
THE INDUSTRY TREND of integrating higher

levels of circuit functionality in chips designed for

compact consumer electronic products and the

widespread growth of wireless communications

have triggered the proliferation of mixed analog-

digital systems. Single-chip designs combining

digital and analog blocks built over a common

substrate feature reduced levels of power dissi-

pation, smaller package counts, and smaller

package interconnect parasitics. Designing such

systems, however, is becoming increasingly diffi-

cult owing to coupling problems resulting from

the combined requirements for high-speed digi-

tal and high-precision analog components.

Noise coupling caused by the common chip

substrate’s nonideal isolation contributes signif-

icantly to the coupling problem in mixed-signal

designs.1,2 Fast-switching logic components inject

current into the substrate, causing voltage fluc-

tuation. Because substrate bias strongly affects

the transistor threshold voltage, voltage fluctua-

tions can affect the operation of sensitive analog

circuitry through the body effect. Figure 1a illus-

trates this coupling mechanism, in which a

switching digital node injects current into the

substrate (currents J1 and J2 are drawn to ground,

but J2 affects the analog transistor bulk poten-

tial), causing the local substrate potential Vb to

vary at an analog node. Figure 1b illustrates this

interaction from the circuit viewpoint. Other

known mechanisms for current injection into the

substrate include hot-carrier injection and para-

sitic bipolar transistors.2 The effects of substrate

coupling largely depend on the layout specifics.

Therefore, accurate analysis of these effects is

possible only after extraction of the circuit fea-

tures and the parasitics.

As technology and circuit design advance,

substrate noise is beginning to plague even fully

digital circuits. In these circuits, the cumulative

effect of thousands or millions of logic gates

changing state across the chip causes current

pulses that are injected and absorbed into the

substrate. Those currents are then transmitted

to power and ground buses through direct feed-

through and load charge and discharge. Such

couplings are highly destructive because puls-

ing currents, partially injected into the substrate

through impact ionization and capacitive cou-

pling, can be broadcast over great distances

and picked up by sensitive circuits through

capacitive coupling and the body effect. The

resulting threshold voltage modulation dynam-
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ically changes gate delays locally, affecting per-

formance unpredictably. Switching noise is

especially detrimental to dynamic logic, mem-

ories, and embedded analog circuits such as

phase-locked loops, wreaking havoc in other-

wise functional circuits.

The reliable verification of analog, digital,

and mixed-signal circuits requires an accurate

characterization and a model of the design’s

substrate-coupling effects. Here, we present a

method for accurately modeling substrate-

coupling effects in deep-submicron designs. We

use a numerical formulation obtained through

finite-difference discretization of the substrate

medium. We then solve the set of equations

describing the system with a multilevel method

that speeds up the computation of the model.

Although we assume certain approximations,

the finite-difference formulation is general and

can be extended for future technologies.

Background
The naive but still common way to handle

substrate coupling is costly trial and error.

Clearly, such a methodology, which requires

fabricating multiple versions of a design and

relies heavily on the designer’s expertise and

experience, is not adequate in the face of rising

fabrication costs and increasing demands for

shorter design cycles. Researchers have attempt-

ed several methods of quantifying substrate

noise-coupling effects to avoid expensive

redesigns and multiple fabrication runs. The

simplest of these methods use heuristic rules to

determine the most relevant substrate couplings

and to generate a simplified model of those cou-

plings.1,3 Such techniques reduce verification

time, but extracting the correct couplings is dif-

ficult. Even mature pattern- and formula-based

capacitance extraction tools, under develop-

ment for the better part of two decades, com-

monly produce errors that in certain cases can

be as high as 50% different from the true value.

Formula-based substrate extraction tools are

far less mature, and their reliability is at least

questionable. A subtler problem is that such

tools are usually designed to extract only the

most relevant couplings. This information can

be useful to circuit designers because it lets

them quickly identify and then remedy the

dominant sources of coupling. However, such

information is less useful from the verification

standpoint. One of the main goals of perform-

ing detailed analysis is to obtain the accurate

answers needed to verify design decisions. In

the substrate-coupling context, this means that

a tool must predict the amount of residual cou-

pling remaining after the dominant sources are

removed. Such sources are, by definition, sec-

ond order, and without accurately predicting

their magnitude, a designer cannot verify the

design’s correct operation. Unfortunately, most

heuristic formulations completely neglect such

couplings and may incorrectly judge a circuit

as having no relevant coupling.

At the other end of the spectrum, methods

that use an appropriate formulation of the sub-

strate’s electromagnetic interactions and rely on
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detailed numerical analysis are usually accurate

and can estimate all the possible couplings

through the substrate. Device simulators such as

Medici and Pisces are appropriate tools for this

task. However, these methods are generally too

slow because they simulate the drift-diffusion

phenomenon in semiconductors, whereas we

are interested only in circuit-level effects. Thus,

such methods aren’t efficient or versatile enough

for implementation in standard CAD systems. In

fact, they can be used only to analyze small por-

tions of a design, including only a few devices.

Boundary-element methods have been

applied with some success to the problem of

modeling substrate coupling.3-6 By requiring

only the discretization of the relevant bound-

ary features, these methods lead to smaller

matrix problems. However, the matrices they

produce are dense, limiting their use to small

to medium problems. Therefore, speeding up

the computations in boundary-element formu-

lations is crucial to obtaining accurate models

for large substrate-coupling problems. In recent

years, researchers have devoted much work to

this goal with encouraging results.4,6

Methods based on differential equations,

such as finite-element and finite-

difference numerical methods

(like the one described here), can

compute all the currents and volt-

ages in the substrate, given a pat-

tern of injected currents.1,7,8 These

techniques perform a full domain

discretization on the large but

bounded substrate volume and

can easily handle irregular sub-

strates (such as wells or doping

profiles). Because these methods

rely on volume meshing of the

entire substrate, the number of

unknowns resulting from the dis-

cretization can easily become very

large. However, the resulting matri-

ces are extremely sparse; thus,

these methods, with appropriate

solution algorithms, are a compet-

itive option for substrate-model

extraction in large, dense designs.

The cost of extracting a sub-

strate model, though large, is a

penalty paid only once. After extracting the

model, designers can evaluate it many times to

analyze substrate-coupling effects. For the

most part, designers will use such models in

standard circuit simulators such as Spice or

Spectre. Desirable model characteristics, there-

fore, include easy incorporation in standard

circuit simulators, high accuracy, and low

evaluation cost.

Problem formulation
Figure 2 shows the profile of a typical sub-

strate. We assume that the substrate is a stratified

medium composed of several homogeneous

conductive layers. A deposition process using

appropriate materials builds devices on top of

these layers. Ports or contacts at the top of the

stack of layers correspond to the highly doped,

strongly conductive areas where the circuit inter-

acts with the substrate. Back plate contacts can

improve isolation but increase the design cost.

In ICs, for frequencies up to a few GHz, the

wavelengths of the magnetic fields far exceed

a typical die’s dimensions. Thus, we can

assume a quasi-static approximation. This

approximation is acceptable for current mixed-
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signal designs and technologies but may soon

need to be revised. Under this approximation,

we derive the following equation for the elec-

tric field’s behavior:

ε(∂/∂t)(∇ • E) + σ∇ • E = 0 (1)

where E is the electric field, ε is the dielectric

constant, and σ is the medium’s conductivity

(assumed constant per layer).7 We derived this

equation from basic principles—namely,

Maxwell’s equations, which describe the

behavior of the electric and magnetic fields.

Here we consider only the electric field.

A simple, but not unique, way to solve equa-

tion 1 is to perform a spatial discretization of the

substrate volume and approximate the electric

field vector between adjacent nodes in this 3D

grid, using a finite-difference operator. That is,

Eij = (Vi – Vj)/hij, where hij is the distance

between adjacent nodes i and j in the volume

grid. Using, for instance, a standard seven-point

stencil leads to

(2)

where Gij and Cij are functions of ε, σ, and the

box dimensions.7

Equation 2 can be modeled as a simple lin-

ear network of lumped circuit elements, orga-

nized as a three-dimensional grid, as shown in

Figure 3. To compute the model, we set bound-

ary conditions to indicate substrate connection

nodes and the substrate’s physical limits.

Hence, we treat active areas (contacts, devices,

and possibly the back plate) as Dirichlet

boundaries for voltages, with constant fixed

voltages, whereas we impose Neumann bound-

ary conditions or reflective conditions for both

voltage and current on all other boundaries.

For typical values of ε and σ, the substrate’s

dielectric relaxation time is on the order of tens

of picoseconds, much smaller than the circuit’s

typical time scales. Thus, it is reasonable to

neglect intrinsic substrate capacitances for

operation frequencies up to a few gigahertz.

Experimental comparisons conducted with

detailed device simulators have confirmed this

approximation’s validity for frequencies up to

the gigahertz range,8 although it may also need

revision as the technology evolves or lossy sub-

strates are used. Nevertheless, the final model

used in simulations takes the capacitive effects

of junctions, wells, and other parasitic elements

into account. However, it does so outside the

substrate extraction procedure, using tradi-

tional parasitic extraction methodologies. We

later tie in those parasitic elements with the cir-

cuitry and the extracted substrate model to per-

form circuit-level verification. This strategy lets

us model some frequency-dependent effects

related to substrate coupling.

As described, the model doesn’t include the

parasitic-device-capacitance effects associated

with device junctions, which are estimated or

computed offline, using an interconnect extrac-

tion tool, or directly included in the device

models used and in the nonlinear simulator.

However, it does account for the linear field-

oxide and depletion capacitances of biased

wells. If the capacitances introduced to the sub-

strate by the depletion regions of well diffusions

and interconnects over the field oxide are also

modeled as lumped circuit elements outside

the mesh, we can simplify equation 2 and

model the substrate as a purely resistive mesh
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(that is, its macromodel is simply a conduc-

tance matrix). Several authors have used this

approach successfully.7,8 Using nodal analysis,

we can formulate a set of equations describing

the circuit’s equilibrium conditions:

YgVg = Ig (3)

where Vg, Ig ∈ ℜn are the vector of potentials

and the vector of injected currents at all grid

nodes. Yg ∈ ℜn×n is the underlying circuit’s

admittance representation obtained after dis-

cretization, and n is the number of grid nodes

with unknown potentials.

Coupling this model directly into a standard

simulator with the remaining, possibly non-

linear, circuit elements is straightforward.

Unfortunately, that approach is prohibitive in

terms of CPU and memory because the 3D-mesh

circuit can be very large. From the standpoint

of the electrical circuit, only the substrate nodes

that directly contact it are relevant. Therefore,

computing a macromodel that implicitly encap-

sulates the substrate mesh’s internal node

behavior is sufficient. This macromodel’s size is

thus the number of substrate contacts, which is

far smaller than the total number of mesh

nodes. The macromodel’s size is also indepen-

dent of the discretization, an important feature

from the simulation standpoint. The model can

be included in a circuit simulator such as Spice

or Spectre in a straightforward manner.

Although the electric field varies nonlinear-

ly as a function of distance, the finite-difference

method approximates this variation as a piece-

wise constant function. We control the approx-

imation’s accuracy by carefully choosing the

pitch of the grid used to generate the 3D mesh.

In areas where the electric field varies rapidly,

such as near devices or contacts of depletion

regions, finer grids are necessary to accurately

approximate the nonlinear behavior. Else-

where, we can use coarser grids to reduce the

overall number of grid points—the Achilles’

heel of volume-based methods.

We construct our adaptive, nonuniform

mesh on the basis of layout information about

the circuit being analyzed, as well as doping

profiles of the circuit technology. The layout

defines the mesh in the x-y plane, and the ver-

tical doping profiles, which are assumed

known and can be characterized a priori, deter-

mine the meshing in the z direction. Figure 4,

borrowed from Clement et al.,who describe a

simple 3D-mesh generation process, shows a

gridding strategy based on layout information,

the location and type of devices, and other

technology characteristics.8 Layout and tech-

nology information are crucial to the extraction

process because they determine the exact loca-

tion and type of substrate contacts. With this

information, we generate a coarse 3D mesh and

formulate the set of equations that describes

the problem in terms of voltages and currents

and then solves that system.

Evaluation of the result may necessitate refin-

ing the grid in particular spots and reevaluating

it. By iteratively repeating this procedure, we

obtain an appropriate mesh with an acceptable

computation time for most circuits. Other types

of mesh refinement, based, for instance, on

direct analysis of the layout information and esti-

mation of the electric field gradients, are also

possible. These meshing algorithms are simple,

but they sometimes generate unnecessarily fine

meshes in certain areas. Previous work, howev-

er, shows that approximating a linear substrate

model with contacts at the surface and possibly

in the back plate makes it easy to determine a

priori an appropriate grid density to guarantee

appropriate accuracy in the model.7
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Model computation
Given a set of m substrate contacts, we seek

a model, Yc ∈ ℜm×m, which relates the currents

on those contacts, Ic ∈ ℜm, to their voltage dis-

tribution, Vc ∈ ℜm:

Ic = YcVc

The matrix Yc represents the macromodel

we hope to obtain from the 3D-mesh circuit to

use in a circuit simulator (m is usually much

smaller than n; indeed, m is at worst on the

order of the number of nodes on the substrate’s

top surface, whereas n is the number of nodes

in the 3D grid). Vc and Ic are subsets of their

mesh counterparts Vg and Ig and can easily be

derived from them. To understand this, assume

that the 3D grid nodes are numbered as follows:

nodes 1, …, m are the nodes corresponding to

the substrate contacts, and nodes m + 1, …, n

are the internal grid nodes. Clearly, Vg = [Vc; Vi],

where Vc ∈ ℜm is the currents on the substrate

contacts, and Vi ∈ ℜn–m is the vector of poten-

tials at all internal grid nodes.

Equation 3, therefore, can be written as

Because only contact nodes can have cur-

rents injected into them, Ii = 0, and thus

(4)

Equation 4 shows that the resulting model is

simply an admittance matrix, and we can easi-

ly include it in standard circuit simulators to

perform coupled-substrate simulation. From

equation 4, however, it also appears that com-

puting the substrate macromodel Yc requires

inversion of Yii, an extremely large matrix. This

procedure requires a number of computations

that grows roughly with n2 and is therefore too

expensive because n may be very large.

Alternatively, we can compute Yc one column

at a time by appropriately setting the voltages

at the contacts Vc, which are boundary condi-

tions for the mesh problem.

For instance, suppose that the voltage is set

to 1 volt on one contact and 0 on all others; in

other words, Vc has a single nonzero entry,

Then we can compute a Norton equivalent for

all nodes connected to that contact. We pack

the resulting current sources into Ig appropriate-

ly and use equation 3 to solve for Vg. From

knowledge of the voltages at all grid nodes, we

can obtain the currents flowing into the contacts.

Given the form of Vc, it is then clear that Ic

will equal the ith column of Yc. By repeating

this procedure for every contact, we can com-

pute Yc one column at a time. The algorithm is

similar to the standard capacitance extraction

problem. Extracting the full model for a system

with m contacts requires m linear solutions.

However, because Yg is the result of a 3D

volume meshing, computing the inverse or sys-

tem solution with a direct method such as

Gaussian elimination has at best a cost on the

order of n2, even with reordering and sparse-

matrix techniques. For a large n, this cost is pro-

hibitive and would restrict the applicability of

this method to small problems or very coarse

discretizations.

Iterative methods—for example, Krylov-sub-

space-based iterative algorithms such as the

Generalized Minimal Residual (GMRES) algo-

rithm for solving nonsymmetric linear systems

and the Conjugate Gradient (CG) algorithm—

offer interesting alternatives to the direct-solu-

tion methods. A CG variant using an incomplete

Cholesky preconditioner, ICCG, has been

applied to the substrate problem with fairly

good results.7 These methods’ computational

cost per iteration and their memory require-

ments for the matrix grow linearly with n. Their

convergence rate roughly depends on k1/2,

where k is the condition number of matrix Yg.

Multilevel methods
Formulations based on unbounded opera-

tors, such as those resulting from volume mesh-

ing of the substrate, generate ill-conditioned

linear systems whose condition numbers grow

with mesh refinement. When Krylov-subspace

algorithms are applied to such problems, con-
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vergence can become painfully slow and hun-

dreds of iterations (and thus matrix-vector prod-

ucts) may be required per solution. The source

of ill conditioning in the linear system is the

coexistence of eigenmodes with distinct, char-

acteristic length scales that these methods can-

not distinguish.

To overcome this difficulty, we can use

multigrid methods, or more generally, multi-

level methods, to solve the linear system. Their

fast convergence makes multigrid methods

the most efficient iterative techniques for solv-

ing elliptic partial differential equations.9,10

They attempt to remove ill conditioning by

analyzing the problem at each length scale

independently.

These methods operate by decomposing the

original problem into a set of subproblems,

each associated with a specific length scale, or

level. Then, a relaxation, or smoothing, scheme

is applied to each subproblem to reduce error

components at that length scale. The subprob-

lems communicate with one another through

restriction and prolongation operators, collec-

tively called intergrid-transfer operators. The

work associated with relaxation at each level

decreases geometrically as the problem

coarsens. Therefore, a multiple of the work at

the finest level bounds the total work required

for going through each level once, or for one

multigrid sweep.

Furthermore, because the relative error

reduction resulting from a relaxation iteration

at each level is uniform across all levels, the

error reduction for a multigrid sweep equals the

error reduction at a single level. Hence, the

multigrid convergence rate is independent of

discretization; this is the main reason for the

efficiency of such methods.

To simplify the description of the method

without loss of generality, let us assume that we

discretize the entire substrate volume, Ω, using

a uniform array of M × M × M boxes (clearly this

restriction is neither necessary nor convenient

in most cases). Furthermore, we assume that M

= 2l for some integer l. The number of cell

unknowns, and hence the size of the linear sys-

tem in equation 3, is then n = Nl = M 3. We refer

to this discrete system as a level-l, or fine-grid,

representation of the problem and denote the

problem as

Y{l } • V{l } = I{l } (5)

Suppose we also discretize the substrate vol-

ume using a coarser, uniform (M/2) × (M/2) ×
(M/2) array of panels, yielding a discrete linear

system of size Nl–1 = (M3/8). This gives a repre-

sentation of level l – 1, or a coarse-grid repre-

sentation:

Y{l–1} • V{l–1} = I{l–1}

Figure 5 shows fine- and coarse-grid represen-

tations. Solving the fine-grid problem (equation

5) with direct matrix factorization is prohibitive

for a large Nl because Y{l} is very large. However,

it may be possible to factor the smaller matrix

Y{l–1} corresponding to the coarse-grid problem

since Nl–1 = Nl/8.

This leads to a two-grid method, which

solves the problem iteratively at level l with

the help of direct solution at level l – 1. As we

mentioned, the two principal algorithmic

components needed are the smoothing oper-

ator and the intergrid-transfer, or restriction

and prolongation operators pictorially repre-

sented in Figure 5b. Our two-grid iteration for

solving equation 5 smooths the error in the

Substrate Coupling
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kth iteration, V{l}
(k), by carefully solving a

series of local problems. This first stage, fine-

grid smoothing or relaxation, results in an

intermediate guess V{l}*. (The asterisk denotes

a guess.)

Next, we compute the residual u{l} = Y{l} • V{l}*

– I{l} and project it onto the coarse grid via u{l–1}

= ru{l}, where r is a restriction operator. Then we

explicitly solve the coarse-grid problem Y{l–1} •

(∆V{l–1}) = u{l–1} for ∆V{l–1}, and project the result

onto the fine grid via ∆V{l } = p(∆V{l–1}), where p

is a prolongation operator. Finally, the inter-

mediate guess on the fine grid is updated to

yield the (k + 1)st iteration V{l }
(k+1) = V{l }* – ∆V{l }.

This second stage, coarse-grid correction, is

responsible for long-range interactions.

We repeat the fine-grid-smoothing and

coarse-grid-correction cycle until the norm of

residual u{l } is below some tolerance. Fine-grid

smoothing reduces only the high-frequency

components of the error, and the resulting

smoothed error is well represented on the coarse

grid where the explicit solution is performed.

Therefore, the two-grid scheme effectively

decouples the original problem into high- and

low-frequency subproblems.

The multigrid method generalizes this two-

grid scheme to an arbitrary number of levels.

Instead of solving the problem explicitly at

level l – 1, which may still be too expensive,

we apply a similar smoothing-correction cycle

at level l – 1. In the same manner, the correc-

tion cycle at level l – 1 becomes a smoothing-

correction cycle at level l – 2, and so on

recursively. The substrate volume is now dis-

cretized at all levels (lmax, …, lmin), as Figure 6

shows. Only at the coarsest level, lmin, is the sys-

tem Y{lmin} • V{lmin} = I{lmin} solved explicitly. Such

an algorithm is easily described by a recursive

function.10

As we have said, we require intergrid-trans-

fer operators r and p between the various grids.

Fortunately, constructing such operators is triv-

ial. The restriction operator is simply a local

operation in which nearby node values are

averaged to obtain the restriction value. For

every node, we average all its nearest neigh-

bors by setting an operator as a sparse matrix

whose structure reflects the nearest neighbors

used for averaging and then multiplying that

matrix by the vector of node voltages. Thus, we

average all nodes at once. For the prolongation

operator, we use standard trilinear interpola-

tion on the coarse-grid nodes to produce the

error corrections at the finer-grid level.

Experimental and computational
results

A simple example shows how the multigrid

algorithm outperforms Krylov methods when

applied to the extraction of a substrate model

using a volume formulation. Figure 7a (next

page) shows the layout of a three-stage ring

oscillator with a nearby analog transistor.1,5 We

used this setup to analyze the effects of cou-

pling through the substrate. We assumed that

coupling occurs mainly through the transistor

back gates and direct substrate contacts.

We generated a model for the substrate

interaction using the techniques described in

the preceding section. In generating the model,

we considered the relevant features—namely

the substrate connections, the well, and the dif-

fusion areas of the ring oscillator and the ana-

log transistor. Figure 7b shows a simplified

diagram of some of these features.

Once we determined the layout features, we

used geometric information about them to gen-

erate the model, using the technique described

earlier. After the numerical computations, the

substrate model consisted of the resistor net-

work shown conceptually in Figure 7b.

Extracting the remaining parasitics and the

electrical network produced the circuit shown

in Figure 7c. We then used Spice to simulate

two versions of the circuit—with and without

the substrate model. The ring oscillator ran

freely, and the analog transistor was biased to

deliver a constant current in the absence of

substrate noise. We then monitored the analog

transistor’s body terminal.
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Figure 6. A 2D representation of multilevel discretization.
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Figure 8 shows the simulation results, which

are similar to those presented by Costa, Chou,

and Silveira.5 Figure 8a shows the oscillator out-

put nodes’ waveforms, which are as we would

expect of a fast ring oscillator. When substrate

coupling is not accounted for, the analog tran-

sistor’s body terminal has a constant voltage.

However, with the extracted substrate model

inserted in the circuit, the voltage at the body

terminal oscillates rapidly with significant ampli-

tude, as Figure 8b shows. The peaks in the body

terminal of the analog transistor’s waveform cor-

respond to the time periods during which the

oscillator output nodes change more rapidly.

These oscillations cause threshold-voltage

changes, which can degrade the transistor’s

performance considerably. For correct circuit

verification, therefore, the extracted substrate

models must be included in any simulation.

To extract the model used in the simulations,

we attempted various discretizations and meth-

ods for solving equation 3. Figure 9 compares the

Substrate Coupling

12 IEEE Design & Test of Computers

Analog
transistor

PMOS
transistors

in well

NMOS
transistors

Inverter

Three-inverter ring oscillator

G1

G5

G4

G6

G2 G3

Contact
(diffusion

area)

Well

Substrate contacts for
n-transistors in ring’s inverters

(a)

(b)

(c)

G1 G2

G6

G5

G3

G4

Ring oscillator Analog
transistor

In Out
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the example circuit (c).
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Figure 9. Comparison of convergence rates for the multigrid (MG), ICCG, GMRES, and

Gauss-Seidel (GS) methods applied to the example problem. In (a) the discretization size
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Figure 8. Simulation results: time-domain waveforms for the output nodes of the three

inverters in the ring oscillator (a) and the analog transistor’s body terminal (b). The

differences between the three plots shown in (a) are insignificant.
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standard Gauss-Seidel (GS) relaxation method,

GMRES, ICCG, and our multigrid method (using

two grids), as applied to the extraction of the

example layout in a small substrate. The figure

shows the various algorithms’ convergence rates

with respect to the iteration number. To obtain

the plot in Figure 9a, we used a discretization

size of 17 × 17 × 9; for Figure 9b, the discretiza-

tion size was 33 × 33 × 9. Both discretizations

were nonuniform. As the figure shows, GS and

GMRES converge very slowly, and are virtually

useless. For the coarser discretization, both ICCG

and our multigrid method converge fairly quick-

ly, but multigrid is considerably faster. For the

finer discretization, however, ICCG’s conver-

gence deteriorates considerably (twice as many

iterations are required for convergence), where-

as the multigrid method shows a convergence

rate that seems fairly independent of the dis-

cretization size, as we expected.

This property is more evident when realistic

discretizations are used for more complex

examples, and the advantages of the multigrid

algorithm are even more striking. For the com-

parisons in Figure 10, we reduced the grid size

and used discretizations of 33 × 33 × 17 and 65 ×
65 × 33. For such fine discretizations, ICCG dete-

riorated considerably, while the multigrid

method (using four grids) showed little conver-

gence deterioration. The multigrid method’s

behavior facilitates model extraction with high-

er accuracy in larger problems.

THE TECHNIQUE DESCRIBED here can be easily

implemented and used with standard extraction

technologies. The models produced are accu-

rate and lend themselves to direct inclusion in

standard simulation and verification method-

ologies. Because the technique is still compu-

tationally intensive, it is probably not suitable

for the intermediate verification steps in the

design loop. However, it is efficient enough for

use in the final verification steps for accurate

characterization of substrate-coupling effects in

analog, digital, and mixed-signal designs. �
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Figure 10. Comparison of convergence rates for the multigrid and ICCG methods applied

to the example problem with grid sizes 33 × 33 × 17 (a) and 65 × 65 × 33 (b).
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