
Efficient Representation and Analysis of Power Grids

João M. S. Silva
INESC ID

IST - TU Lisbon
Lisboa, Portugal

jmss@algos.inesc-id.pt

Joel R. Phillips
Cadence Research Labs

Cadence Design Systems
Berkeley, California, U.S.A.

jrp@cadence.com

L. Miguel Silveira
INESC ID / Cadence Research Labs

IST - TU Lisbon
Lisboa, Portugal
lms@inesc-id.pt

Abstract

Modern deep sub-micron ULSI designs with hundreds of
millions of devices require huge grids for power distribu-
tion. Such grids, operating with increasingly low-power
voltages, are a design limiting factor and accurate anal-
ysis of their behavior is of paramount importance as any
voltage drops can seriously impact performance or func-
tionality. As power grid models have millions of unknowns,
highly optimized special purpose simulation tools are re-
quired to handle the time and memory complexity of solving
for their dynamic behavior. In this work, we propose a hier-
archical matrix representation of the power grid model that
is both space and time efficient. With this representation,
reduced storage matrix factors are efficiently computed and
applied in the analysis at every time-step of the simulation.
Results show an almost linear complexity growth, namely
O(n loga(n)), for some small constant a, in both space and
time, when using this matrix representation. Comparisons
of our academic implementation with production-quality
code proves this method to be very efficient when dealing
with the simulation of large power grid models

1 Introduction
In recent years, the relentless trend for high-performance

with low-power consumption has raised new challenges to
designers. Higher performance has meant increased func-
tionality fueled often by technology scaling. Achieving
lower power has been met by specialized design techniques
together with supply voltage scaling. However, adding
more functionality implies that more devices must be pow-
ered, and thus huge power distribution networks are now
deployed throughout the design. Moreover, lower supply
voltage makes potential voltage drops a more serious con-
cern, as they may seriously impact performance or func-
tionality of the whole design by reducing noise margins and
slowing down devices [15]. Ultimately, this may lead to cir-
cuit failure due to excessive delay or simply malfunctioning
devices. Therefore, it has become clear that in modern cir-
cuits, proper design and behavior of power grids is a per-
formance limiting factor. The efficient verification of such
grids is thus seen as an essential step in predicting and en-
suring correct behavior and performance.

The simulation of power distribution networks is a diffi-
cult task owing to the huge number of elements in such cir-

cuits [17, 19]. Much research and development has been de-
voted to this problem, both in the modeling and simulation
phases. In this paper we concentrate on the analysis or sim-
ulation part of the problem. We will assume a typical model
of a power grid to consist of an extremely large RC net-
work, sometimes with millions of nodes, with a complex set
of excitation sources and drains. Inductance is sometimes
also included in the model, typically to model wire bond-
ing, but by comparison it represents a very small subset of
the overall model. In this paper we will restrict ourselves to
the RC portion of the model as its analysis is always neces-
sary even if inductance is included. Block techniques can be
used to handle the coupling between the large RC block and
the inductance-modeled packaging/wiring sub-circuit. The
network excitations usually consist of the biasing sources,
generally modeled as constant voltage sources, and the con-
nection to the designed-in devices, which act as sources
or drains depending on their electrical state. A simplified
model for such sources is to consider them as time-varying
independent current sources, but more complex models that
take into account loading and feedback into the network are
sometimes used. This simplified modeling approach has the
important implication that the grid model becomes a linear
system, thus much easier to simulate. Commercial large
scale power grid simulators in use nowadays typically as-
sume a model as described.

From a simulation standpoint, there are two families of
techniques for the time analysis of the linear description
of the power grid: iterative or direct methods. For DC-
type problems that require a single system solution, iterative
problems are preferred. However, robust verification tech-
niques require that dynamic analysis be performed, which
implies solving for the time-evolution of the system along
a given simulation interval. Taking advantage of the prob-
lem structure and inspired by knowledge gained in solving
similar problems resulting from discretized elliptic partial-
differential equations (PDE), efficient algorithms have been
proposed based on preconditioned conjugate gradient [5] or
Multigrid [16, 20]. These methods show good convergence
ratios, but require several iterations for recomputing the so-
lution of the system for each time-point (in essence the dy-
namic problem is similar to solving systems with multiple
right-hand sides). Direct methods, on the other hand, find
an a-priori system matrix decomposition which can then be
used in accelerating the solution at each time-step. Even
though the resulting matrix factors are very costly to store
and compute, most commercial power grid analysis tools

978-3-9810801-3-1/DATE08 © 2008 EDAA

Authorized licensed use limited to: INESC. Downloaded on February 6, 2009 at 07:32 from IEEE Xplore. Restrictions apply.

available nowadays use some form of highly optimized di-
rect solver technology.

In this paper, we explore an approach based on using di-
rect methods to solve the linear subset of equations which
results from the formulation of a power distribution net-
work. The novelty of the proposed technique is related to
how we address the issues of storage and computational
cost. While we still compute a factorization of the sys-
tem matrix and apply the resulting factors to obtain the so-
lution at each time-step, we propose to use a hierarchical
matrix representation of the underlying system based on an
H -Matrix representation [3]. With this representation, the
increase in matrix density that comes from the factorization
is managed to obtain a reduced storage data structure. Such
a representation is then efficiently applied to generate the
system solution at each time-step in the simulation window.
H -Matrices show almost linear complexity in both storage
and evaluation. The initial hierarchical factorization proce-
dure, while having a slightly higher complexity, is neverthe-
less also almost linear. The efficient storage and evaluation
properties of the proposed method, characterized by com-
plexities growing as O(n loga(n)) for some small constant a,
immediately pay-off in the fast evaluation that results from
the application of the matrix factors to repeatedly obtain the
solutions at every time-step in the analysis interval.

The remainder of this paper is organized in the follow-
ing manner: in Section 2 we present some background on
the power grid simulation problem and in Section 3 we in-
troduce H -Matrices theory to the extent required for this
paper. Existing codes that support H -Matrices representa-
tions [3] assume geometrical information is available which
may not always be the case. Therefore an algebraic ver-
sion of the H -Matrices formulation was developed and will
be described. In Section 4, we compare our academic im-
plementation against a highly optimized direct solver using
state-of-art storage and reordering algorithms on several 2D
and 3D, regular and irregular synthetic systems. Results in-
dicate this method to be very efficient when dealing with the
simulation of large power grid models. Finally, in Section 5
conclusions are drawn.

2 Background
For this work we assumed a simplified three-dimensional

power grid model like the one depicted in Figure 1. An ar-
bitrary number of metal layers dedicated to power delivery
can be considered. This model also assumes that VDD and
GND strips, as well as vias, are modeled resistively (Rstrip
and Rvia, respectively). The coupling resulting from the
overlapping between metal strips in different levels is mod-
eled through Coverlap. Notwithstanding, other kinds of par-
asitic effects, such as coupling between strips in the same
level, etc can be included. While simplified, this type of
model is to some extent representative of what is used in
commercial tools.

Assuming the extracted netlist consists of n nodes, the
network equations can generally be written as:

C
dv(t)

dt
+Gv(t) = i(t) (1)

where C,G ∈ Rn×n are the matrices modeling the dynamic

VDD

GND

C_overlap

C_overlapR_via

R_via

R_strip

VDD GND power distribution network

nonlinear circuitry. . .

Figure 1. Power grid model.

and static network components, respectively, v ∈ Rn is the
vector of voltages at the grid nodes, and i∈Rn the vector of
currents imposed at those same nodes. If time-varying in-
dependent current sources are assumed at the sources/drains
of the network, then the formulation is akin to nodal analy-
sis (NA). In this case, G, which may reflect an unstructured
grid, is a sparse matrix very similar to those encountered in
(finite-difference) discretized 3D problems (no more than
7 elements per row). For power grids however, the third
dimension is shallow, compared to the other dimensions,
as chip height is much smaller and less dense than the die
area. On the other hand, and since in the assumed model
we only have capacitances between different planes in the
z direction, C is a 3-diagonal sparse matrix. Both matrices
are therefore extremely sparse and fairly regular. Adding
additional capacitance coupling increases the density in the
C matrix, but most of the properties are retained.

In order to analyze the grid in the time domain, we can
use, as an example, Backward Euler’s method and discretize
the time interval of interest in steps of constant size h, ob-
taining: (

C
h

+G
)

︸ ︷︷ ︸
A

v(t) = i(t)+
C
h

v(t−h)︸ ︷︷ ︸
b

(2)

where b is the right hand side at each time-step. Analysis of
the power grid then entails solving the above system, Av = b
at every time step in the analysis interval.

The trivial solution to Eqn. (2) is v = A−1b. Unfortu-
nately, although A is sparse, A−1 is full and its inversion
is prohibitive. Iterative methods, such as Conjugate Gra-
dient (CG), preconditioned CG (e.g. ICCG – Incomplete
Cholesky preconditioned CG [5]) or Multigrid (MG) can be
used to solve (2). Multigrid type algorithms are interesting
in that they possess optimal theoretical complexity proper-
ties. However, in practice, the setup costs and the constant
terms associated with the complexity estimates do not seem
to provide much advantage, as discussed in [16]. For dy-
namic analysis of power grid systems, direct methods are
still the method of choice, as the cost of computing matrix
factors is amortized over all time-step solutions.

3 Hierarchical Matrices
Hierarchical Matrices, or H -Matrices [10, 12], enable

matrix operations in almost linear complexity, where “al-

Authorized licensed use limited to: INESC. Downloaded on February 6, 2009 at 07:32 from IEEE Xplore. Restrictions apply.

most linear” means linear up to logarithmic factors. H -
Matrices are the algebraic counterpart of panel clustering
techniques [13] for integral operators. Due to the existence
of Green’s function for elliptic problems, these techniques
can be extended to inverses [2] and factorizations [1, 4] of
finite-element and finite-difference type matrices. Given the
already noted structural similarity between the power grid
formulation and those resulting from elliptic PDEs [16],
this implies that efficient representations exist for the in-
verse and the LU/Cholesky factors of the underlying ma-
trix describing the power grid model. Once that repre-
sentation is formed, efficient, almost linear computations
are within grasp. Theoretical and practical results indi-
cate both storage and computational complexity to grow as
O(n× loga(n)), for some small constant a. In this section
we discuss how to generate such a representation and how
to operate with it.

3.1 H -Matrix Fundamentals
H -Matrices are super-matrices (in the sense they may

contain either full, low-rank and other super-matrices) with
an inherent hierarchy of block splitting. Consider the split-
ting of A from Eqn. (2) in 2×2 blocks:

A =
[

A11 A12
A21 A22

]
(3)

If, for instance, A11 and A22 are fairly dense (large number
of nonzero entries), they should be represented by full ma-
trices. On the other hand, if A12 and A21 are fairly sparse
they can be represented in a factorized form:

As×t ≈MNT (4)
where M ∈ R#s×k, N ∈ R#t×k and k is the rank of the block
up to some accuracy, eps. This representation will be most
efficient if k � #s,#t. Obviously, not all blocks will al-
low such a representation. The goal of finding a H -Matrix
representation is akin to determining the right reordering
and blocking of nodes (rows/columns), that maximizes the
number of blocks that can be represented in factorized form.
Note that the low-rank block representation in (4) is approx-
imate. According to the pre-specified accuracy parameter
eps, we can automatically control the rank-k used to repre-
sent the low-rank blocks in factorized form. An error bound
for the low rank approximation of matrix blocks is given in
terms of the Frobenius norm as [3]:

‖A− Ã‖F ≤
3
2

n−13−k (5)

If a block is not represented in factorized form, it may be
further split and its sub-blocks recursively tested for such
a representation. So, H -Matrices are matrices which re-
sult from the recursive multilevel splitting of matrix blocks,
until low-rank blocks are found and represented in the fac-
torized form, or no further sparsity is available and full ma-
trices must be used. Of course the optimum storage scheme
for a sparse stiffness matrix such as A in (2) is well known,
with only nonzero elements being stored in an efficient way.
The more interesting question is how to represent the corre-
sponding LU or Cholesky factors. While a matrix resulting
from an FD discretization in 1D yields no LU or Cholesky
fill-in, the same does not apply to 2D matrices and certainly
not to 3D matrices, whose factors tend to fill up quickly.

3.2 H -Matrix Splitting Approaches

In this work we use H -Matrix to represent the Cholesky
factorization of power grid models. This can be achieved in
two distinct approaches: geometrically and algebraically.

3.2.1 H -Matrix Geometric Splitting
In the geometric approach, the criteria to decide whether
a block allows a low-rank approximation is based on the
geometry of the underlying medium discretization. This
criteria is called admissibility, meaning whether the block
admits to be represented by a low-rank factorization or
not. The admissibility check procedure, and therefore
the reordering and clustering of nodes, must be such that
blocks are obtained that allow for a low-rank factorization
in terms of the LU or Cholesky factors, not on the original
sparse matrix. Consider two sets of nodes in the physical
domain, which we term as clusters, and assume that each
cluster has a radius corresponding to a bounding box that in-
cludes all nodes. If the physical distance between clusters is
much larger than the cluster radius, it is likely that the inter-
action between nodes in separate clusters can be represented
by a low-rank approximation (this type of reasoning is akin
to a multipole type approximation). If the cluster size is too
large to satisfy the admissibility criteria, it is split and each
resulting sub-cluster is then checked. The splitting process
is repeated until a minimal block size is reached, (nmin), or
the blocks can be approximated in a low-rank sense. Large
blocks are inefficiently approximated by (4) and must be
split whenever possible in order to give origin to smaller low
rank blocks. This approach is the right one when handling
regular structures where geometrical distance is a good cri-
teria for estimating (electrical) influence.

The current release of the HLib package [11] provides
code for dealing with matrices where the underlying ge-
ometrical information pertaining to the discretizations is
available. Therefore the library is readily used for exper-
iments in Section 4.

3.2.2 H -Matrix Algebraic Splitting
An alternative approach is based on the algebraic informa-
tion of the matrix. This is the technique of choice for irreg-
ular structures and likely the best one for common power
grids. Whenever two nodes in the matrix are “connected”
by an entry exhibiting a large magnitude, this means that
the nodes are indeed tightly connected and should be kept
together in the splitting process. This approach is akin to
the standard heavy edge matching algorithm [14]. In these
methods, used for instance in the publicly available graph
partitioning tool Metis [14], nodes connected by a large
conductance and/or capacitance are favored to be clustered
together through the multilevel splitting process. The ad-
vantage of this method over the previous one is that no ge-
ometric information on the problem is required, since the
structure of the H -Matrix relies solely on the matrix entries.
On the other hand, being able to follow geometric admissi-
bility conditions leads to a slightly better approximation of
the representation. The duality between geometric and al-
gebraic splitting is quite similar to that found when consid-
ering Multigrid methods and Algebraic Multigrid methods.

Authorized licensed use limited to: INESC. Downloaded on February 6, 2009 at 07:32 from IEEE Xplore. Restrictions apply.

In order to work with matrices from which we have no
underlying physical information, we implemented on top
of HLib an algebraic approach based on [18]. In the al-
gebraic approach we use the information of the matrix it-
self and multilevel clustering methods, in this case Heavy
Edge Matching (HEM) [14], to obtain the corresponding
H -Matrix . In terms of efficiency, this approach is com-
parable to the geometric approach based on Nested Dissec-
tion [4].

3.3 H -Matrix Representation

To build an H-matrix corresponding to a sparse matrix,
we first need to build a cluster tree over the matrix index set.
This cluster tree describes the hierarchical clustering of the
nodes of the matrix (from bottom to top) which yields the
hierarchical partitioning of the matrix. Note that the clusters
are composed of nodes which may not be adjacent, which
implies row-column reordering may be required.

The difference between the algebraic and the geometric
approaches for building the cluster tree is that in the geo-
metric approach we use geometric conditions (admissibility
conditions) to determine whether or not a block of the ma-
trix will be partitioned further. If a block is admissible, then
it can be approximated by a low-rank matrix. On the other
hand, in the algebraic approach, the construction of the clus-
ter tree is based on multilevel clustering methods which are
widely used in graph partitioning. The basic idea of multi-
level clustering is to start from the finest graph which repre-
sents the matrix and build clusters over its nodes, then build
a coarse graph by merging the nodes in the same cluster, and
continue this coarsening process on the coarsened graphs
until the graph obtained is small enough. This procedure
uses the edge weights from the coarse graphs to make deci-
sions on the merging of nodes. In essence, the cluster tree,
is a format to represent and store the matrix. The H -Matrix
representation has the same tree structure as the cluster tree.
The matrix entries are in fact the leaves of the cluster tree.

3.4 H -Matrices Arithmetic and Complexity

As discussed, our goal is to efficiently compute a hierar-
chical LLT Cholesky factorization of the symmetric matrix
A in Eqn. (2) and then proceed with forward and backward
solves at each time-step (for non-symmetric formulations,
an LU factorization is generated in a similar fashion). In
this work, this Cholesky factorization is performed with the
proper arithmetic functionality provided by the H -Matrices
library, which is established in [9].

In terms of complexity, the storage of a rank-k factorized
n× n matrix requires 2× k× n (instead of n2) elements.
For the H -Matrix , the storage is O(n× log(n)× k), in
which k is the worst-case rank of the sub-matrices of the
H -Matrix [9]. The Cholesky decomposition in the H -
Matrix format requires O(n× log2(n)× k2) operations and
the evaluation of the LLT factors in each time-step requires
O(n× log(n)× k) operations, which is proportional to the
storage requirements of the H -Matrix representation of the
Cholesky factors.

In Section 4 we will see how well these H -Matrix based

methods compare with other well-known method for exam-
ple problems of increasing dimension.

4 Results
In the following, we present the experimental setup used

in our work and the corresponding results. The follow-
ing methods were tested for solving the system resulting
from the nodal analysis formulation of power grid models:
i) hierarchical Cholesky based on geometric admissibility
(gCh), ii) hierarchical Cholesky based on algebraic admis-
sibility (aCh) and iii) sparse Cholesky (sCh). We have de-
cided to account for three measures of efficiency. The first
is the setup time, where the hierarchical methods compute
the super-matrix structures and the Cholesky decomposi-
tion, while sCh computes a matrix row/column permutation
which tends to minimize Cholesky factors fill-in and the de-
composition itself. The second is the solve time, where the
Cholesky factors are used to obtain the solution to the de-
sired time-steps in a time analysis. We also measured stor-
age requirements for all methods. Finally, we discuss how
the accuracy parameter eps affects the approximation error.

4.1 Experimental Setup
Since our work focuses on the efficiency of power grid

simulation, and for the sake of complexity analysis, we de-
cided to work with artificially generated matrices. These
represent the main characteristics of a system resulting from
the model extraction of a power grid structure. By choosing
artificial matrices, we can easily control their size and char-
acteristics in a meaningful way. In the following we will
show results for 2D and 3D problems, representing regular
and irregular grids, of increasing sizes. In the 3D grids, the
number of metal layers has been fixed at 8 (z direction). Ir-
regularity is emulated by generating random matrix entries
in the interval [0,1[and discarding entries smaller than 0.5.

The algorithms tested were implemented in C upon the
libraries HLib [3] and Cholmod [6, 7, 8]. HLib provides
some code for 2D FEM problems, which has been modified
to handle our 2D FD problems. The code related to the al-
gebraic approach, aCh, was implemented on the HLib data
structures and uses library functions for H -Matrix arith-
metic. We will use it for 3D problems. Cholmod, from the
SuiteSparse package from the University of Florida (which
also provides UMFpack among other well known tools) was
used to implement the sCh method and was compiled with
the supernodal option for maximum performance. Both
HLib and Cholmod used the same versions of the widely
known Lapack and Blas libraries. All codes were integrated
in a single executable. The comparisons we establish are
thus reasonably fair even though HLib is not a commercial-
quality code and our implementation is only a prototype.
sCh on the other hand, has a slight edge since it is based in
highly optimized code.

Finally, experiments were run on a Dual AMD Opteron
operating at 2.4 GHz with 16 GB of memory for increas-
ing discretization sizes. In all experiments, the norm of the
solution vector was computed in order to verify the correct-
ness of the solution. Time was measured with the function
clock from glibc).

Authorized licensed use limited to: INESC. Downloaded on February 6, 2009 at 07:32 from IEEE Xplore. Restrictions apply.

Table 1. Setup times (in sec.).

2D

number sparse hierarchical
of nodes (Cholmod) (geometric)
16384 0.11 0.68
65536 0.71 3.52
262144 6.27 16.70

1048576 124.27 72.61
4194304 1285.64 375.41

16777216 9921.41 4068.08

3D

number sparse hierarchical
of nodes (Cholmod) (algebraic)
131072 39.09 81.86
524288 467.99 415.58

2097152 5137.12 2230.62

2D irreg.

number sparse hierarchical
of nodes (Cholmod) (geometric)
16384 0.12 0.64
65536 0.70 3.27
262144 7.15 15.04

1048576 130.38 66.95
4194304 1307.74 555.93

16777216 9296.28 7425.37

4.2 Setup Time

The setup time corresponds to the time spent in creating
matrix and vector structures, and computing a-priori factor-
izations. The results for the setup time are presented in Ta-
ble 1 respectively for 2D and 3D regular grids and for a 2D
irregular grid. From the table, we observe that the hierar-
chical approaches are more efficient than the sparse solver.
For 2D problems at about 1 million nodes, this becomes no-
ticeable. Even though it is difficult to see from the tables,
the setup time of the hierarchical methods is also growing
at a lower rate than the sparse approach. Theoretically this
should be O(n loga(n)) for small constant a. For the 3D
problem this behavior is not so clear since fewer points are
available. Interestingly enough, the irregularity of the grid
does not seem to affect the sparse solver as much as it af-
fects the geometric hierarchical solver. Still the same type
of behavior is noted in this example.

4.3 Solve Time

To compute the solve time, the Cholesky factors were
used to solve for a given right-hand-side. Results for solv-
ing a single right-hand-side are presented in Table 2 respec-
tively for 2D and 3D regular grids and for a 2D irregular
grid. In terms of the solve time, we notice a similar pat-
tern as in the setup time. However, the efficiency of the
sparse solver slightly delays the advantage of the hierarchi-
cal methods for larger problems. In the 2D cases, only for
problems with around 4 million nodes, do we see a clear
advantage. For the 3D problem, the size of the grid is not
sufficient for the hierarchical approach to show an advan-
tage. Extrapolating the data in the table it is acceptable to
assume this will happen for larger size problems.

Table 2. Solve times per time-step (in sec.).

2D

number sparse hierarchical
of nodes (Cholmod) (geometric)
16384 0.01 0.01
65536 0.05 0.05
262144 0.21 0.24

1048576 0.92 0.93
4194304 4.02 3.72

16777216 21.72 17.74

3D

number sparse hierarchical
of nodes (Cholmod) (algebraic)
131072 0.27 0.39
524288 1.43 1.80

2097152 7.26 8.58

2D irreg.

number sparse hierarchical
of nodes (Cholmod) (geometric)
16384 0.01 0.02
65536 0.05 0.05
262144 0.20 0.21

1048576 0.92 0.87
4194304 4.03 3.45

16777216 21.68 16.22

Table 3. Storage requirements (in megabyte).

2D

number sparse hierarchical
of nodes (Cholmod) (geometric)
16384 8 11
65536 39 49
262144 175 210

1048576 772 873
4194304 3361 3555

16777216 14559 14351

3D

number sparse hierarchical
of nodes (Cholmod) (algebraic)
131072 286 339
524288 1528 1559

2097152 7818 7022

2D irreg.

number sparse hierarchical
of nodes (Cholmod) (geometric)
16384 8 10
65536 39 47
262144 175 199

1048576 772 821
4194304 3361 3258

16777216 14559 13191

4.4 Storage Requirements

Finally we look at the storage requirements of the var-
ious methods. Only matrix structures were taken into ac-
count (since vectors do not add that much to the total mem-
ory) and among these, only matrices used repeatedly in the
time analysis. We assume other matrix structures can be
freed after setup, and only evaluation matrices matter. The
storage requirement results are shown in Table 3 again for
the 2D and 3D regular grids and for the 2D irregular grids.
The results in the tables are again similar to the other mea-
sures, but here the sparse solver is more competitive. This

Authorized licensed use limited to: INESC. Downloaded on February 6, 2009 at 07:32 from IEEE Xplore. Restrictions apply.

Table 4. H -Matrix approximation error
‖(LLT)−1×A− I‖2 and required resources vs.
the accuracy parameter for a 1024×1024 grid.

eps setup solve space errortime (s) time (s) (Mbyte)
10−2 45.50 0.54 491 9.282e-04
10−3 45.43 0.54 498 5.797e-04
10−4 45.47 0.55 501 1.984e-05
10−5 47.69 0.55 502 6.425e-07
10−6 48.93 0.55 502 6.404e-07

is likely a result of the sparse solver targeting lower fill-in in
the matrix factors, while the hierarchical approaches, even
though they also indirectly attempt to minimize fill-in, their
main target is to compress the representation itself.

4.5 Approximation Error

In Table 4 one can see how the parameter eps affects
the accuracy of the solution as well as the resource require-
ments. We can observe that as we increase the accuracy of
the approximation, the demand for resources grows min-
imally. Of course, if the example grid was larger (with
several millions of nodes, for instance) the resource needs
would increase more strongly with the accuracy. Neverthe-
less, these examples show quite clearly that the time and
space complexities are rising much slower compared to the
added precision in the solution. It is also possible to infer
that an eps = 10−3 seems to be a reasonable initial choice
for most of the problems, as confirmed experimentally.

As a final conclusion, we believe that the hierarchical
approaches are indeed quite promising when compared to a
state-of-the-art sparse direct solvers. We observe that gCh
can solve 16 million node grids with around 14 GB of RAM
at a rate of almost 1 million nodes per second.

5 Conclusions

H -Matrices are hierarchical matrix representation
schemes whereby blocks of the matrix are represented by
low rank factorizations in a compact form. This representa-
tion enables computations and storage in almost linear time.
In this way, Cholesky factors can be efficiently computed
and represented, leading to fast system storage and solu-
tion. Experimental results show that using the hierarchical
Cholesky representation requires n loga(n), for some small
constant a, in both space and time, when using this matrix
representation, which proves this method to be very efficient
when dealing with the simulation of large power grid mod-
els. Comparisons against a state-of-the-art sparse Cholesky
code, using a very efficient reordering scheme, shows that
the hierarchical matrix representations is very competitive
and efficient. Very large problems can be solved with stor-
age proportional to the number of nodes at a rate of about 1
million nodes per second.

References

[1] M. Bebendorf. Hierarchical LU decomposition-based pre-
conditioners for BEM. Computing, 2004.

[2] M. Bebendorf and W. Hackbusch. Existence of H -matrix
approximants to the inverse FE-matrix of elliptic operators
with L∞-coefficients. Numerische Mathematik, 2002.

[3] S. Börm, L. Grasedyck, and W. Hackbusch. Hierarchical
matrices. Max Planck Institute for Mathematics in the Sci-
ences, June 2006.

[4] S. L. Borne, L. Grasedyck, and R. Kriemann. Domain-
decomposition based H -LU preconditioners. LNCSE, 2005.

[5] T.-H. Chen and C. C.-P. Chen. Efficient large-scale power
grid analysis based on preconditioned krylov-subspace it-
erative methods. In Proceedings of the ACM/IEEE Design
Automation Conference (DAC), pages 559–562, Las Vegas,
Nevada, U.S.A., June 2001.

[6] T. A. Davis and W. W. Hager. Modifying a sparse cholesky
factorization. SIAM Journal on Matrix Analysis and Appli-
cations, 1999.

[7] T. A. Davis and W. W. Hager. Multiple-rank modifications
of a sparse cholesky factorization. SIAM Journal on Matrix
Analysis and Applications, 2001.

[8] T. A. Davis and W. W. Hager. Row modifications of a sparse
cholesky factorization. SIAM Journal on Matrix Analysis
and Applications, 2005.

[9] L. Grasedyck and W. Hackbusch. Construction and arith-
metics of H -matrices. Computing, 70(4):295–334, 2003.

[10] W. Hackbusch. A sparse matrix arithmetic based on H -
matrices. part I: Introduction to H -matrices. Computing,
1999.

[11] W. Hackbusch, S. Börm, and L. Grasedyck. Hlib package.
http://www.hlib.org/hlib.html/.

[12] W. Hackbusch and B. N. Khoromskij. A sparse H -matrix
arithmetic. part II: Application to multi-dimensional prob-
lems. Computing, 2000.

[13] W. Hackbusch and Z. P. Nowak. On the fast matrix multipli-
cation in the boundary element method by panel clustering.
Numerische Mathematik, 1989.

[14] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Mul-
tilevel hypergraph partitioning: Applications in VLSI do-
main. IEEE Transactions on VLSI, 7(1):69–79, 1999.

[15] D. Kouroussis and F. N. Najm. A static pattern-independent
technique for power grid voltage integrity verification. In
Proceedings of the ACM/IEEE Design Automation Confer-
ence (DAC), pages 99–104, Anaheim, California, U.S.A.,
June 2003.

[16] J. N. Kozhaya, S. N. Nassif, and F. N. Najm. A multigrid-
like technique for power grid analysis. IEEE Transactions
on Computer-Aided Design of Integrated Circuits (TCAD),
pages 1148–1160, October 2002.

[17] S. R. Nassif and J. N. Kozhaya. Fast power grid simulation.
In Proceedings of the ACM/IEEE Design Automation Con-
ference (DAC), pages 156–161, Las Vegas, Nevada, U.S.A.,
June 2000.

[18] S. Oliveira and F. Yang. An algebraic approach for H -matrix
preconditioners. Technical report, University of Iowa, 2006.

[19] S. Pant and E. Chiprout. Power grid physics and impli-
cations for cad. In DAC ’06: Proceedings of the 43rd
annual conference on Design automation, pages 199–204,
New York, NY, USA, 2006. ACM Press.

[20] Z. Zhu, B. Yao, and C.-K. Cheng. Power network analy-
sis using an adaptive algebraic multigrid approach. In Pro-
ceedings of the ACM/IEEE Design Automation Conference
(DAC), pages 105–108, Anaheim, California, U.S.A., June
2003.

Authorized licensed use limited to: INESC. Downloaded on February 6, 2009 at 07:32 from IEEE Xplore. Restrictions apply.

