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ABSTRACT 
In this paper we present a model reduction algorithm that circum- 
vents some of the issues encountered for parasitic networks with 
large numbers of inputloutput “ports”. Our approach is based on 
the premise that for such networks, there are typically strong depen- 
dencies between the input waveforms at different network “pons”. 
We present an approximate truncated balanced realizations pro- 
cedure that, by exploiting such correlation information, produces 
much more compact models compared to standard algorithms such 
as PRIMA. 

Categories & Subject Descriptors: B.7.2 Simulation. 
General Terms: Algorithms. 
Keywords: Model order reduction, interconnect, parasitic 

1. INTRODUCTION 
Model reduction algorithms are the backbone of contemporary 

parasitic and interconnect modeling technologies. Such algorithms 
are able to efficiently reduce the size of linear interconnect models 
without much accuracy degradation and with substantial gains in 
terms of simulation time. Projection-based Krylov subspace algo- 
rithms such as PRIMA [l]  and PVL [21 provide a general-purpose, 
rigorous framework for deriving interconnect modeling algorithms. 

Our concern in this paper is with interconnect and parasitic net- 
works having a large number of inputloutput connections. It is well 
known that the Krylov-subspace projection based reduction algo- 
rithms algorithms are impractical for networks with large numbers 
of inputloutput ports. That happens because the cost associated 
with model computation is directly proportional to the number of 
inputs, i.e. to the number of columns in the matrices defining the 
inputs. This is often the case for such “massively coupled parasitic 
networks as occur in substrate and package modeling. For exam- 
ple, in the PRIMA algorithm, if only two (block) moments are to 
be matched at each port, and the network has 1000 ports, the result- 
ing model will have 2000 states, and the reduced system matrices 
will be dense. This makes simulation in the presence of nonlinear 
elements impractical. 
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A’related algorithm, often regarded as an altemative for such 
problems, is the PACT method [3] that relies on eigenvalue analysis 
via iterative (Lanczos) methods. At low frequencies, PACT can 
lead to smaller numbers of states than PRIMA, since it does not 
rely on matching (block) moments. However, PACT still leads to 
matrices that are dense, and whose size is still bounded from below 
by the number of ports. At higher frequencies the number of states 
required can again become likge. 

In this paper we propose a new reduction algorithm that circum- 
vents some of these issues. Our approach is based on the premise 
that there are typically strong dependencies between the waveforms 
at the different inputs to the interconnect network. We start from the 
viewpoint of truncated balanced realizations (TBR) [4] model re- 
duction. As will shall demonstrate, TBR, as a reduction procedure, 
is intrinsically somewhat less sensitive to the number of inputs 
ports. Much more importantly, however, in the TBR framework 
it is possible to exploit circuit functional information that results in 
correlations between the waveforms incident on the parasitic net- 
work ports. By exploiting this information, an “input-correlated” 
TBR procedure can be derived that reduces the size of the final 
models produced. 

2. MODEL REDUCTION ALGORITHMS 
In this section we will review the most common reduction al- 

gorithms for interconnect and parasitic analysis applications. The 
PRIMA algorithm [I], a Krylov-subspace order reduction proce- 
dure, reduces a state-space model, written in the form 

(1) 
dx 
dt 

E - = A r + U u ,  y = C x  

with input waveforms u ( t )  t Rp and output waveforms y ( t ) ,  by 
means of a projection matrix V through the operations 

& = V r E V  B = V T U  a , V T A V  e = C V .  (2) 

This leads to the reduced model 

(3) 
.dr 

A - = A z + U u ,  y = C x .  
dt 

where z = V x .  In the standard approach, the V matrix is obtained 
from a block Krylov subspace. As previously mentioned, the diffi- 
culty with these algorithms is that the model size is proportional to 
the number of moments matched multiplied by the number of ports. 
For large port numbers (more than 20-30 or so) the algorithms leads 
necessarily to impractically Large models, 

An alternative class of reduction algorithms are based on Trun- 
cated Balanced Realizations (TBR) [4]. The TBR algorithm first 

385 

Authorized licensed use limited to: INESC. Downloaded on February 6, 2009 at 07:43 from IEEE Xplore.  Restrictions apply.

mailto:jrp@cadence.com


computes the "Gramians" X ,  Y from the Lyapunov equations 

A X E T + E X A T  = -BB', (4) 

A ~ Y E + E ~ Y A =  -cTc. ( 5 )  

and then reduces the model by projection onto the space associ- 
ated with the dominant eigenvalues of the product X Y  [4] Model 
size selection and error control in TBR is based on the eigenval- 
ues of XY, the Hankel singular values ak. In the proper case, the 
frequency-domain error in the order k TBR model is  bounded by 
2xZk+'  ok [51. Note that the model selection criteria does not de- 
pend directly on the number of inputs, though, as we shall see, there 
is an indirect dependence in most problems. In principle, it is pos- 
sible to have a 1000-port starting model, and obtain a good reduced 
model of only, say, ten states, if the A ,  B,C,E matrices are such that 
all but the the first ten Hankcl singular values are small. In the next 
section we will examine when such a situation might occur. 

In practice, solution of the Lyapunov equations ( 5 )  is computa- 
tionally too intensive for large systems as encountered in the type 
of interconnect networks we are considering here. Therefore, a va- 
riety of approximate methods have been proposed [6, 71. In this 
work we will utilize one particularly simple method, the PMTBR 
approach (Poor Man's TBR) [8], which is motivated by an altema- 
tive frequency-domain expression for the Gramians: 

X = /( jmE -A)-'BBT( jmE - A ) - H d m  (6) 

The PMTBR algorithm works by constructing a matrix Z whose 
kth column is 

z k  = ( s ~ E  - A ) - ' B  (7) 

where sx is a complex number in the right half-plane. It can be 
shown that for suitably chosen complex sk, the singular value de- 
composition (SVD) of Z, Z = UZV*,  produces a matrix U whose 
columns approximately span the same space as the dominant eigen- 
spaces of X. U can thus be used as a projection matrix in an ap- 
proximate TBR procedure. 

3. INPUT-CORRELATED TBR 

3.1 Input vectors and TBR behavior 
To motivate our algorithm, let us consider the impact of the input 

matrices on the Gramians needed by TBR. For simplicity, consider 
the case where A = A* and E = I ,  B = C'. We only need consider 
one Gramian, given by 

AX+XA' = - B B ~ .  (8) 

First consider the Hankel singular values for a simple system, 
such as a uniform RC line, as the number of pons (i.e. columns 
in the B-matrix) varies. Figure I shows the singular values as a 
function of the number of inputs. Generally speaking, the order 
needed for g w d  accuracy grows with the number of inputs. This is 
contrary to the common expectation that a few poles are sufficient 
for RC systems. For systems with many inputs, many states may 
be needed because of the high dimension of the controllable space. 
If low accuracy (10% or so) is acceptable, sometimes models with 
fairly low numbers of states can be constructed for problems with 
large numbers of inputs, but this is not always possible even for the 
restricted case of RC circuits. 

Based on these observations, there does not seem to be much 
hope of producing high-accuracy reduced order models for net- 
works with many ports under general conditions. 

- pl,/ 4 
Figure 1: Hankel singular values for 100-segment RC line as 
function of number of inputs. 

3.2 Input-correlated Algorithm 
The key to a more efficient procedure lies in noting that in many 

practical problems, the inputs to an interconnect network are not 
arbitrary. Often it is necessary to retain all the input pons if the 
full impact of parasitic effects is to be correctly estimated 191, but 
there may he relations between the inputs (or outputs) at different 
network pons that can be exploited to generate a smaller model. 

In particular consider a probabilistic model for the network input 
information. Suppose a correlation matrix [IO] for the input rela- 
tions is known. The appropriate Gramian for this restricted problem 
is given by 

A X , + X , A ~  = - B K B ~  (9) 

where K is the correlation matrix. 
The key insight is, for symmetric positive definite K, the eigen- 

values of X,  from Eqn. (9) decay faster than the eigenvalues of 
X from Eqn. (8). if the eigenvalues of K exhibit some decay. In 
other words, X ,  is closer to a low-rank matrix than X if the in- 
puts' exhibit some correlated behavior. Postulating existence of 
correlation is equivalent to saying that we have partial information 
about the relation between the inputs U .  Conversely, in the per- 
fectly uncorrelated case, the eigenvalues of K are identical, which 
corresponds to zero information. Standard TBR can be viewed 
as a "zero-input-information" version of the more general input- 
correlated approach. Thus, for a given truncation criterion for the 
singular values, using X, for a model reduction procedure will lead 
to smaller models. If, in addition, K is a suitably representative 
model of the possible inputs, the model will be equally accurate. 
Fortunately, this is usually the case in practical problems, and can 
be guaranteed to occur if we are suitably conservative in the speci- 
fication of the correlation matrix (K = I again corresponding to the 
ultimate degree of safety, total ignorance). Note that, though the 
physical interpretation as an absolute error bound no longer applies, 
the eigenvalues of the Gramian can still be used for error control, 
as they can be given an interpretation associated with likelihood of 
error in a probabilistic input model. 

To estimate input correlations, consider taking a set of N samples 
of input waveforms, uk for input k, k = I . .  . p .  The correlation 
matrix can be estimated as 

'That is, the input waveforms u ( t )  actually applied to the state- 
space model. 
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Algorithm 1. Input Correlated TBR 

1. Construct the SVD of inputs U = V K S K U ~  

2 .  D o  until error satisfactory: 

3 .  

4 .  Select afiequency poinr si. 

5. Computezi = [ S ~ E - - A ] - ' B U K ~ .  
6. 
7. 

Draw a vecror r E RP by taking p draws 
from a n o r m 1  distribution, variances given by Xi, 

Form the matrix of columns Z = [ZI , z z , .  . . , Z N ]  . 
Consrruct the singular value decomposirion of Z .  
Ifrhe error is satisfactoq, go  to Step 8. 
Otherwise, go to Step 3. 

8. Consrruct the projection space Vfrom rhe 
orthogonalized column span of 2, dropping columns 
whose associated singular vulues fall below 
a desired tolerance. 

As is the usual case, the actual correlation matrix need not be formed. 
Instead, we can take the SVD of the matrix U whose columns are 
the input samples 9. i.e. 

U = VKSKU$ (11) 

with UK,VK orthonormal. 
Note that, in addition, from this information we can also obtain 

estimates of the frequency profile of the inputs. These estimates can 
be used to select the frequency points si for the PMTBR procedure. 

forward. The final algorithm is shown as Algorithm 1. 

4. EXAMPLES 

We omit the extension to non-self-adjoint systems as this is straight- 

Figure 2 Set of waveform samples for one input on RC uet- 
work example. 

Our first example is a 32-port RC network. Using this example 
circuit we will illustrate the basic characteristics of the proposed 
reduction method. 

To simulate the situation where there is some degree of infor- 
mation about the relation between input waveforms, we drive the 
network with a set of sinusoids with fixed, but somewhat uncertain, 
phase relation. That is, each input is of the form shown in Figure 2 
a single sinusoid, but on each input, the set from which the input 
is drawn has some dither introduced into its phase and frequency. 

This is intended to mimic the situation where signals incident on 
the network have some correlation for example because they origi- 
nate from the same functional block (mixer, oscillator, etc.) or are 
time-correlated due to a common clock. The dither represents the 
fact that the signals themselves can be known only approximately 
before the reduction procedure. 

Figure 3 Simulation results for one output on RC network 
example. PMTBR with correlation information nut-performs 
TBR. 

Figure 3 shows results from setting the SVD tolerance to IO-' in 
Algorithm 1, and extracting a 14." reduced model. The results 
from the input-correlated TBR method are quite acceptable. For 
comparison, we also show the Wstate TBR model: the accuracy 
of this model is clearly unacceptable. For equivalent accuracy, TBR 
requires a model with at least 45 states. Note that PRIMA matching 
only one moment, would require a 32-state model and its accuracy 
would also be fairly low. For this example, PRIMA requires at 
least two moments for acceptable accuracy, i.e. 64 states. A PACT 
model incorporating poles up to only the sinusoid frequency would 
have over seventy states. 

Of course, the drawback tothe input-correlated procedure is that 
it is fragile. If the inputs venture far from the distribution assumed 
when the model was built, accuracy will deteriorate and more states 
will be required in the mode1:To illustrate this, we re-ran the same 
example, again using sinusoids for inputs, but completely changing 
the phase relation between the inputs (as opposed to the low-level 
dither introduced in Figure 3). Figure 4 shows the results from 
the same 14-state models as used previously. The TBR model is 
about as (in)accurate as previously. However, the accuracy of the 
input-correlated reduction procedure degrades noticeably. Recov- 
ering accuracy requires a m e e l  of many more states, so without 
some degree of information about the input correlation, there is no 
advantage over using TBR. However, as Figure 1 illustrates, there 
could still be an advantage over PRIMA. 

Finally we consider application of the method to a real circuit 
(a data converter) with an extracted substrate network. First, for 
the purpose of assessing the actual error performance of the model 
reduction algorithm, we extracted only a small portion of the sub- 
strate network connection involving the bulk nodes of the MOS 
transistors. 150 ports of the substrate network were extracted using 
a boundary-element procedure. Both resistive and capacitive terms 
were retained, leading to a 150-state model. To obtain estimates of 
the signal correlations at the inputs of the parasitic network we sim- 
ulate the nonlinear circuit without the substrate network and mea- 
sure the values of the MOS transistor bulk current signals. We then 
cany those measurements as inputs to the input-correlated TBR 
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Figure 4 Simulation results fur one output on RC network ex- 
ample, with re-randomized phase relation. PMTBR with cor- 
relation information breaks down. 

procedure '. Using Algorithm 1, a reduced model is produced. We 
then compare the results of simulation with the reduced model to 
simulation with the full substrate model. These results are shown 
in Figure 5 for a representative node. In this case, fair agreement 
with the full model was obtained using only four states, and ex- 
cellent agreement is obtained with eight states. Similar accuracy 
is obtained at all ports of the substrate network. We point out that 
this is a 20X compression frum the full model. Note also that this 
network is, for most intents, unreducible with standard projection 
methods. 

Figure 5: Simulation results for data converter example, 150 
port substrate models, full vs. 4-state reduced model. 

To illustrate the capabilities of the algorithm on larger networks, 
we also applied the proposed technique to a larger section of the 
extracted substrate network, this time comprising loo0 substrate 
ports. Figure 6 shows the error estimate data obtained from the sin- 
gular value analysis in Algorithm 1. In this case a model size of 30 
states is sufficient to achieve high accuracy. This represents a com- 
pression of over 30X in model size and, because of the superlinear 
complexity associated with factorizing dense matrix blocks, con- 
siderably more savings in time required for linear system solution 
in simulation. 

'Note that, should the substrate network result in such large 
changes to the circuit operation that these estimates were com- 
pletely unrepresentative. we would have to iterate this procedure 
to obtain a self-consistent estimate. This would probably indicate 
that the circuit ceased to function as designed. 

Figure 6 Error estimate based on singular value analysis of 
2-matrix from input-correlated TBR, for 1000-port substrate 
network with inputs from data converter example. 

5. CONCLUSIONS 
In this work we demonstrated that exploiting input information, 

such as from nominal circuit function, can help reduce the size of 
parasitic models obtained from projection-like procedures. This is 
particularly relevant for problems with a large number of inputs 
which are known not to reduce efficiently under such methods. We 
introduced an input-correlated TBR-like procedure to perform the 
computation of the reduced model. When there is strong correlation 
between input waveforms on different input ports, large reductions 
in model size can be achieved. In many practical settings this is 
a common situation since spatial and temporal dependencies dic- 
tated by the circuit topology and functionality will tend to highly 
correlate the signals seen at the ports of the interconnect networks. 
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