = max(di, dj). Let dmax be
of the form of (24). The approximation of dmax can be found as
follows.

1) Given the expressions of di and dj each as linear com-
binations of the PCs, compute their mean and SD values
µdi , σdi and µdj , σdj , respectively, as described in Prop-
erty 1 of Section IV-B.

2) Find the correlation coefficient between di and dj where
cov(di, dj), the covariance of di and dj , can be computed
using Property 3 in Section IV-B. Now, if r(di, dj) = 1
and σdi = σdj , set dmax to be identical to di or dj ,

whichever has a larger mean value, and it can be stopped
here; otherwise, it will be continued to the next step.

3) Calculate the mean µdmax and variance σ2
dmax

of dmax

using (26) and (27).
4) Find all coefficients ar of p′r. According to Prop-

erty 2, ar = cov(dmax, p′r); also, cov(di, p′r) = kir

and cov(dj , p′r) = kjr. Applying (32), the values of
cov(dmax, p′r) and thus ar can be calculated.

5) After all of the ar’s have been calculated, determine s0 =√∑m
r=1 a2

r . Normalize the coefficient by resetting each
ar = ar(σdmax/s0).

The calculation of the two-variable max function can easily
be extended to a multivariable max function by repeating the
steps of the two-variable case recursively.

As mentioned at the beginning of this section, the max
of two Gaussian random variables is not strictly Gaussian.
This approximation can sometimes introduce serious errors,
e.g., when the two Gaussian random variables have the same
mean and SD and correlation value of −1, and the distribution
of the maximum is a half Gaussian. During the computation
of the multivariable max function, some inaccuracy could be
introduced since the max function is approximated as normal
even though it is not really normal, and proceed with further
recursive calculations. To the best of the authors’ knowledge,
there is no theoretical analysis available in the literature that
quantifies the inaccuracies when a normal distribution is used
to approximate the maximum of a set of Gaussian random
variables. However, a numerically based analysis was provided
in [25], which suggests that in some situations, the errors can
be great, but for many applications, this approximate is quite
satisfactory. Results suggesting that such inaccuracies are not
significant in the circuit context will be shown in Section VII,
and it will be seen that the results match very well with the
simulation results from an MC analysis.

Furthermore, recall that there is a “normalization” step to
diminish the difference between the variance computed from
the linear form of the max approximation and the real variance
of the max function. As in the case of approximating the
max as normal distribution, there is no theoretical proof about
how this “normalization” step can affect the accuracy of the
approximation. Another option to diminish the difference is to
move it into an independent random Gaussian component, and
it is difficult to state definitively which of these options is better.
In this work, the former option is chosen, and it is found that it
provides excellent accuracy, as will be shown in Section VII,
where the statistics of the “normalization” ratio for several test
circuits are provided.

At this point, not only the edges, but also the results of sum
and max functions are expressed as linear functions of the PCs.
Therefore, using a PERT traversal by incorporating the com-
putation of sum and max functions described above, the dis-
tribution of arrival time at any node in the timing graph becomes
a linear function of PCs, and so the distribution of circuit delay
can be computed at the virtual sink node.

The overall flow of the proposed algorithm is shown in Fig. 2.
It is noticed that this work is in some sense parallel to [14]: In
[14], delays are represented as linear combinations of global
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Fig. 2. Overall flow of our statistical timing analysis.

random variables, while in this work, they are linear functions
of PCs; in [14], the max of delays are reexpressed as linear
functions using binding probabilities, while in this work, the
linear functions are found by an analytical method from [25].

To further speed up the process, the following technique may
be used: During the max operation of statistical STA, if the val-
ue of µ + 3σ of one path has a lower delay than the value of
µ − 3σ of another path, the max function can simply be calcu-
lated ignoring the former path.

D. Utility of Principal Components

The previous sections described the proposed statistical STA
algorithm. The purpose of this section is to elaborate why the
orthogonal transformation is needed to transform the set of
correlated process parameters to an uncorrelated set, and how it
can simplify the problem of statistical STA considering spatial
correlations.

Let di and dj be the distributions of two gate delays. For sim-
plicity, it is assumed that the gate lengths #Lg are the only spa-
tially correlated parameters. It is also assumed that di and dj are
sensitive to the same set of correlated random variables of gate
lengths L1

g, . . . , L
n
g . Using (10), di and dj can be expressed as

di = d0
i + ci1L

1
g + · · · + cinLn

g (33)

dj = d0
j + cj1L

1
g + · · · + cjnLn

g . (34)

Obviously, the covariance of di and dj is decided by the
covariance structure of #Lg . The direct calculation of cov(di, dj)
is of a complicated form as in [5]

cov(di, dj) =
n∑

a=1

n∑

b=1

ciacjbcov
(
La

g , Lb
g

)
. (35)

In contrast, in the proposed method, orthogonal transforma-
tions on #Lg are performed first. Any element Ll

g ∈ #Lg is ex-
pressed as

Ll
g = Ll

g0 + al1l
′1
g + · · · + alml′mg . (36)

Next, by superposition, di and dj are transformed to

di = d0
i + ki1l

′1
g + · · · + kiml′mg (37)

dj = d0
j + kj1l

′1
g + · · · + kjml′mg . (38)

The value of cov(di, dj) can be simply computed using
the coefficients of #L′

g by cov(di, dj) =
∑m

r=1 kirkjr in linear
time O(m). The advantage in this computation is that it is not
necessary to know which specific parameters in di and dj are
correlated. In fact, consider the coefficients of l′1g in both di and
dj , ki1 =

∑n
r=1 cirar1 and kj1 =

∑n
r=1 cjrar1. It can be seen

that the covariance of gate lengths have all been incorporated
in the coefficient of the PCs l′1g , . . . , l′ng . For this reason, it is
ensured that the computation of cov(di, dj) can actually take
the correlations of gate lengths into consideration correctly.

The direct computation of the covariance of path delays is
in a similar form. In general, the path delays are correlated
when the gate delays on these paths are correlated. As shown
in [5], the path covariances can be computed on the basis of
pairwise gate delay covariances; however, the number of paths
is numerous, which makes it computationally difficult to apply
such a path-based method to large circuits.

In the proposed method, with the orthogonal transformation,
the covariances of path delays are manifested as the coefficients
of the independent PCs as in the case of correlated gate delays.
The covariances of the paths can then be simply computed in
linear time based on these coefficients only, and there is no
need to worry about how the gates on the paths are correlated
or which parts are correlated. For the same reason, in this
algorithm, besides the spatial correlations, path correlations due
to reconvergence (structural correlations) can also be accounted
for automatically by using the orthogonal transformation on
the spatially correlated parameters. However, when spatially
uncorrelated parameters are involved in the computation, the
structural correlations due to these independent parameters
cannot be efficiently dealt with by this methodology, since
directly keeping all uncorrelated random variables in the delay
form results in a huge number of variables. The extension of
the work for handling spatially uncorrelated parameters will be
given in Section VI-B.

V. COMPUTATIONAL COMPLEXITY

A run time complexity analysis is presented here to show
which factors most greatly affect the CPU time of the algorithm.

The flowchart shown in Fig. 2 can be divided into two
parts: 1) model precharacterization (steps 1, 2, and 3); and 2)
SSTA (steps 4, 5, and 6). Model precharacterization consists
of construction of parameter variations and grid-based spatial
correlation models, and the computation of PCs for spatially
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correlated parameters. The computation of PCs requires cal-
culations of eigenvectors and eigenvalues of the covariance
matrix, and its time complexity is O(pn3), where n is total
number of grids divided and p is the number of parameters
considered. While this step may seem to be a bottleneck of
the algorithm, it is a only one-time process. Once the models
of parameter variations are constructed, they can be repeatedly
used to analyze any design. Meanwhile, for spatial correlated
parameters, the PCs computed from the covariance matrix are
only model-dependent, so that for different designs analyzed
with the same parameter model, the same set of PCs can be ap-
plied. In other words, the step of model precharacterization is in
fact a one-time library construction at early stage and, therefore,
can be excluded from the run time complexity analysis of the
algorithm.

The run time of the SSTA algorithm can be divided into the
following.

1) The time required to find the delay distribution of the
gate and interconnect:6 This run time depends on how
many different grids the interconnect passes through and
how many grids the gates are located in, and in general,
these numbers are bounded by constant numbers. The
run time is also proportional to the total number of PCs,
since orthogonal transformation is performed at each wire
segment of interconnect. For each random variable, the
number of PCs is no more than the total number of grids
n partitioned on the chip. The total number of PCs is
no more than pn. Thus, the time required to find the
distribution of a single gate or wire can be estimated as
O(pn). If Ng is the total number of gates and NI the
number of net connections in the circuit, the time of this
part can be estimated as O(pn(Ng + NI)).

2) The time required to evaluate the max function: The cost
of this operation is proportional to the number of random
variables involved in the max operation and the number
of PCs of each random variable. The max operation is
used at all multi-input gates and at the last level (sink
node) where the maximum circuit delay is computed.
This number can be upper bounded by the total number
of net connections NI in the circuit. Thus, the run time of
this part is O(pnNI).

3) The time required to compute output transition time at
each gate output: For a gate with k > 2 inputs, it requires
k2 max operations and k − 1 sum operations, which
are constant numbers of max and sum operations. The
computation is needed for all gates and thus the total cost
is O(pnNg).

4) The time required to evaluate the sum function: The
sum operation must be performed at all gates and inter-
connects encountered during the PERT-like traversal. A
single sum operation requires O(n) and, therefore, the
total complexity for this part is O(pn(Ng + NI)).

Therefore, the run time complexity of the algorithm is
O(pn(Ng + NI)), which is pn times that of deterministic STA.

6The time to characterize the sensitivities of delay on parameter variations is
excluded from this analysis.

VI. EXTENDING THE METHOD TO HANDLE INTER-DIE

VARIATIONS, SPATIALLY UNCORRELATED

INTRA-DIE PARAMETERS, AND

MIN-DELAY COMPUTATIONS

This section will first describe how this work can be extended
to include the effect of inter-die variations in addition to intra-
die variations. Subsequently, it will be explained how spatially
uncorrelated parameters can be incorporated into the current
proposed algorithm. Finally, it will be shown how minimum
delay computations can easily be incorporated into this frame-
work.

A. Inter-die Variations

In general, the process parametric variation can be mod-
eled as

δtotal = δinter + δintra (39)

where δinter is the inter-die variation and δintra is the intra-die
variation. As for δintra, δinter is also modeled as a Gaussian
random variable.

As introduced in Section I, inter-die variation has a global
effect on all the transistors [wires] within a single chip and,
therefore, a single random variable δinter can be applied to all
transistors [wires] to model the effect of inter-die variation.
Consequently, the covariance matrix for each type of spatially
correlated parameter is changed by adding to all entries a
value of σ2

δinter
, the variance of inter-die parametric variation.

Based on the new covariance matrices, the same statistical STA
methodology can still be applied to compute distribution of chip
delay.

B. Spatially Uncorrelated Parameters

In practice, it is observed that not all process parameters are
spatially correlated. For example, the variations of Tox or Na

are independent from transistor to transistor. To model the intra-
die variation of spatially uncorrelated parameter, a separate
random variable has to be used for each gate [wire] to represent
such independence, instead of a single random variable for all
gates [wires] in the same grid for the spatial correlated parame-
ters. Consequently, the timing analysis framework introduced
in previous sections must be further extended to accommodate
the spatially uncorrelated parameters.

As an example, let us consider the case that gate oxide
thickness Tox is the only spatially uncorrelated parameter. The
idea described here can easily be extended to the case where
there is more than one uncorrelated parameter. With inter- and
intra-die variations, the variation of Tox for the ith transistor
can be expressed as δinter

Tox
+∆T i

ox, where δinter
Tox

is the random
variable representing the inter-die variation of Tox, and ∆T i

ox

the intra-die variation of Tox of the ith transistor. Accordingly,
the expressions for device [wire] delays are reformulated by
substituting δinter

Tox
+∆T i

ox for where ∆Tox of the ith transistor
appears. Since the orthogonal transformations of parameters are
performed only on spatially correlated parameters, the variables
δinter
Tox

and ∆T i
ox are preserved in the delay expressions of
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TABLE I
PARAMETERS USED IN THE EXPERIMENTS

TABLE II
COMPARISON RESULTS ASSUMING FIXED VALUES OF Tox AND Na

Fig. 3. Comparison of MinnSSTA and MC methods (assuming fixed values of Tox and Na) for circuit s38417. The curve marked by the solid line denotes the
results of MinnSSTA, while the plot marked by the starred lines denotes the results of MC.

linear combination of PCs and either variable is independent
from the PCs and any other random variables in the delay
expressions. The timing propagation using the sum and max
operators remains the same, except that after each sum or
max operation, the random variables for intra-die variations of
spatially uncorrelated parameters ∆T i

ox’s are merged into one
random variable, so that, at each arrival time, only one inde-
pendent random variable is kept for all intra-die variations of
spatially uncorrelated parameters. It is observed that the way
of adding this independent random variable to the standard

form of the representation of arrival times is similar to the
“residual” variance’s lumping into the independently random
part in [26].

Although structural correlations can be automatically taken
into account using orthogonal transformation on spatially cor-
related parameters as explained in Section IV-D, the structural
correlations due to spatially uncorrelated parameters cannot
be handled with the same technique because of the merging
of these random variables during the propagation. To reduce
the inaccuracies caused, one can appeal to the available
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TABLE III
COMPARISON RESULTS OF THE PROPOSED METHOD AND MC SIMULATION METHOD

literature on handling structural correlations in statistical STA
[7], [9], [10]. In this work, the structural correlations caused by
the spatially uncorrelated parameters have been ignored. How-
ever, since the structural correlations from spatially correlated
parameters are considered, the inaccuracies introduced from
this assumption are not significant, as will be demonstrated in
Section VII.

C. Distribution of the Minimum of a Set of Gaussians

In circuit performance analysis, computations such as finding
the RAT for long-path analysis, and minimum delay computa-
tions for short-path analysis (to check for hold time violations),
require the computation of the minimum of a set of delays,
which becomes finding the distribution of the minimum of a
set of random variables under process variations.

The procedure for calculation of the maximum of a set of
Gaussians can be utilized to compute the minimum of a set
of Gaussian random variables, d1, . . . , dl. Specifically, dmin =
min(d1, . . . , dl) can be computed as

dmin = −max(−d1, . . . ,−dl) (40)

where di is a normally distributed random variable and max is
the operator introduced in Section IV-C.

VII. EXPERIMENTAL RESULTS

The proposed algorithm was implemented in C++ as the soft-
ware package “MinnSSTA” and tested on the edge-triggered
ISCAS89 benchmark circuits by working on the combinational
logic blocks between the latches. All experiments were run
on a Linux PC with a 2.0-GHz CPU and a 256-MB memory.
Parameters of 100 nm technologies are experimented upon on
a two-metal layer interconnect model. The process parameters
(Table I) used here are based on predictions from [20] and [27].

Since the computation requires physical information about
the locations of the gates and interconnects, all cells in the
circuit were first placed using the placement tool, Capo [28].
Global routing was then performed to route all the nets in the
circuits. Depending on the size of circuit, the chip area into dif-
ferent sizes of grids was divided. Again, due to the lack of
access to real wafer data, the covariance matrix for intra-die
variations used in this work were derived from the spatial

correlation model used in [3] by equally splitting the variance
into all levels.

To verify the results of the proposed method MinnSSTA,
MC simulations based on the same grid models for compari-
son were used. To balance the accuracy and run time, 10 000
iterations for the MC simulation were run.

First, the experimental results are presented assuming that
all parameters are spatially correlated while using fixed values
for the spatially uncorrelated parameters (Tox and Na). Table II
shows a comparison of the results of MC with those from
MinnSSTA. For each test case, the mean and SD values for
both methods are listed. The results of MinnSSTA can be seen
to be very close to the MC results: The average error is −0.23%
for the mean and −0.32% for the SD. In Fig. 3, for the largest
test case s38417, the plots of the pdf and cdf of the circuit
delay for both MinnSSTA and MC methods are provided.
It is observed that the curves almost perfectly match each
other. This demonstrates the accuracy of the PCA approach
for correlated parameters, including its ability to account for
structural correlations.

Next, the results for considering the variations of the spatially
uncorrelated parameters (Tox and Na) are given in Table III.
On average, the error is 1.06% for the mean value and −4.34%
for the SD. In Table VIII, the 99% and 1% confidence points
achieved by MC and MinnSSTA are also provided, and the
average errors are −2.46% and −0.99%, respectively. Again,
for the largest test case s38417, the pdf and cdf curves of the
circuit delay for both MinnSSTA and MC methods are plotted
in Fig. 4. It can be seen that, at the range of lower and higher
circuit delay values, the circuit delay distribution computed
from MinnSSTA matches well with that of the MC simulation,
although there are some deviations in the central portion. As
mentioned in Section VI-B, some errors may be introduced
from the structural correlations, which are not handled exactly
in the presence of uncorrelated intra-die components. Based on
the analysis of the experiments, it is found that the cause for
the small error that is introduced here is primarily because our
implementation does not handle structural correlations between
the uncorrelated variables. It is believed that, by appending into
the existing framework, an algorithm that handles structural
correlation [7], [9], [10], the error of the results in Table III
can be further reduced.

In Table III, the CPU times for both methods are provided. To
show that the PCA steps require very little run time, the run time
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Fig. 4. Comparison of MinnSSTA and MC methods for circuit s38417, considering all sources of variation, some of which are spatially correlated and some of
which are not. The curve marked by the solid line denotes the results of MinnSSTA, while the plot marked by the starred lines denotes the results of MC.

TABLE IV
STATISTICS OF RATIO OF SD OF ACCURATE VALUE σdmax TO s0 OF THE LINEAR EXPRESSION

for this part is also listed; however, as pointed out earlier, this
can be considered a preprocessing step that is carried out once
for each technology, and its cost need not be considered in the
computation. It can be seen that the CPU time of MinnSSTA
on all test cases is very fast. The circuit with the longest run
time, s35932, was analyzed in only about 500 s, while the MC
simulation required over 15 h.

In the proposed approach, in order to make the computed
value of SD of dmax the same as that of the approximated
linear expression, the coefficients of parameters in the linear
expression are normalized by the ratio of the SD of dmax

(namely, σdmax) to that of the linear expression s0. In Table IV,
the statistics of this ratio for all testcases are listed, including the
mean, SD, minimum, and maximum values of the ratio and the
probability of the ratio falls into each given range. In general,
the higher the ratio, the larger the error for estimating dmax is,
and thus the less accurate for estimating the circuit delay distri-
bution using the proposed approach. For example, the testcase
s35932 has the highest probability of 0.045 for the ratio to be
greater than 1.1, and it also has the largest errors predicting the

circuit mean and SD. Over all test cases, the average value of
the ratio is 1.003, which is a reasonably small number so that
the accuracy of the proposed statistical SSTA should not be
affected significantly by this normalization step.

To further verify the applicability of the proposed algorithm,
it has been demonstrated on a path-balanced circuit whose to-
pology is a binary tree of depth 10. Table V lists the results
achieved by MinnSSTA and MC. The errors obtained are
−0.54% for the mean and −6.26% for the SD; −4.56% and
−1.65% for the 99% and 1% confidence points, respectively.
This shows that the proposed approach can predict the timing
yield well, even for path-balanced circuits.

One may ask what happens if an MC approach was run for
the same amount of time as the proposed algorithm. In Table VI,
the data achieved from MC runs in the equivalent CPU time
of the proposed method “MinnSSTA” are shown. Since this
MC simulation can only run a small number of iterations and
samples the solution space insufficiently, it does not meet any
of the usual convergence criteria used for MC analysis. There-
fore, what is achieved is not the genuine distribution of circuit
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TABLE V
EXPERIMENTAL RESULTS ON A BINARY TREE CIRCUIT OF DEPTH 10

TABLE VI
COMPARISON OF MC IN EQUIVALENT CPU TIME OF MinnSSTA WITH THAT OF 10 000 RUNS (MC)

TABLE VII
COMPARISON OF TIMING ANALYSIS WITH AND WITHOUT SPATIAL CORRELATIONS

delay, but merely the distribution from an incomplete number
of runs. The table shows the minimum values and maximum
values of the circuit delay from this insufficient number of
MC runs, and for purposes of comparison, the results with the
1% and 99% confidence points, respectively, from the 10 000
iterations of MC simulation. It can be seen that the accuracy is
highly variable: In some cases, MC analysis comes close to the
action value, while in others, it is very far away. Most notably,
large deviations can be seen both for a small circuit (s27) and
a large circuit (s38584), implying that the reliability of such
an approach is suspect. Of course, this is not surprising in the
least, because the artificial limitation on the run time has made
the MC analysis unreliable, by permitting only a low point of
confidence for its predictions, and has not permitted it to fully
sample the search space.

To show the importance of considering spatial correlations,
the difference between performing statistical timing analysis
while considering spatial correlation and while ignoring it is
considered. Since this is a comparison to determine why spatial
correlations are important, the CPU time is not a consideration.
Therefore, another set of MC simulations (MCNoCorr) was
run on the same set of benchmarks, this time assuming zero

correlations among the devices and wires on the chip. The
comparison between the data is shown in Table VII. It can be
observed that although the mean values are close, the variances
of the uncorrelated cases (MCNoCorr) are much smaller than
the correlated cases (MC). On average, the SD of the correlated
case increases by 25.93%. Again, the pdf and cdf curves of both
simulations are plotted for circuit s38417 in Fig. 5. It is seen
that the cdf and pdf curves of MCNoCorr deviate significantly
from those of MC. In other words, statistical timing analysis
without considering correlation may incorrectly predict the real
performance of the circuit and could even overestimate the
performance of the circuit. This emphasizes the importance of
developing efficient statistical STA methods that can incorpo-
rate spatial correlations.

As an alternative, the option of using MPCs for these experi-
ments is considered, where the circuit delays are evaluated at
all possible corners of parameter values at µ ± 3σ, where µ is
the mean and σ the SD for the parameter. Table VIII compares
the worst case and best case delays obtained at exhaustive
process corners using the MPC method, with the 99% and
1% confidence point delay achieved from the MC simulation
accordingly. On average, the MPC approach overestimates the
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Fig. 5. Comparison of statistical STA with and without considering spatial correlations, under MC analysis, for circuit s38417. The curve marked by the solid
line denotes the case where spatial correlations are ignored, while the curve with the starred lines denotes the results of incorporating spatial correlations; this is
identical to the curve in Fig. 4.

TABLE VIII
COMPARISON OF 99% AND 1% CONFIDENCE POINT

worst case delay of circuit by 30.81% and underestimates the
best case delay by 28.08% These results also emphasize the
importance of considering spatial correlations during statistical
STA, as is done by our algorithm.

VIII. CONCLUSION AND FUTURE WORK

In this paper, an algorithm for performing statistical static
timing analysis (SSTA) has been proposed, considering spatial
correlations related to intra-die process variations. It is shown
that performing statistical timing analysis while ignoring spa-
tial correlations may not be adequate to predict the circuit
performance correctly, and that fast and accurate SSTA meth-
ods, such as ours, that incorporate spatial correlations are essen-
tial. An analysis of the complexity shows it to be reasonable,
and like conventional static timing analysis (STA), it is linear
in the number of gates and interconnects. The penalty that is

paid here is that unlike deterministic STA, it is also linear in
the number of grid squares. As a trivial extension of maximum
of delays, the computation for the distribution of minimum of
delays is also provided.

The current algorithm is limited by the following: It assumes
that the distribution of parameter variations are Gaussian and
the distribution of gate [wire] delays has linear dependency
on the variation of process parameters. A good direction for
future research involves solving the problem of statistical tim-
ing analysis on non-Gaussian process parameter variations and
nonlinear delay dependencies.
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