
ARTICLE IN PRESS
0167-9260/$ - se

doi:10.1016/j.vl

�Correspond
133, 1000-029 L

fax: +351 213 1

E-mail addr

lms@inesc-id.p
INTEGRATION, the VLSI journal] (]]]])]]]–]]]

www.elsevier.com/locate/vlsi
Substrate model extraction using finite differences and parallel multigrid

João M.S. Silvaa,b,�, L. Miguel Silveiraa,b,c

aInstituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal
bINESC ID Lisboa, Systems and Computers Engineering Institute: Research and Development, Lisboa, Portugal

cCadence Laboratories, INESC ID Lisboa, Lisboa, Portugal

Received 2 September 2005; received in revised form 2 May 2006; accepted 23 May 2006
Abstract

Substrate noise in integrated circuits is one of the most important problems in high-frequency mixed-signal designs, such as

communication, biomedical and analog signal processing circuits and systems. Fast-switching digital blocks inject noise into the common

substrate, hindering the performance of high-precision sensible analog circuitry. Miniaturization trends require increasing the accuracy in

substrate coupling simulation environments. However, model extraction and evaluation times should not increase, which demands for

fast and still accurate substrate model extraction tools.

In this work, a three-dimensional finite difference extraction methodology is presented. The resulting three-dimensional mesh is

efficiently reduced to a circuit-level contact-based model by means of a fast multigrid-based algorithm. Moreover, this contact-based

model extraction is shown to be efficiently computed in a parallel environment, resulting in extremely useful extraction speedups.

Extraction results prove the proposed method to be very efficient, providing linear time and space complexity, and a constant number of

iterations, outperforming competing algorithms.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Substrate coupling model extraction; Multigrid; Parallel computing; Finite difference discretization
1. Introduction

Substrate electromagnetic behavior in integrated circuits
presents a finite resistivity, thus causing undesired coupling
between different devices to occur [1,2]. Coupling manifests
itself by current migration between transistor active and
channel areas, and substrate and well contact ties. For cost-
saving reasons, different cells and blocks are implanted
close to each other, sometimes without any kind of guard-
ring or trenching isolation, causing substrate noise to
influence different blocks on the same die [1,3,4].

As deep sub-micron MOS processes reach further in
miniaturization, and with the increase in operating fre-
quencies, fast-switching digital blocks inject high-frequency
e front matter r 2006 Elsevier B.V. All rights reserved.

si.2006.05.002

ing author. INESC ID Lisboa, Rua Alves Redol, 9, Sala

isboa, Portugal. Tel.: +351 213 100 260;

45 843.

esses: jmss@algos.inesc-id.pt (J.M.S. Silva),

t (L.M. Silveira).
noise into the substrate. In purely logic circuits, where gate
density is high, this means that increasingly larger levels of
noise injection are present. These substrate currents can be
collected through the power supply connectors and cause
local voltage fluctuations that affect the delay of logic gates
and the overall time performance of the circuits.
It is however in the context of mixed-signal designs that

the issue of substrate coupling is most crucial. Industry
trends aimed at integrating higher levels of circuit
functionality have triggered a proliferation of mixed
analog–digital systems. The design of such systems is an
increasingly difficult task owing to the various coupling
problems that result from the combined requirements for
high-speed digital and high-precision analog components.
Analog circuitry relies on accurate levels of currents and
voltages, so that analog transistors are correctly biased and
the projected performance is met. When substrate-injected
currents migrate through it, substrate voltages fluctuate
causing havoc in sensitive analog transistors and possibly
leading to malfunctioning circuitry [1,2,5,6].

www.elsevier.com/locate/vlsi
dx.doi.org/10.1016/j.vlsi.2006.05.002
mailto:jmss@algos.inesc-id.pt
mailto:lms@inesc-id.pt

ARTICLE IN PRESS

1In the remaining we will use the word contacts to indicate for substrate

and well contacts and diffusions.

J.M.S. Silva, L.M. Silveira / INTEGRATION, the VLSI journal] (]]]])]]]–]]]2
Analyzing the effects of substrate coupling requires a
model of such couplings to be obtained and used in a
verification framework. Such a verification is typically done
at the electrical level by means of a circuit simulator which is
given a substrate model, together with the models of the
devices. Common simplifications assume that the major
coupling mechanism is owed to the finite resistivity of the
substrate, thus deriving resistive models. Such an approx-
imation is valid when the dielectric relaxation time of the
layers composing the substrate yields an insignificant
susceptance at the frequencies of interest. Consequently,
such an approximation becomes questionable beyond a few
gigahertz, specially since harmonics of significant amplitude,
generated by circuit nonlinearities, may fall in the range of
frequencies where reactive effects are of importance [7,8].

In this paper, however, we will only focus on resistive
model coupling extraction, for the sake of simplicity.
Dynamic model extraction can be performed by using
complex number arithmetic and is extensively analyzed in
[9,8]. Herein, an efficient methodology is proposed for
generating arbitrarily accurate substrate coupling models.
The methodology proposed for model extraction, based on
a finite difference formulation and multigrid (MG) based
solution of the resulting mesh network, is detailed and
several methods for system solution are compared. More-
over, the presented methodology is easily parallelizable,
and can be used in a parallel computing environment, such
as multiprocessor workstations, clusters or grid-computing
networks, which are common in actual large design houses.

In Section 2, the mechanisms for substrate coupling are
briefly discussed and we review background work in the
area of substrate model extraction. The proposed model
extraction algorithm is explained in Section 3 and the
numerical details are discussed in Section 4. In Section 5
two distributed computing approaches are presented.
Performance results are presented in Sections 6 and 7 for
sequential and parallel environments, respectively. Finally,
in Section 8 conclusions are drawn.

2. Previous work

Several substrate model extraction methodologies have
been previously studied and, based on them, several
extraction tools were developed. The simplest modeling
methodologies consist on directly finding coupling ele-
ments based on heuristic rules. Such methods are very
attractive due to the minimal extraction overhead and lead
to simple first order models, which also have low
simulation costs [1,6,10,11]. However, such models are
generally very imprecise. Furthermore, heuristic models are
only really useful to the designer, for they are unable to
account for higher order effects and, in fact, rely on
designer’s experience to prune out the expected relevant
couplings [12]. Moreover, once that is accomplished
they do not provide any form of verification as to whether
the performed approximation enables correct circuit
simulation.
On the other hand, methodologies that avoid a priori
heuristic pruning and work directly at the electrical level
are typically based on a full description of the media and all
the possible couplings. A problem that arises from model
extraction in those cases is the extraction time and the size
of the final model. There are two major classes of methods
which have been proposed to generate such a model:
boundary element methods (BEM) and finite difference
(FD) or finite element methods (FEM).
In BEM, only the surface of the substrate contacts and

diffusions1 is discretized which leads to a system of
equations that corresponds to large and dense matrices.
Extraction of these models requires intensive computa-
tions, which restrains the applicability range of this
methods to small- and medium-sized problems [2,5,13].
Fortunately, significant progress in BEM performance has
been achieved [14,15].
In FD or FEM, the whole three-dimensional (3D)

volume of the substrate is discretized leading to large but
sparse matrices. FD/FEM produce even larger matrices
than BEM which require extensive memory resources,
although they are typically very sparse [16,17]. This type of
methods has also been enhanced with fast solution
techniques [18]. We should point out that it is possible to
combine this type of extraction methodologies with
additional information about the circuit layout or some
knowledge about the circuit in terms of the noise injection
and reception mechanisms. Such techniques allow for
careful pruning of the number of contacts, lead to faster
extraction procedures and still produce very accurate
models (the interested reader should see for example the
discussion in [19,20] and the references herein). Never-
theless, extraction of a substrate model that reflects the
coupling effects through the substrate is still required in
order to account for the propagation effect.
In our work, a fast FD-based method for the extraction

of couplings between substrate contacts was developed.
The large 3D mesh resulting from the discretization is
reduced using a fast MG-based algorithm with linear
complexity. Furthermore, we introduce the possibility of
two types of parallel extraction of the coupling between the
contacts, which can introduce highly useful speedups in the
design flow.

3. Substrate model extraction

In our work, a model of the couplings between substrate
contacts is extracted using a FD-based method. Moreover,
the large 3D mesh resulting from this discretization is
reduced using a fast MG-based algorithm. We assume that
a set of contacts has been defined on the substrate, possibly
consisting of active devices, connections to the power
rails, backplane, etc. It is possible to use circuit layout
information to generate constraints among the physical

ARTICLE IN PRESS

i

lij

Sij

Eij

j

Fig. 2. Cuboid resulting from the finite difference discretization of the

substrate.

J.M.S. Silva, L.M. Silveira / INTEGRATION, the VLSI journal] (]]]])]]]–]]] 3
contacts which will impact the definition and the number of
contacts to be considered. As an example, it is possible to
impose that certain substrate connections are equipotential
due to the design of the interconnect structure above the
substrate. In such cases, these connections should be
handled as being part of a single contact. Whenever
available, such information can be used to reduce the
actual number of contacts without affecting the flow of the
computation discussed or the accuracy of the model. In the
following, we assume implicitly, that such information, if
available, has been taken into account.

3.1. Finite difference tridimensional model

Applying the FD method implies a discretization of the
substrate volume into a large number of small cuboid
elements. Obviously, the finer the discretization, the more
accurate is the generated model. An example of such a
discretization is shown in Fig. 1.

FD discretization is able to handle any number of
substrate vertical profiles, deep trenches, buried and
epitaxial layers, guard-rings, and so on, as long as the
mesh spacing is accurate enough. In the case of wells,
assuming the coupling to and from the wells is capacitive,
one has to extract the model inside the wells separately
from the remaining substrate model and then connect all
models through the coupling capacitances.

In order to obtain an electric model of the mesh we start
with Maxwell’s first law using the quasi-static approach:

srE þ �
qrE

qt
¼ 0. (1)

In this equation, E is the electric field, s the conductivity
of the medium and � its permittivity. If we consider a node i

resulting from the FD discretization of the substrate (cf.
Fig. 2), rE for the cuboid involving that node can be
approximately calculated as

rE �
1

V

X
j

EijSij , (2)

where Sij is the surface common to nodes i and j, Eij the
electric field normal to that surface and V the volume of
Substrate contacts

Substrate

Fig. 1. Finite difference discretization.
the cuboid and the summation takes into account all
cuboid surfaces.
Using FD, the electrical field Eij can also be approxi-

mated by2

Eij �
Vi � Vj

lij

, (3)

where lij is the distance between adjacent nodes i and j, and
Vi and V j the scalar potential at those nodes. Using Eq. (3)
in Eq. (2) and such result in Eq. (1) we obtain

X
j

GijðV i � VjÞ þ Cij

qV i

qt
�

qV j

qt

� �� �
¼ 0, (4)

where Gij ¼ sSij=lij and Cij ¼ �Sij=lij .
3 Fig. 3 depicts the

equivalent electrical model of Eq. (4) for each mesh node.
In order to compute the model using Eq. (4), boundary

conditions are set to indicate substrate contact nodes, as
well as the physical limits of the substrate. Hence, active
areas (contacts, devices and possibly the backplane) are
treated as Dirichlet boundaries, with constant fixed
voltages, while Neumann boundary conditions (or reflec-
tive conditions) are imposed on all other physical
boundaries. As a consequence, in our FD formulation,
the voltage, Vi, at every node i lying on or inside a
Dirichlet boundary is known and does not need to be
solved for. Furthermore, the effect of any such node lying
on a Dirichlet boundary can be accounted for in its
2The accuracy of such an approximation increases as mesh spacing

tends to zero.
3Eq. (4), derived from Maxwell’s Laws, is in fact Kirchoff’s Current

Law applied to node i. If node i had a current source connected to it, the

right-hand side of Eq. (4) would equal the value of that current source.

ARTICLE IN PRESS

Cij
Cik

Gik

Cil

Gil

Cim

Gim

Cin

Gio

Cio

Gij

Gin

n

m

io

j

l

Fig. 3. Equivalent RC mesh for modeling the substrate: conductances and

capacitances around a mesh node in the electrical substrate mesh.

R12 R23

Substrate contacts

1 32

J.M.S. Silva, L.M. Silveira / INTEGRATION, the VLSI journal] (]]]])]]]–]]]4
neighbor’s equation by means of a Norton equivalent. On
the other hand, setting Neumann boundary conditions
implies that nodes lying on the substrate’s physical
boundaries have fewer neighbors to account for. Therefore,
the respective equations (cf. Eq. (4)) involve a smaller
number of terms.4

For typical values of s and �, the dielectric relaxation
time of the substrate is of the order of tens of picoseconds,
which is much smaller than the typical time scales of the
circuit. Thus, it is reasonable to neglect intrinsic substrate
capacitances for frequencies of operation up to a few
gigahertz. Experimental comparisons conducted with
detailed device simulators have shown that such an
approximation does not affect the precision of the results
for frequencies in the gigahertz range [16,17]. Hence, the
general trend in the area of substrate model extraction is
toward the generation of resistive coupling macro-models.
Notwithstanding, mixed-mode systems with aggressive fast
digital components may require more accurate modeling.
In [7], a method for substrate dynamic model extraction is
proposed that takes into account the intrinsic physical-level
capacitance elements from Eq. (4) and produces an RC
contact-based macro-model (see Section 3.2 for discussion
of the equivalent resistive-only contact-level macro-model).
It is shown that the extraction of such an RC model
increases extraction complexity only by a constant factor.
Consequently and for the sake of simplicity, in this paper
we will focus only on resistive model extraction. Never-
theless, the methodology herein proposed can also be
applied to RC model extraction.
4For nodes lying in the substrate physical boundaries, terms corre-

sponding to neighbors that would be outside the 3D mesh are dropped.

Furthermore, terms corresponding to neighbors that are also themselves in

the physical boundary of the substrate are weighted appropriately to

compensate for a smaller cuboid volume.
3.2. Circuit-level model extraction

Using the 3D mesh model from Eq. (4) directly in any
electrical simulator is prohibitive due to the model’s sheer
size. Furthermore, the model size would be critically
dependent on the spacing of the discretization used, and
thus on its accuracy, which is highly undesirable. We seek a
macro-model whose size is proportional to the number of
substrate contacts and whose accuracy is independent of
such size. Consequently, we will use the typical substrate
contact-based macro-model, which is depicted in Fig. 4 for
a simple three contact configuration.
Considering a system with m contacts and using nodal

analysis (NA), the corresponding system of equations can
be written as

GcU ¼ J, (5)

where Gc 2 R
m�m is the matrix of resistive coupling

elements between the m contacts and U ; J 2 Rm are the
vectors of contact voltages and contact injected currents,
respectively. Gc 2 Rm�m is the macro-model that we seek
for further analysis. The procedure we use to compute Gc is
quite standard. Suppose we set the voltage in contact k

ðk ¼ 1 . . .mÞ to 1V and the voltage in all other contacts i

ðiakÞ to 0V. In that case, the kth element of U in Eq. (5) is
1 while all others are 0 and J trivially equals the kth column
of Gc. Thus, if given such a U we compute the
corresponding J, we recover the kth column of Gc. By
repeating this procedure m times, once for each contact, we
construct Gc one column at a time.
All that is required to compute the substrate macro-

model is to, given a set of contact voltages, determine the
contact-injected currents. In order to perform this compu-
tation we resort to the 3D mesh model. Applying NA to the
3D model, assuming a discretization leading to n mesh
nodes, originates a similar system of equations:

GV ¼ I , (6)

where G 2 Rn�n and V ; I 2 Rn are now the voltage vector
for all nodes in the discretization mesh and the correspond-
ing injected currents, respectively. This system is analogous
to the previous one, but much larger since, in general,
nbm. The two systems are nevertheless related and in fact
the substrate contact model defined by Gc in (5) can be
R13
R30R20R10

Backplane

Fig. 4. Resistive model for a three contact configuration.

ARTICLE IN PRESS
J.M.S. Silva, L.M. Silveira / INTEGRATION, the VLSI journal] (]]]])]]]–]]] 5
obtained from the 3D model in (6) by means of simple
computations. Since NA is used, the inputs to Eq. (6)
should be injected currents. Since one has set the voltage at
contact nodes to a specified value (0 or 1 in this case), such
voltages can be transformed into input currents to
neighbor nodes by means of a Norton equivalent at those
nodes. The complete transformation can be written as

I ¼ GadjU , (7)

where Gadj 2 Rn�m is a matrix, that describes the Norton
equivalent admittances at the mesh nodes adjacent to the
nodes on the contacts. Clearly, most of the entries in Gadj

are zero, with the exception of lines related to the nodes
adjacent to contacts. On the other hand, the output of the
system are the currents on the contacts, which are given by

J ¼ GT
adjV (8)

since the current injected into contacts will come from all
neighboring nodes.

Therefore, combining (8), (6) and (7), we obtain

J ¼ GT
adjV ¼ GT

adjG
�1I ¼ GT

adjG
�1Gadj|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

G�1c

U , (9)

which exposes the conductance model of the system of
contacts (obviously no matrix inversion is performed;
Eq. (6) is solved instead once the inputs are available).

The process of a single column extraction is therefore
repeated as many times as the number of contacts, so that
the full conductance matrix Gc is formed, one column at a
time. The cost of computing the contact model, Gc, for a
system of m contacts is thus equal to m times the cost of
solving the 3D mesh to determine the node voltages.
This can be performed very efficiently by means of a fast
MG algorithm with a cost of OðnÞ per solve as shown in
Section 6. The full extraction algorithm is presented in
Algorithm 1.

Algorithm 1. Conductance model extraction algorithm.

1. For each contact k:
(a) Put nodes in contact k at a specified voltage (e.g.

1V) and all other contact nodes at 0V;
(b) Using Norton’s equivalent, obtain the currents

injected into adjacent nodes to nodes on contacts;
form the conductance matrix, G, for the 3D system;

(c) Solve the 3D system (6) obtaining the voltages for all
the 3D mesh nodes, V;

(d) Given V and G, use Ohm’s Law to compute the
currents injected in all contact nodes;

(e) Use Gauss’ Law and sum injected node currents to
obtain contact injected currents J;

(f) By Eq. (5) and since only the nodes on contact k had
a fixed voltage, the kth column of Gc equals J;

2. Assemble all columns into Gc to form the contact-level
macro-model.
3.3. Finite difference mesh solving methods
Several methods were considered for solving the large
3D system (6) whose solution is required to obtain the
reduced circuit-level model. We propose the use of MG
methods [21] and in order to determine their efficiency we
compare them to Krylov-subspace methods [22], such as
the conjugate gradient (CG).
Since it is well known that the performance of Krylov-

subspace methods can be further improved if a good pre-
conditioner is used [22], we have also implemented a
preconditioned version of CG, preconditioned conjugate
gradient (PCG). For this effect, the incomplete Cholesky
factorization showed to yield the most efficient behavior
when used as a pre-conditioner. Moreover, the MG method
itself can also be used as a pre-conditioner to CG, method
which we denote by multigrid preconditioned CG (MGPCG).
Besides the above-mentioned methods, other were

studied which conducted to worse or similar results, like
the generalized minimal residual [23] (GMRES), and will
only be mentioned for benchmark reasons.
4. MG-based substrate model extraction

Multilevel methods rely on the availability of different
accuracy levels (or grids in the case of MG [21]). Starting
with an accurate 3D mesh (referred to as the h-mesh, where
h is related to the mesh spacing), the initial problem is
recursively projected to coarser grids (e.g., 2h, 4h, etc.),
until direct solution (by Gaussian elimination or some
iterative method) is efficient. Solutions obtained at any
coarser level are then interpolated to finer levels where local
solutions are adjusted. This is called a MG V-cycle, due to
its shape, and constitutes a single MG iteration. An explicit
algorithm and details can be obtained from [21]. A pseudo-
code description is presented in Algorithm 2.

Algorithm 2. Multigrid V-cycle.

1. If in the coarsest level solve Gh ~xh ¼ bh.
2. Otherwise:

(a) Apply n1 Gauss–Seidel relaxation iterations to the
system, ~xh ¼ GSðGh; bh; n1Þ;

(b) Compute the resulting residue, rh ¼ bh � Gh ~xh;
(c) Smooth the residue vector by means of minimal

residue smoothing, rh ¼MRSðrh; ~xhÞ;
(d) Project the residue vector to the inner level,

b2h ¼ P2h
h rh;

(e) Recursively compute x2h ¼MGðG2h; b2hÞ;
(f) Interpolate the inner level solution, eh ¼ Ih

2hx2h;

(g) Adjust the current level solution, xh ¼ xh þ eh;
(h) Apply n2 Gauss–Seidel relaxation iterations to the

system, xh ¼ GSðGh; bh; n2Þ.
Step 2c in Algorithm 2 is an optional step and not an
integral part of the traditional MG V-cycle. Nonetheless,

ARTICLE IN PRESS
J.M.S. Silva, L.M. Silveira / INTEGRATION, the VLSI journal] (]]]])]]]–]]]6
minimal residue smoothing [24] yields very good results in
reducing the number of iterations needed for MG
convergence.

As said, MG methods use different accuracy grids. They
operate by first decomposing the original problem into a
set of sub-problems, each associated with a specific
discretization grid, or level. Then, a relaxation (smoothing)
scheme is applied to each sub-problem to reduce error
components in that level. The sub-problems relate with one
another via restriction and prolongation operators (also
known as projection and interpolation operators, respec-
tively), called inter-grid transfer operators. Since the work
associated with the relaxation at each level decreases
geometrically as the problem is coarsened, the total work
required for going through each level once, i.e. for one MG
sweep, is bounded by a small multiple of the work at the
finest level. Furthermore, since the relative error reduction
resulting from a relaxation iteration at each level is uniform
across all levels, the error reduction for a MG sweep is
equal to the error reduction at a single level. Hence,
the MG convergence rate is independent of discretiza-
tion which is the main reason for the efficiency of
such methods in elliptic problems such as the one we are
dealing with.

There are two principal algorithmic components needed
for a successful MG method for solving a system Gx ¼ b,
namely the smoothing operator and the inter-grid transfer,
or restriction-prolongation, operators. At every level
h; 2h; :::; 2Lh in the MG cycle, corresponding to a certain
length scale, the error is smoothed by carefully solving a
series of local problems. This first step is typically called
smoothing or relaxation, and results in an intermediate
guess ~xh. Next, we compute the corresponding residual
rh ¼ bh � Gh ~xh and project it onto the coarse grid via
b2h ¼ P2h

h rh, where P2h
h is a restriction or projection

operator. This procedure is repeated until the predeter-
mined lowest level is reached, in which case we solve
explicitly the coarse-grid problem and project the result
onto the grid one level higher, via eh ¼ Ih

2hx2h, where Ih
2h is

a prolongation or interpolation operator. This procedure is
repeated until the highest level, corresponding to the finest-
grid is reached, where the intermediate guess is updated to
yield the ðk þ 1Þth iterate xh ¼ xh þ eh. This second stage,
consisting, at each level, of a projection and an interpola-
tion, is termed coarse-grid correction and is responsible for
long-range interactions. The fine grid smoothing/coarse-
grid correction cycle is repeated until the norm of the fine
grid residual rh is below some tolerance. Next, the
smoothing and inter-grid transfer operators are discussed,
as they play an important role in MG convergence.

4.1. Smoothing operator

Given Gh, at level l, and corresponding length scale h,
assume that one can write

Gh ¼ Rh þ Sh, (10)
such that Rh captures the short-range, sharply peaked
portion of Gh, and Sh captures the long-range, smooth
portion of Gh. Given (10), we define the smoothing
operator as the result of solving

Rhx�h ¼ �ShxðkÞh þ bh (11)

for the vector x�h. In essence x�h is the ‘‘smoothed’’ local
solution of the original system. Eq. (11) defines a fixed-

point iteration [25], since the condition xðkÞh ¼ xh, where xh

is the exact solution of (6), would lead to x�h ¼ xh. Since it is
necessary that the above smoothing step be done cheaply,
we require that Rh be easy to invert, or that R�1h has a
sparse matrix structure, since

x�h ¼ R�1h ð�ShxðkÞh þ bhÞ. (12)

In practice it is known that any relaxation method can be
used as a smoothing operator and it is known that the
Gauss–Seidel or SOR methods work fairly well. In matrix
terms, the Gauss–Seidel method can be described as

xðkÞ ¼ ðLþDÞ�1ðb�Uxðk�1ÞÞ, (13)

where the splitting G ¼ LþDþU is implicitly used. The
LþD matrix corresponds to the lower triangular plus
diagonal pieces of G and therefore its inversion corre-
sponds merely to a process of forward substitution.
4.2. Restriction and prolongation operators

In addition to the smoothing operator, we require
transfer operators P2h

h and Ih
2h between the grids at two

consecutive levels. The interpolation or prolongation
operator consist in obtaining values for the fine grid points
from the coarse-grid points. Any interpolation procedure
can be used for this task. We have chosen the standard
linear 3D interpolation which seems to provide good
performance results. In this case, the interpolation matrix is
a sparse, rectangular matrix and computing eh ¼ Ih

2hx2h

leads to a longer vector eh at the finer level. The projection
or restriction operator, on the other hand, restricts a vector
from a fine grid onto a coarser grid. Direct projection or
weighted projection can be used here. We have chosen
instead to implement a Galerkin-type procedure which
implies that P2h

h is the matrix transpose of Ih
2h [21]. In this

case it can be shown that

G2h ¼ P2h
h GhIh

2h (14)

and computing b2h ¼ P2h
h rh generates a smaller vector b2h at

the coarser level.
A pictorial depiction of the result of applying the two

operators is shown in Fig. 5. It is instructive again to look
at the structure of the inter-grid operators. In our case,
since the restriction operator is the transpose of the
prolongation operator, it is enough to look at one of
them, namely the interpolator. To simplify, we consider
only the 1D case depicted in Fig. 6. Clearly in this case, the
fine grid points can be obtained from the coarser-grid

ARTICLE IN PRESS

InterpolationProjection P I

Fig. 5. Inter-grid transfers for simple domain.

v1 g1 v2 g2 v3 g3 v4 g4 v5

v1’ g1’ v2’ g2’ v3’

Fig. 6. Simple 1D interpolation.

J.M.S. Silva, L.M. Silveira / INTEGRATION, the VLSI journal] (]]]])]]]–]]] 7
nodes by means of the following operator:

(15)

For the 3D case, the situation is obviously more
confusing to describe since now we have to consider
interpolation in all three coordinates. However, concep-
tually it is the same. As one can see, the interpolation
operator is again a rectangular, sparse matrix with a block-
diagonal structure.

4.3. Coarse-level system solution

As described in step 1 of Algorithm 2, at the coarsest-
level of representation, the problem is solved to a residual
error. Depending on how many levels are chosen, this
matrix can be very small and even a direct method can be
applied. However, if the level projections are not carried
out to the extreme and this matrix is of considerable size
even at the coarsest-level, then a Krylov-type iterative
algorithm should be used. In general, we have seen that for
our problem better performance is obtained by carrying
out the multilevel ideas to the extreme and solving
(directly) only a very small matrix.

In Section 6 we show computational results from
applying MG to our problem and comparisons to
competing algorithms.

5. Parallel substrate model extraction

In this section we discuss the parallelization of the MG-
based substrate model extraction algorithm. We start by
presenting the computing network which we used to
conduct our experiments. Precise definitions of what is
meant by speedup and efficiency of a parallel computing
environment are given. Finally, we look into Algorithms 1
and 2, and discuss how to break up the problem into the
various processing units.

5.1. Distributed computing environment

In this work, the distributed computing environment was
a cluster of machines interconnected with gigabit ethernet
adapters. We used up to 16 machines of this cluster. Each
machine is an Intel Pentium 4 @ 3.2GHz with 1GB of
RAM. All the machines are running GNU/Linux.
Since all machines are equal, we avoid to some extent the

discussion of relevant practical issues such as load
balancing related to compute the computational capacity
of each host. We consider such a discussion, while
meritorious, to be outside the scope of this paper.
The network is setup using the MPICH implementation

of MPI, the message passing interface standard (http://
www-unix.mcs.anl.gov/mpi). The MPI standard is
the de facto industry standard for parallel applications. It
was designed by leading industry and academic researchers,
and builds upon two decades of parallel programming
experience. The relevant information here is that the MPI
implementations provides a functional layer for commu-
nication between the various computing units. This
communication is performed under the guise of message
passing and the appropriate protocols are brought into the
fray depending on the architecture of the distributed
systems, namely using system V semaphores or spin-locks
in shared memory multiprocessor machines and TCP for
the networked machines.
Performance-related CPU times were measured with the

function times from the GNU C library and consist on
the sum of user and system times. The times presented in
the results were taken on the machine which took the most
time to run.

5.2. Parallel computing performance metrics

When considering the performance of a parallelized
algorithm, one must compare it with a serial, single-
processor implementation. To that end, if we denote by
TðpÞ the time to solve a problem on a parallel environment
using p processors, then we can define the following.
Parallelization speedup is defined as

SðpÞ ¼
Tð1Þ

TðpÞ
. (16)

Perfect utilization of resources is obtained when
SðpÞ ¼ p. Another relevant definition, containing similar
information, is the measure of efficiency. Parallelization
efficiency can be measured as

EðpÞ ¼
Tð1Þ

p� TðpÞ
. (17)

Perfect utilization of resources is obtained when EðpÞ ¼ 1.

http://www-unix.mcs.anl.gov/mpi
http://www-unix.mcs.anl.gov/mpi
http://www-unix.mcs.anl.gov/mpi

ARTICLE IN PRESS
J.M.S. Silva, L.M. Silveira / INTEGRATION, the VLSI journal] (]]]])]]]–]]]8
To ascertain the performance of our algorithm under
these metrics, and in particular to measure scalability, we
assume a simplified performance model involving cost for
computational tasks as well as communication. We define
the communication time for sending n doubles as

Tcomm ¼ aþ bn, (18)

where a is the latency or startup time of the network and b
is the time to transfer a single double. The bandwidth of
the communication channel is thus 1=b. Similarly to the
communication model, we define the computation time,
measured again in terms of computation with doubles as

Tcomp ¼ gn, (19)

where now 1=g is the number of flops achieved by the
computing available unit.

Typically the bottleneck of most parallel implementa-
tions is the cost of communication which is usually larger
than the computation time. Balancing these is one of the
challenges of parallelizing an algorithm.

We will use the definitions described here to characterize
the performance of the parallel implementations of our
algorithm in Section 7.

5.3. Parallelizing MG-based model extraction

In order to exploit the available concurrency, the MG-
based substrate model extraction was rewritten in order to
allow execution in multiple computational units. We now
look into the various computational steps of the extraction
procedure described in Algorithm 1.

5.3.1. Contact-level parallelism

Even a cursory examination of this procedure shows a
high potential of coarse-grain parallelism. In fact, compu-
tation of the complete substrate model consists of
computing each column of Gc separately. Therefore,
computation of each column can clearly be performed in
parallel since it corresponds to a system solution with a
different right-hand side. Under this observation, paralle-
lism can be readily exploited by committing each available
processor unit to the solution of one such right-hand side.
Referring to Algorithm 1, in this type of parallelism step 1
is conducted in parallel. The only nonconcurrent tasks
involved in this procedure are related to putting together
the results sent from the various processors, namely the
data values for the various columns of the model (step 2 of
Algorithm 1). Since this task is, by comparison, not very
demanding computationally, the expected parallel perfor-
mance will be high, meaning that the speedup achieved
should be in line with the number of processors used. Of
course, since we did not parallelize the setup operations of
MG, this costs remains in essence unchanged. It will
however get diluted in this approach for layouts with a
large number of contacts (since the setup is computed only
once). Exploiting this type of parallelism is perhaps not
very interesting from a scientific standpoint since the
parallelization is straightforward. It is nonetheless poten-
tially of great practical relevance for cluster environments
where several processors are available. We refer to this type
of solution as coarse-grain parallelism.

5.3.2. Full MG parallelism

More interesting is the possibility of achieving algorith-
mic parallelization by performing the various steps of each
solve concurrently. MG-based codes have a high overhead,
for setup time includes at least the computation of the
projection and interpolation operators.
In our current implementation these computations are

performed a priori, after setting up of the program data
structures and before any solution steps commence. We
have also chosen to pre-compute the projected system
matrices as shown in (14). Given the special structure of the
G matrix, we use a particular representation that is suited
for sparse matrices, whereby we only store the nonzero
matrix elements. This means that the total storage space is
OðnÞ. We omit the details of the representation here, since
they are not crucial to the discussion at hand, nor are they
essential to understanding our approach.
Each processor separately performs the task associated

with the setup. It is possible to parallelize the setup tasks
but we have chosen not to do it for the time being. The
setup does not dominate the overall time and furthermore,
it can be amortized along the various system solutions (for
different contact configurations in the extraction problem).
We therefore concentrate on the possibility of parallelizing
the various steps in Algorithm 2.
First we consider the system solution at the coarsest level

(cf. Algorithm 2, step 1). This step typically involves a very
small matrix whose corresponding computations are not
worth parallelizing. As such, this solution can be
performed by a single processor and the result then
updated where necessary. In fact, due to the fact that we
chose to have all processors with copies of the various
matrices at multiple levels, it makes sense to have all
processors simultaneously computing this system solution,
thus avoiding the need for communication. Step 2 of the
algorithm contains all the remaining computations. In
essence, three different types of operations are performed
in this stage, corresponding to smoothing (Gauss–Seidel
relaxation and MRS step), projection and interpolation.
Before we discuss how to parallelize these operators we
describe the partitioning of the problem. We assume that
the system is partitioned in a way that each of the p

available processors is assigned n=p system equations. If n

is not exactly divisible by p, the last processor gets the
remaining equations (the resulting load unbalance is for all
matters irrelevant). Now consider each operator in turn.
Given that each processor has a copy of all the

projectors, interpolators and of the system matrices at all
levels, tasks such as computing the piece of the residual
corresponding to its own subset of equations, or updating
the error for its piece of the solution, are trivially
computed. Smoothing is required in order to reduce the

ARTICLE IN PRESS

200

200

2 x 2

100

rho =
20 Ohm.cm

backplane

1

Contact

Contact

Fig. 7. Experimental layout and corresponding substrate profile (units in

microns).

J.M.S. Silva, L.M. Silveira / INTEGRATION, the VLSI journal] (]]]])]]]–]]] 9
high-frequency error in the solution before projection to a
lower level. For instance, in a serial implementation
smoothing can be performed using a Gauss–Seidel-type
relaxation. Unfortunately, Gauss–Seidel is not an easily
parallelizable algorithm, since it requires too much com-
munication and also enforces a strong serialization on the
updates (although pipelining is achievable). In fact, initial
results using this smoother yielded unimpressive results as
the communication time tends to dominate from the onset.
For the purpose of parallelization, it would be more
adequate to perform the smoothing using a Gauss–Jacobi
relaxation step. Recall that in matrix terms, the Gauss–Ja-
cobi method can be described as

xðkÞ ¼ D�1½b� ðLþUÞxðk�1Þ�, (20)

where the splitting G ¼ LþDþU is again used. Clearly,
the inverse is trivial to perform since D is a diagonal
matrix.

However, the Gauss–Jacobi relaxation is not a very
effective smoother and may cause the MG algorithm not to
converge. An alternative, which we pursue here, is to
perform a block Gauss–Seidel variant, where each proces-
sor performs a few Gauss–Seidel relaxation steps on the
equations assigned to it, without communicating with the
other processors. After this, a single communication is
performed to update the solution vector and a new set of
Gauss–Seidel iterations is performed locally within each
processor. At the end, a final update is performed and each
processor computes a portion of the residue. Due to the
particular structure of the system matrix and the inter-grid
operators, it can easily be seen that the equations in each
processor depend only on the variables contained in itself
and those contained in its neighbor processors (i.e. those
containing the previous and the following sets of equa-
tions). Therefore, only a partial update is required and that
can be accomplished by having each processor sending its
recomputed portion of the solution to its neighbors, and
then receiving from them their portion of the solution.
Once the residue is computed, it is also updated (now a full
update is necessary due to MRS computation of inner
products of vectors) and is then projected to the lower
level. Once in the lower level, the same computations are
applied recursively. After the lowest level is reached, and
direct solution of the problem at the coarsest level is
obtained, this solution needs to be interpolated to the level
above. Since at the coarsest level all processors compute
the solution concurrently, this solution has already been
updated and interpolation can be performed without
communication. Once the error is updated all corrections
can be performed locally. Then, a new smoothing of the
solution is performed. This time we chose to perform
simple Gauss–Jacobi for it appears to be sufficient for error
smoothing. Once the solution is smoothed, another partial
update is performed, in order to guarantee consistency in
the level above. Again, this is done locally to each
processor.
A special synchronization is executed when the algo-
rithm returns to the finest level. Here, once the new residue
is computed the master processor needs to compute its
norm to determine whether convergence has been achieved.
To accomplish this, each processor computes its portion of
the square of the norm (essentially the sum of the square of
the residual components it controls) and sends it to the
master. The master assembles the data, computes the norm
of the residue and makes a decision on convergence.
A few more points should be noted about the

implementation. We perform the updates as follows: first
each processor sends its portions of the relevant data (this
send is nonblocking) and then it waits until it receives the
information from its neighbors (the receive operation is
blocking). This places a concurrent synchronization point
and ensures that no processor proceeds until its required
information is indeed updated.

6. System solvers comparison

The presented methodology was implemented in the
Substrate Model eXtractor (SMX) [26] extraction tool.
SMX reads contact layout in a CIF-like format and
outputs the matrix of conductance couplings, Gc, in a
format suitable to be included in a spice-like description.
In the following subsections results are presented

concerning model extraction complexity using the best
suited Krylov-subspace method, CG, its preconditioned
version, PCG, MG and MGPCG, all as FD mesh solvers.
Results shown here concern only to extraction on a simple
one contact configuration with backplane, as shown in
Fig. 7, despite the tool having been tested with several
other configurations, including a portion of an industrial
design. Experiments were conducted on the test configura-
tion using increasingly finer discretizations, which leads to
increasingly larger matrices.

6.1. Iteration complexity

The first issue we look into is iteration count, which is
directly related to computational complexity. As can be
seen from Table 1 and Fig. 8, which shows the number of
iterations and the residue norm plots, while CG and PCG

ARTICLE IN PRESS

Table 1

Iteration count for increasing x� y� z discretizations

Method 33� 33� 17 65� 65� 33 129� 129� 65

GMRES 104 183 348

CG 132 189 290

PCG 29 46 88

MG 7 4 3

MGPCG 4 3 3

0 10 20 30 40 50 60 70 80 90 10010−12

10−10

10−8

10−6

10−4

10−2

100

102

Iteration count

R
es

id
ue

 N
or

m

GMRES
CG
PCG
MG
MGPCG

0 10 20 30 40 50 60 70 80 90 10010−12

10−10

10−8

10−6

10−4

10−2

100

102

Iteration count

R
es

id
ue

 N
or

m

GMRES
CG
PCG
MG
MGPCG

0 10 20 30 40 50 60 70 80 90 10010−12

10−10

10−8

10−6

10−4

10−2

100

102

Iteration count

R
es

id
ue

 N
or

m

GMRES
CG
PCG
MG
MGPCG

(a)

(b)

(c)

Fig. 8. Residue norm evolution for mesh discretizations of (a)

33� 33� 17, and (b) 65� 65� 33 and (c) 129� 129� 65.

J.M.S. Silva, L.M. Silveira / INTEGRATION, the VLSI journal] (]]]])]]]–]]]10
present rapidly degrading linear iteration complexity,5

MG-based methods converge in a virtually constant
number of iterations. This type of convergence has
previously been reported for MG implementations and is
the main advantage of using MG-based methods to solve
the substrate coupling problem.

6.2. Time complexity

In spite of its superior convergence rate, MG-based
methods pay some penalty due to setting up the projection
and interpolation operators, as well as constructing inner
level matrices. As a result, when setup times are taken into
account the break-even points are likely to occur only for
high levels of discretization, i.e., for high accuracy models.

As it can be seen from Table 2, MGPCG shows the best
results followed closely by MG and by large surpassing
nonpreconditioned Krylov-subspace methods. Both Kry-
lov-subspace and MG methods have linear time complexity
per iteration. However, the number of MG iterations is
approximately constant while the number of CG/PCG
iterations grows roughly with the square root of the
condition number of the matrix of the system being solved.
Thus, this time saving ratio will quickly increase for higher
level discretizations.

6.3. Memory complexity

The main drawback of using MG-based methods is its
memory requirements. These methods need to keep not
only the projection and interpolation operators in memory,
but all level matrices and vectors as well. Due to the
geometric ratio of grid dimensions, the memory require-
ments of these structures are about the same as the memory
required to solve the problem at the finer level [21]. This
leads to MG-based methods with approximately the
double of the memory requirements of Krylov-subspace
methods, as it can be seen from Table 3.

6.4. Comparison conclusions

SMX incorporates MG-based methods which are very
efficient, providing linear time and space complexity. Its
5It can be shown that the number of CG/PCG iterations grows roughly

with the square root of the condition number of the matrix of the system

being solved.
approximately constant iteration count constitutes the
advantage over using pure Krylov-subspace methods.
The price to pay for this speedup is the slight increase in
memory requirements, which can be overcome in a parallel
implementation with distributed memory.

ARTICLE IN PRESS
J.M.S. Silva, L.M. Silveira / INTEGRATION, the VLSI journal] (]]]])]]]–]]] 11
This methodology can thus be efficiently used in the
extraction of large-scale full-chip design substrate models.
7. Parallelization results

In the following sections, results concerning the paralle-
lization of the extraction of the substrate model are
presented. We present the results related to the simple
contact-level parallelization and the more complex full MG
parallelization.
7.1. Coarse-grain parallelism example

For our first experiment we implemented a straightfor-
ward, coarse-grain parallelization of the extraction proce-
dure described in Section 5.3.1. Computation of the full
model is still done iteratively on the contacts, as described
in Algorithm 1. However, each contact extraction is now
performed separately and concurrently in one of the p

available processing units. Therefore, each unit solves, on
Table 2

Total extraction time (includes setup time) for increasing x� y� z

discretizations (in s)

Method 33� 33� 17 65� 65� 33 129� 129� 65

GMRES 7.09 144.27 2125.82

CG 2.55 31.20 369.14

PCG 1.09 13.52 189.30

MG 2.65 18.55 140.20

MGPCG 2.26 17.09 136.08

Table 3

Memory requirements comparison (in kB)

Method 33� 33� 17 65� 65� 33 129� 129� 65

GMRES 21 100 146 572 1 121 744

CG 6784 39 572 292 860

PCG 8924 55 776 419 088

MG 15632 105 876 802 676

MGPCG 15632 105 876 802 676

Table 4

Results from the coarse-grain parallelization of substrate model extraction (tim

of CPUs Time

Setup Computation Total

1 24.36 3745.46 3769.82

2 24.19 1879.56 1903.75

4 24.38 938.34 962.72

8 24.60 509.97 534.57

16 24.34 254.19 278.53
average, m=p contacts, where m is the total number of
contacts.
Table 4 shows results from this parallel implementation

of the code on the distributed environment. We used
1; 2; 4; 8 and 16 processors to extract the model of a layout
with 64 contacts and show results for the elapsed times, as
well as the respective parallelization efficiencies and
speedups. The times shown are broken up into setup,
computation and total time. We point out that the setup
was not parallelized. Therefore, the efficiency of the total
execution is not optimal. More interesting in this case is the
efficiency of the parallelized solve time. All times are in
seconds and were taken on the machine which took longest
to complete for each experiment.
The results are quite encouraging with good, practical

speedups being obtained even considering the total time
which includes the nonparallelized setup procedure. The
solve time follows a linear relationship with the number of
processors as was expected, since the problems are
completely independent and thus there is potentially full
concurrency available.
Given the fact that the setup was not parallelized, the

efficiency of the parallelization is bounded according to
Amdahl’s Law [27]. However, the setup time is amortized if
the number of contacts is large, and the total speedup
achieved can still be quite large. If we consider only the
solve time, a potential source of unbalance happens when
the number of contacts is not divisible by the number of
available processing units. This was not the case in our
setup and in practice this issue should become irrelevant
when larger real industry problems are being solved. The
most relevant factor in this case is the fact that due to
inherent asymmetry in the layout and discretization
features, some processors are given harder contacts to
solve than others, leading to potential load unbalance. If
necessary, these unbalances and consequent degradation of
parallelization can be dealt with an appropriate load
balancing procedure. We do not pursue this matter here as
it is clearly outside the scope of this article.

7.2. Fine-grain parallelism

In this section we focus on the parallelization of the
solution of a single contact. The MG system solver is
parallelized according to the description in Section 5.3.2.
e in s)

Computation Total

Efficiency Speedup Efficiency Speedup

1.00 1.00 1.00 1.00

1.00 1.99 0.99 1.98

1.00 3.99 0.98 3.92

0.92 7.34 0.88 7.05

0.92 14.73 0.85 13.53

ARTICLE IN PRESS
J.M.S. Silva, L.M. Silveira / INTEGRATION, the VLSI journal] (]]]])]]]–]]]12
7.2.1. Communication and computation costs

We start by estimating the costs of computation and
communication according to the models described in
Section 5.2. To that end we ran a standard Flops estimator
(ftp://ftp.nosc.mil/pub/aburto/flops) and de-
termined that the computers in the network had a
performance of about 255Mflops. This number appears
to be somewhat smaller than the manufacturer’s specifica-
tions, but we trust it since we had complete control over the
measurement process. Going back to the model of Section
5.2 this means that g � 3:92 ns. We also computed the
broadcast communication times for messages of varying
sizes and determined that we have a latency a � 0:05 s and
a bandwidth such that b � 0:39 ms. These results indicate
that there is a high latency in the network, and therefore
communication should be minimized, as expected. A more
careful examination also tells us that one can perform
around 13Mflops in the same time that it takes to
communicate a single double but just around 113Mflops
in the same time it takes to communicate a vector of 106

doubles, as the latency time starts getting amortized.
7.2.2. MG system solution parallelization

In Table 5, we show results from applying the parallel
MG solver to partial model extraction (single solve, i.e.
single column) of a practical example. Speedup and
efficiency are computed versus the best algorithm running
in a single processor (e.g. Gauss–Seidel is used as a
smoother). The results are mildly encouraging. Clearly,
some speedup is obtained which is of practical relevance.
However, even though the speedup from the computa-
tional parts of the algorithm (the solve piece) are
acceptable, the added communication time reduces that
advantage. There are several reasons for the performance
shown here. It is known that the MG algorithm applied to
this problem is fairly sensitive to the smoothing operator
used and may not even converge unless an appropriate
smoother is used. The parallel implementation, as dis-
cussed in Section 5.3.2, uses a block-Jacobi smoother where
Gauss–Seidel is used inside each block in a serialized
fashion but the global iteration is Jacobi-like. This
smoother degrades convergence somewhat, which leads to
Table 5

Results from the parallel MG system solver on the distributed environment (t

of CPUs Solve

Time Efficiency Speedup

1 19.21 1.00 1.00

2 10.95 0.88 1.75

4 6.14 0.78 3.13

8 3.86 0.62 4.98

12 3.53 0.45 5.44

16 2.95 0.41 6.51

Execution on single processor uses best algorithm (e.g. GS is the MG smooth
longer run times. Note that single processor extraction uses
the usual Gauss–Seidel smoother and not block-Jacobi’s.
The presented results show that the efficiency of the

parallel version of MG is acceptable given the distributed
computing environment being used. As expected with
broadcast communication, used in vector updates, the
efficiency drops off as the number of processors gets large.
Notwithstanding, further parallelization efficiency can
probably be obtained if some restrictions in the geometric
partition of the problem are attended, which although
depending strongly on the problem being solved, will be
subject of future research. Still the results clearly show that
this type of parallelization will not pay off for a large
number of hosts since for finer granularity the number of
computations performed in each processor is not enough to
outweigh the resulting communication.

8. Conclusions

A methodology for the extraction of substrate coupling
models has been presented. Substrate contact-level models
were obtained from a formulation based on a finite
difference discretization and computed using fast multigrid
algorithms. Comparison tests revealed that using multi-
grid-based methods offers a constant iteration count,
which translates in linear time and space complexities. In
the substrate problem, this leads to faster model extraction
times, and enables extraction of large and accurate models
resulting from fine discretizations.
Moreover, the multigrid method used to solve the large

3D system inherent to the finite difference discretization
has been parallelized in a distributed environment. Two
types of distributed computing paradigms have been
implemented: a coarse-grain contact-level parallelization
and a fine-grain full multigrid parallelization. The former
one shows approximately perfect utilization of computing
resources while, on the other hand, fine-grain multigrid
parallelization is still too much penalized by communica-
tion. This problem can be smoothed by using the optimal
geometric partition of the problem which minimizes
communication. Moreover, using a load balancing scheme
will be of importance if a heterogeneous computing
environment like grid networks is used.
ime in s)

Communication time Total

Efficiency Speedup

0.00 1.00 1.00

1.13 0.80 1.59

2.60 0.55 2.20

2.91 0.35 2.84

3.38 0.23 2.78

3.16 0.20 3.14

er).

ftp://ftp.nosc.mil/pub/aburto/flops

ARTICLE IN PRESS
J.M.S. Silva, L.M. Silveira / INTEGRATION, the VLSI journal] (]]]])]]]–]]] 13
Even though coarse-grain parallelization provides better
results in comparison with the multigrid parallelization,
these two approaches can be combined. In terms of
memory resources, multigrid parallelization makes it
possible to distribute the memory requirements by the
available machines, which can be extremely useful when
dealing with large industrial portions of layout. Multigrid
parallelization will be the subject of future research in
generic applications in circuit simulation.
Acknowledgment

This work was partly supported by the Portuguese
Foundation for Science and Technology, FCT, under the
grant SFRH/BD/10586/2002.
References

[1] D.K. Su, M.J. Loinaz, S. Masui, B.A. Wooley, Experimental results

and modeling techniques for substrate noise in mixed-signal

integrated circuits, IEEE J. Solid-State Circuits 28 (4) (1993) 420–430.

[2] R. Gharpurey, R.G. Meyer, Modeling and analysis of substrate

coupling in integrated circuits, IEEE J. Solid-State Circuits 31 (3)

(1996) 344–353.

[3] R. Gharpurey, Modeling and analysis of substrate coupling in

integrated circuits, Ph.D. Thesis, Department of Electrical Engineer-

ing and Computer Science, University of California at Berkeley,

Berkeley, CA, June 1995.

[4] N. Verghese, Extraction and simulation techniques for substrate-

coupled noise in mixed-signal integrated circuits, Ph.D. Thesis,

Department of Electrical and Computer Engineering, Carnegie

Mellon University, Pittsburgh, PA, August 1995.

[5] N.K. Verghese, D.J. Allstot, M.A. Wolfe, Verification techniques for

substrate coupling and their application to mixed-signal IC design,

IEEE J. Solid-State Circuits 31 (3) (1996) 354–365.

[6] B. Nauta, G. Hoogzaad, How to deal with substrate noise in analog

CMOS circuits, in: European Conference on Circuit Theory and

Design, vol. 12, Budapest, Hungary, 1997, pp. 1–6.

[7] J.M.S. Silva, L.M. Silveira, Dynamic models for substrate coupling in

mixed-mode systems, in: VLSI-SOC’2003 XII IFIP International

Conference on VLSI, Darmstadt, Germany, 2003, pp. 25–30.

[8] T.-H. Chen, C. Luk, C.C.-P. Chen, SuPREME: substrate and power-

delivery reluctance-enhanced macromodel evaluation, in: Interna-

tional Conference on Computer Aided-Design, San Jose, CA, 2003,

pp. 786–792.

[9] A. van Genderen, N. van der Meijs, E. Schrik, Modeling capacitive

coupling effects via the substrate, in: ProRISC IEEE 12th Annual

Workshop on Circuits, Systems and Signal Processing, Veldhoven,

The Netherlands, 2001, pp. 366–370.

[10] A.J. van Genderen, N.P. van der Meijs, T. Smedes, Fast computation

of substrate resistances in large circuit, in: European Design and Test

Conference, Paris, 1996, pp. 560–565.

[11] S. Mitra, R.A. Rutenbar, L.R. Carley, D.J. Allstot, A methodology

for rapid estimation of substrate-coupled switching noise, in: IEEE

1995 Custom Integrated Circuits Conference, 1995, pp. 129–132.

[12] J.R. Phillips, L.M. Silveira, Simulation approaches for strongly

coupled interconnect systems, in: International Conference on

Computer Aided-Design, 2001, pp. 430–437.

[13] T. Smedes, N.P. van der Meijs, A.J. van Genderen, Extraction of

circuit models for substrate cross-talk, in: International Conference

on Computer Aided-Design, San Jose, CA, 1995, pp. 199–206.

[14] J.P. Costa, M. Chou, L.M. Silveira, Efficient techniques for accurate

modeling and simulation of substrate coupling in mixed-signal IC’s,
in: DATE’98—Design, Automation and Test in Europe, Exhibition

and Conference, Paris, France, 1998, pp. 892–898.

[15] M. Chou, J. White, Multilevel integral equation methods for

the extraction of substrate coupling parameters in mixed-signal ic’s,

in: 35th ACM/IEEE Design Automation Conference, 1998,

pp. 20–25.

[16] F.J.R. Clement, E.Z.M. Kayal, M. Declercq, Layin: toward a global

solution for parasitic coupling modeling and visualization, in: Proceed-

ings of the IEEE Custom Integrated Circuit Conference, 1994,

pp. 537–540.

[17] B. Stanisic, N.K. Verghese, R.A. Rutenbar, L.R. Carley, D.J. Allstot,

Addressing substrate coupling in mixed-mode IC’s: simulation and power

distribution systems, IEEE J. Solid-State Circuits 29 (3) (1994) 226–237.

[18] J. Kanapka, J. Phillips, J. White, Fast methods for extraction and

sparsification of substrate coupling, in: Proceedings of the 37th

Design Automation Conference, 2000.

[19] G.V. der Plas, M. Badaroglu, G. Vandersteen, P. Dobrovolny,

P. Wambacq, S. Donnay, G.G.E. Gielen, H.D. Man, High-level

simulation of substrate noise in high-ohmic substrates with inter-

connect and supply effects, in: 41st ACM/IEEE Design Automation

Conference, San Diego, CA, USA, 2004, pp. 854–859.

[20] M. van Heijningen, M. Badaroglu, S. Donnay, G.G.E. Gielen,

H.D. Man, Substrate noise generation in complex digital systems:

efficient modeling and simulation methodology and experimental

verification, IEEE J. Solid-State Circuits 37 (8) (2002) 1065–1072.

[21] W.L. Briggs, A Multigrid Tutorial, Society for Industrial and Applied

Mathematics, Philadelphia, Pennsylvania, 1987.

[22] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS

Publishing Co., Massachusetts, 1996.

[23] Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual

algorithm for solving nonsymmetric linear systems, SIAM J. Sci.

Statist. Comput. 7 (1986) 856–869.

[24] J. Zhang, Multi-level minimal residual smoothing: a family of general

purpose multigrid acceleration techniques, J. Comput. Appl. Math.

100 (1998) 41–51.

[25] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, first ed.,

Springer, New York, NY, 1980.

[26] J.M.S. Silva, Modeling substrate coupling in mixed analog-digital

circuits (in portuguese), Master’s Thesis, Instituto Superior Técnico,

Technical University of Lisbon, Lisboa, Portugal, May 2003.

[27] G.E. Keiser, Local Area Networks, McGraw-Hill, Inc., New York,

NY, USA, 1989.

João M.S. Silva was born in Lisbon, Portugal.

He received the Engineer’s and Master’s degrees

in Electrical and Computer Engineering in 2000

and 2003, from Instituto Superior Técnico (IST)

from the Technical University of Lisbon. He is

currently a researcher at the Systems and

Computers Engineering Institute R&D (INESC

ID). His research interests are in the area of CAD

algorithms for Electronics, physical design of

VLSI circuits and computer architectures. He is
currently working on simulation of power grids in integrated circuits. João

Silva is also a member of the IEEE.
L. Miguel Silveira (S’85-M’95-SM’00) was born

in Lisbon, Portugal. He received the Engineer’s

(summa cum laude) and Master’s degrees in

Electrical and Computer Engineering in 1986

and 1989, from Instituto Superior Técnico (IST)

from the Technical University of Lisbon, and

the M.S., E.E. and Ph.D. degrees in 1990, 1991

and 1994 from the Massachusetts Institute of

Technology, Cambridge, MA. He is currently a

full Professor of ECE at IST, a senior researcher

ARTICLE IN PRESS
J.M.S. Silva, L.M. Silveira / INTEGRATION, the VLSI journal] (]]]])]]]–]]]14
at the Systems and Computers Engineering Institute R&D (INESC ID),

and a founding member of the Lisbon Center of the Cadence

Laboratories. His research interests are in various aspects of computer-

aided design of integrated circuits with emphasis on interconnect modeling
and simulation, parallel computer algorithms and the theoretical and

practical issues concerning numerical simulation methods for circuit

design problems. Mr. Silveira is a Senior Member of the IEEE and a

member of Sigma Xi.

	Substrate model extraction using finite differences and parallel multigrid
	Introduction
	Previous work
	Substrate model extraction
	Finite difference tridimensional model
	Circuit-level model extraction

	Finite difference mesh solving methods
	MG-based substrate model extraction
	Smoothing operator
	Restriction and prolongation operators
	Coarse-level system solution

	Parallel substrate model extraction
	Distributed computing environment
	Parallel computing performance metrics
	Parallelizing MG-based model extraction
	Contact-level parallelism
	Full MG parallelism

	System solvers comparison
	Iteration complexity
	Time complexity
	Memory complexity
	Comparison conclusions

	Parallelization results
	Coarse-grain parallelism example
	Fine-grain parallelism
	Communication and computation costs
	MG system solution parallelization

	Conclusions
	Acknowledgment
	References

