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Technical University of Lisbon
Rua Alves Redol, 9
1000-029 Lisboa, Portugal
{jmss,jorge,lms}@algos.inesc-id.pt

2 Cadence Laboratories
Cadence Design Systems

Summary. With roots dating back to many years ago and applications in a wide
variety of areas, model order reduction has emerged in the last few decades as a
crucial step in the simulation, control, and optimization of complex physical systems.
Reducing the order or dimension of models of such systems, is paramount to enabling
their simulation and verification. While much progress has been achieved in the last
few years regarding the robustness, efficiency and applicability of these techniques,
certain problems of relevance still pose difficulties or renewed challenges that are not
satisfactorily solved with the existing approaches. Furthermore, new applications for
which dimension reduction is crucial, are becoming increasingly relevant, raising new
issues in the quest for increased performance.
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1 Introduction

Model reduction algorithms are standard techniques nowadays in many areas, in-
cluding the microelectronics design community. The goal of model order reduction
is to replace a large-scale model of a physical system by a model of lower dimen-
sion which exhibits similar behavior, typically measured in terms of its frequency or
time response characteristics. Such techniques are commonly used for analysis, ap-
proximation, and simulation of models arising from electromagnetic formulation of
physical structures. The need to accurately account for all relevant physical effects
implies that the mathematical formulation used to describe such structures often
results in very large models. Reducing the order or dimension of these models is
crucial to enabling the simulation and verification of such systems [2, 1].

An area to which extensive research has been devoted in the last few years is
the problem of order reduction of nonlinear systems [20, 18, 4]. A discussion of such
methods is however beyond the scope of this paper. Due to space constraints we
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will restrict the discussion to issues arising from linear systems reduction. Neverthe-
less this discussion is still relevant in the nonlinear case as most existing nonlinear
reduction algorithms are based on extensions of linear methods or the solution of
carefully selected sequences of linear problems. While enormous progress has been
achieved in the last decades in this field, both from a theoretical as well as a prac-
tical standpoint, still greater challenges lie ahead as new and exciting applications
are being researched for which order reduction is again a crucial step.

Existing methods for linear model reduction can be broadly characterized into
two types: those that are based on projection methods, and those based on bal-
ancing techniques (sometimes also referred to as SVD3-based [1]). Among the first,
Krylov subspace projection methods such as PVL [6] and PRIMA [15] have been
the most widely studied over the past decade. They are very appealing because of
their simplicity and performance in terms of efficiency and accuracy, despite the
fact that they exhibit several known shortcomings. The lack of a general strategy
for error control and order selection, as well as a dependence on the original model’s
structure if passivity is to be guaranteed after the reduction are among the more ob-
vious such shortcomings. The alternative methods, those in the truncated balanced
realization (TBR) family [14], perform reduction based on the concept of control-
lability and observability of the system states and are purported to produce nearly
optimal models and have easy to compute a-posteriori error bounds. However, they
are awkward to implement and expensive to apply, which limits their applicability
to small and medium sized problems. Hybrid techniques that combine some of the
features of each type of methods have also been presented [11, 9, 10]. Recently, a
new technique was also proposed that attempts to establish a bridge between the
two techniques. The Poor Man’s TBR [19] is based on a projection scheme where
the projection matrix approximately spans the dominant eigenspaces of the control-
lability and observability matrices and provides an interesting platform for bridging
between the two types of techniques. Still the technique is not without drawbacks,
as it relies on proper choice of sampling points, a non-trivial task in general.

In spite of their shortcomings, all of the mentioned methods are in widespread
use nowadays. Still, there are situations that challenge the existing knowledge in the
field. For instance, consider the problem of reducing systems with a large number
of ports, also known as massively coupled systems. Such systems typically occur
in substrate, power grid and package parasitic networks. Furthermore, the trend to
nano-scale dimensions together with the increasing frequencies of operation implies
than non-neglectable electromagnetic effects have to be accounted for in the models,
which will also give rise to these massively coupled problems. Projection-based algo-
rithms are inefficient for such systems as they rely on block iterations, where the size
of the block equals the number of ports. Therefore, each block iteration increases
the size of the model by an amount equal to the number of ports, leading to large
models even for moderate reduction order. This trend is particularly troublesome
when simulation with such models is necessary. TBR is intrinsically somewhat less
sensitive to the number of input ports. Unfortunately such systems are typically
very large, which makes reduction based on balancing techniques impractical.

Additionally, new challenges are being posed that require further research. As
an example, consider the problem of order reduction of parametrized systems.
Parameter-based descriptions are now starting to be used as the basis for variability-

3SVD – Singular value decomposition.
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aware design models. For high frequencies, at nano-scale feature sizes, process vari-
ability effects, as well as dependence on operating conditions become extremely
relevant and should be accounted for in the models. Existing techniques for han-
dling such systems are, for the most part, straightforward extensions of the basic
order reduction algorithms [3, 12]. Projection-based techniques match Taylor-series
coefficients, which in parameter-based descriptions are multidimensional moments.
Unfortunately this technique has exponential cost increase with the number of pa-
rameters and is thus expensive except for small size and small number of parameters.
Building a projection space assuming small perturbations around the nominal oper-
ating point is also problematic: it is hard to do anything beyond first-order and thus
it is not clear how to dial in accuracy. Sampling the parameter space also presents a
challenge, as it is not clear where to place sample point in such a multidimensional
space. Still if some information regarding the statistical distribution of the parame-
ter values is available, this can be used to guide the sampling and to build the model
accordingly.

In this paper we review some of these current and future challenges for which
much research is still needed in model order reduction. In Section 2 we discuss the
problem of reducing massively coupled problems, and in Section 3 we discuss the
reduction of parametrized systems, a recent topic of much research work. Finally in
Section 4, we present some conclusions.

2 Massively Coupled Systems

As an illustration of the problems pertaining to massively coupled systems, results
from the study of the reduction of power distribution networks, also known as power
grids, will be presented. Power grids are fairly regular structures which must cover
the whole area of the chip for power delivery purposes. Since all devices, wells and
substrate plugs, are connected to the power grid, the total number of ports of such
circuits can be as high as hundreds of thousands, or millions. This unfortunately
brings added difficulty to the reduction process.

2.1 Background

Modeling a power grid as an RC network and using the nodal analysis formulation
leads to:

Cv̇ + Gv = Mu
y = NT v

(1)

where C, G ∈ Rn×n are the capacitance and conductance matrices, respectively,
M ∈ Rn×p is a matrix that relates the inputs u ∈ Rp to the states v ∈ Rn that
describe the node voltages, N ∈ Rn×q being its counterpart with respect to the
outputs y ∈ Rq, n is the number of states, p the number of inputs and q the number
of outputs. The p × q matrix transfer function of the network is then given by
H(s) = NT (G+sC)−1M . Typically, matrices C and G are very sparse but also very
large. For a typical power grid, the number of nodes will be in the order of several
millions but the number of ports, input and output, is also quite large. Solving
Eqn. (1) directly or using it inside a circuit simulator is therefore too expensive.

The goal of model-order reduction is, generically, to determine a reduced model,
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Hk(s) = N̂T (Ĝ + sĈ)−1M̂ (2)

of size k � n, that closely matches the input-output behavior of the original model,
and where the state description is given by z = V T v ∈ Rk. However, even if k � n,
the reduced-order model may fail to provide relevant compression. This may happen
because, for large networks, the matrices C and G are sparse, having a number of
non-zeros entries of order O(n). If the number of non-zero entries in the reduced-
order model increases with the number of ports, the benefits of reduction may vanish
with increasingly large p and q.

Projection-based framework

Projection-based Krylov subspace algorithms, such as PRIMA [15], provide a
general-purpose, rigorous framework for deriving interconnect modeling algorithms
and have been shown to produce excellent compression in many scenarios involving
on- and off-chip interconnect and packaging structures. In its simplest form, they
can be used to compute individual approximations to each of the p×q matrix trans-
fer function entries. However, more commonly, they are used to generate a single
approximation to the full system transfer function. The PRIMA algorithm [15], for
instance, reduces a state-space model in the form of (1) by use of a projection matrix
V , through the operations:

Ĝ = V T GV, M̂ = V T M, Ĉ = V T CV, N̂ = V T N (3)

to obtain a reduced model in the form of (2). In the standard approach, the
projection matrix V is chosen as an orthogonal basis of a block Krylov sub-
space, Km(A, b) = span{b, Ab, . . . , Am−1b}, a typical choice being A = G−1C and
b = G−1M . The construction of the projection matrix V is done iteratively by
blocks, with each block being generated through a back-orthogonalizing procedure.
When the projection matrix is constructed in this way, the moments of the reduced
model can be shown to match the moments of the original model to some order.
Consequently, the reduced model size is proportional to the number of matched
moments multiplied by the number of ports. Furthermore, the reduced system ma-
trices will be dense. Therefore, these methods present two problems when dealing
with networks with a large number of ports. First, the cost associated with model
computation is directly proportional to the number of inputs, p, i.e. to the number
of columns in the matrices defining the inputs. This is easy to see by noting that
the number of columns in the projection matrix V in (3) is directly proportional
to p (a direct result of the block construction procedure described). This implies
that model construction for systems with large number of ports is costly. Second,
the size of the reduced model is also proportional to p, as was discussed earlier and
can directly be seen from (3). While the cost of model construction can perhaps be
amortized in later simulations, the large size of the model is more problematic since
it directly affects simulation cost.

Truncated balanced realizations

An alternative class of reduction algorithms are based on Truncated Balanced Re-
alization (TBR). The TBR algorithm first computes the observability and control-
lability Gramians, X and Y , by solving the Lyapunov equations:
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GXCT + CXGT = MMT , (4)

GT Y C + CT Y G = NT N (5)

and then reduces the model by projection onto the space associated with the dom-
inant eigenvalues of the product XY [14]. Model size selection and error control in
TBR is based on the eigenvalues of XY , also known as the Hankel singular values. In
the proper case, there is an a-posteriori theoretical bound on the frequency-domain
error for the TBR model given by [14]:

‖H −Hk‖ ≤ 2

n∑
i=k+1

σi (6)

The existence of such an error bound is an important advantage of the TBR class
of algorithms as there is no counterpart in the projection-based algorithms. Theo-
retically, the model selection criteria, and therefore the size of the generated model,
can be done independently of the number of inputs. However, there is an indirect
dependence in most problems and in particular for networks such as power grids,
that exhibit a large number of inputs (see [19] for additional discussion on the topic).
In this case, useful reductions are not achievable. Furthermore, the solution of the
Lyapunov equations required to obtain X and Y is computationally intensive for
large systems and as such the technique is only of theoretical interest in this context.
A variety of approximate methods have been proposed that attempt to circumvent
this problem (see [19] and references therein).

2.2 Methods

As stated previously, the difficulty with standard projection algorithms like PRIMA
or multi-point projection schemes, is that the models produced have size propor-
tional to the number of ports. This limits their applicability to problems such as
power grids, where the number of network ports is likely to be very large. An in-
teresting question that might be raised is whether this restriction is inherent to
the system, given the number of ports, or an artifact of the computation scheme
chosen. In other words, one might ask whether accurate modeling and analysis of
a power grid, modeled as a large RC mesh, does indeed require so much dynamic
information. This question is all the more relevant as there is a common popular
belief that only a few poles are required to accurately model an RC circuit. It is now
widely accepted that in certain settings that is indeed the case, but this conclusion
is emphatically not general (see [22]).

In the following, two recently proposed methods for overcoming the difficulties
faced by standard MOR methods are presented. The first method is based on the
analysis of singular values of the system moments while the second one is a “cheaper”
version of a TBR class method oreviusly mentioned [19], also based on projection.

Singular Value Decomposition MOR (SVDMOR)

The SVDMOR [5] algorithm was developed to address the reduction of systems
with a large number of ports, like power grids. While the size of a reduced model
produced via PRIMA is directly proportional to the number of ports in the circuit,
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SVDMOR theoretically overcomes this problem using singular value decomposition
(SVD) analysis in order to truncate the system to any desired order.

The main idea behind SVDMOR is to assume that there is a large degree of
correlation between the various inputs and outputs. SVDMOR further assumes that
such input-output correlation can be captured from observation of structural sys-
tem properties, evidenced in matrices M and N . The method can, for instance,
use an input-output correlation matrix, like the one given by the zero order mo-
ment matrix SDC = NT G−1M , which contains only DC information. Alterna-
tively, more complicated response correlations can be used such as frequency, sj-

shifted moments, S
(sj)

DC = NT (G + sjC)−1M , a more generic k-order moment,
Sk = NT (G−1C)kG−1M , or even combinations of these. Let K be the appropri-
ate correlation matrix. If the basic correlation hypothesis holds true, then K can
be approximated by a low-rank matrix. This low rank property can be revealed by
computing the SVD of K, K = UΣW T , where U and W are orthogonal matri-
ces and Σ is the diagonal matrix containing the ordered singular values. Assuming
correlation, there will be only a small number, r � p + q, of dominant singular val-
ues. Therefore, we can approximate K ≈ UrΣrV

T
r , where truncation is performed

keeping the r most significant singular values. The method further approximates:

M ≈ bmV T
r = MVr(V

T
r Vr)

−1V T
r

N ≈ bnUT
r = NUr(U

T
r Ur)

−1UT
r

(7)

where bm and bn are obtained using the Moore-Penrose pseudo-inverse, resulting in:

H(s) ≈ Ur bT
n (G + sC)−1bm︸ ︷︷ ︸

Hr(s)

V T
r (8)

Standard MOR methods, like PVL or PRIMA, can now be applied to Hr(s), result-
ing in the final model approximation H(s) ≈ UrH̃r(s)V

T
r . The reduced system is

p× q with a number of nonzero elements of order O(r2).

Input-Correlated Poor Man’s TBR (PMTBR)

The PMTBR algorithm [19, 22] was motivated by a connection between frequency-
domain projection methods and approximation to truncated balanced realization.
The method is less expensive in terms of computation, but tends to TBR when the
order of the approximation increases. The actual mechanics of the algorithm are akin
to multi-point projection. In a multi-point rational approximation the projection
matrix columns are computed by sampling at several frequency points along a desired
frequency interval. The samples are given by zi = (G + siC)−1M , where si =
jωi (with i = 1, 2, . . . , P ) are P frequency sample points. The frequency-sampled
matrix thus obtained can then be used to project the original system in order to
obtain a reduced model. In the PMTBR algorithm, a similar procedure is used. The
connection to TBR methods is made by noting that an approximation X̂ to the
Gramian X can be can be computed as:

X̂ =
∑

i

wiziz
H
i (9)

where the ωi which defines each sample, and the wi can be interpreted as nodes
and weights of a quadrature scheme applied to a frequency-domain interpretation
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of the Gramian matrix (see [19] for details). Let Z be a matrix whose columns are
the zi, and W the diagonal matrix of the square root of the weights. Eqn. (9) can
be written more compactly as:

X̂ = ZW 2ZH (10)

If the quadrature rule applied is accurate, X̂ will converge to X, which implies the
dominant eigenspace of X̂ converges to the dominant eigenspace of X. Computing
the singular value decomposition of ZW , ZW = VZSZUZ (with SZ real diagonal,
and VZ , UZ unitary matrices), it is easy to see that VZ converges to the eigenspaces
of X, and the Hankel singular values are obtained directly from the entries of SZ .
VZ can then be used as the projection matrix in a model order reduction scheme.
The method was shown to perform quite well in a wide variety of settings [19].

An interesting additional interpretation was more recently presented [22] which
is of relevance in our context. It has been shown that if further information revealing
time-domain correlation between the ports is available, a variant of PMTBR can be
used that can lead to significant efficiency improvement. This idea is akin to the
basic assumptions in SVDMOR and relate to exploiting correlation between the
inputs. Unlike SVDMOR, however, it is assumed that the correlation information
is not contained in the circuit information directly, but rather in its inputs. In
this variant of PMTBR, a correlation matrix K is formed by columns which are
samples of port values along the time-steps of some interval. Those samples should
characterize as well as possible the values expected at the inputs of the system,
i.e. K should be a suitably representative model of the possible inputs. An SVD is
then performed over K in order to retain only the most significant components of
the input correlation information, K ≈ UKΣKV T

K . With this additional correlation
information, the samples relative to multi-point approximation become zi = (G +
siC)−1MUKΣK . Using these zi as columns of the Z matrix in (10), leads to the
input-correlated TBR algorithm (ICTBR). See [19] for more details and a more
thorough description of the probabilistic interpretation of both PMTBR as well as
ICTBR.

2.3 Results

Both the standard model order reduction as well as the methods described in the
previous section can be applied to massively coupled systems. Methods like SVD-
MOR are reported to provide significant advantages over the standard algorithms if
certain conditions are met, namely that significant port correlation exists and can
be ascertained in a practical way. PMTBR is a more general algorithm for model
reduction, which can nonetheless be applied to large systems, given its reduced
computational complexity.

In this section, results are presented for two types of topologies: a first mesh,
grid A, with voltage inputs on the left side and current outputs on the right one,
and a second mesh, grid B, with voltage ports along the left side and current ports
randomly distributed over the remaining nodes. For practical reasons, we have kept
the mesh sizes smaller than they would be in realistic applications but scaling of
all appropriate dimensions and sizes would produce qualitatively the same results.
There are two main differences between the two setups described. The first one
concerns formulation. While in grid A matrices M and N in Eqn. (1) are distinct
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Table 1. Maximum absolute error of |H(s) −Hr(s)| for 100 × 100 mesh with 100
inputs on the left side and 100 outputs on the right side. SVDMOR used 15 singular
values.

r = 1200 PRIMA SVDMOR PMTBR

max{|H −Hr|} 1.443× 10−6 1.406× 10−7 1.160× 10−5

(M yields input information and N yields output information), in grid B, M = N ,
thus all ports are controllable and observable. The second main difference consists in
the separation between ports. In grid A the separation between inputs and outputs is
maximal, while in grid B not only every port is both input and output, but also the
geometric proximity between ports is reduced. Grid A is thus expected to be fairly
compressible, but smaller reductions are expected for grid B. Grid A is similar to the
one used in [5], while grid B was created in order to illustrate a more realistic setup.
The electrical model of all grids is as follows: every connection between nodes is
purely resistive and at every node there is a capacitance to ground. While this is not
necessary, it simplifies the ensuing description (furthermore, a parasitic capacitance
is usually extracted at all nodes). Resistance and capacitance values were randomly
generated in the interval (0.9, 1.1). In the following set of experiments the size of the
reduced model is the same for all methods and was pre-determined. The correlation
matrix of SVDMOR is the DC moment matrix. For this method, after computing
the SVD and choosing how many singular values to keep, a number of PRIMA
iterations is performed in order to generate a model of the required size. The number
of frequency samples of PMTBR was set such that a model of the same size can be
drawn from matrix Z. Samples were chosen uniformly in the frequency range shown
in the plots, with an additional sample added at DC.

Highly-correlated ports

The previously discussed methods were first used to reduce grid A. The Bode plot of
an arbitrarily selected transfer function is presented in Figure 1 (left). The number
of retained states was forced at r = 1200. In the case of SVDMOR, 15 singular
values were kept and 80 PRIMA iterations were run, yielding the reduced model of
15× 80 = 1200 states. One observes that SVDMOR shows good results, better than
PRIMA and PMTBR. In order to understand the reason for these results the plot
of the singular values of SVDMOR and PMTBR methods is presented in Figure 1
(right). The singular values (s.v.) of the DC moment, used by SVDMOR to guide
the reduction, decay quite fast. Therefore keeping just the first 15 yields a good
approximation. On the other hand the PMTBR s.v. decay very slowly. Table 1 shows
the maximum absolute error of the transfer matrix, max{|H(s)−Hr(s)|}. Analysis
of the table indicates that in the overall model, SVDMOR shows the smallest error
as expected for this grid setup.

Weakly-correlated ports

In grid B the objective was to emulate a more realistic situation whereby potentially
many devices, modeled as current sources, are attached to the power grid and can
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Fig. 1. Results for grid A (r = 1200): Bode plot of arbitrarily selected entry of 100×
100 transfer function matrix (left); normalized plot of singular values: SVDMOR
moment matrix and PMTBR samples matrix (right).

Table 2. Maximum absolute error of |H −Hr| for 100 × 100 mesh with 100 ports
on the left side and 1150 randomly distributed ports over the mesh.

r = 2500 PRIMA SVDMOR PMTBR

max{|H −Hr|} 1.284e× 10−2 2.533× 10−1 1.545× 10−3

draw or sink current from/to it when switching. The number of current sources was
chosen to be 1/8 of the number of nodes. There are 1150 current sources and 100
voltage sources (for a total of 10000 nodes). This is a harder problem to reduce, due
to port proximity, and thus interaction, and the results show it. Again the Bode
plot of an arbitrarily selected transfer function is presented in Figure 2 (left). The
number of retained states was now forced at r = 2500 already showing smaller
reduction than for grid A. In this case, the approximation produced by SVDMOR
is less accurate. This is expected from inspection of Figure 2 (right), where one
observes that the s.v. of SVDMOR decay slower than in the previous case. Clearly,
the assumption of highly correlated ports is not valid here. The results concerning
the error of the transfer matrix are in Table 2. PMTBR produces the most accurate
model, while PRIMA shows a reasonable approximation.

Note that while the Bode plots show large errors for higher (normalized) fre-
quencies, concerning to higher order moments which are harder to match, these
frequencies are uninteresting in practical simulations. Note also that the matrices in
the reduced models for all methods in both experiences are full, which has drastic
consequences for usage of these models in a simulation environment.

3 Parametrized System Descriptions

In any manufacturing process there is always a certain degree of uncertainty involved
given our limited control over the environment and other physical conditions. For
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Fig. 2. Results for grid B (r = 2500): Bode plot of arbitrarily selected entry of 100×
100 transfer function matrix (left); normalized plot of singular values: SVDMOR
moment matrix and PMTBR samples matrix (right).

the most part this uncertainty was previously ignored when analyzing or simulat-
ing systems, but as we step towards the nano-scale and higher frequency eras, such
environmental, geometrical and electromagnetic fluctuations become more signifi-
cant. Nowadays, parameter variability can no longer be disregarded, and its effect
must be accounted for in early design stages so that unwanted consequences can be
minimized. This leads to parametric descriptions of systems, including the effects of
the manufacturing variability, which further increases the complexity of such mod-
els. When model reduction is required, these parametric representations must be
addressed and the resulting reduced models must retain the ability to model the
effects of small random fluctuations, in order to accurately predict behavior and op-
timize designs. This is the aim of the Parametric Model Order Reduction (pMOR).

3.1 Background

Actual fabrication of physical devices is prone to the variation of certain circuit
parameters due to deliberate adjustment of the process or from random deviations
inherent to this manufacturing. This variability leads to a dependence of the ex-
tracted circuit elements on several parameters, of electrical or geometrical origin.
This dependence results in a parametric state-space system representation, which
in descriptor form can be written as

C(λ1, . . . , λL)v̇(λ1, . . . , λL) + G(λ1, . . . , λL)v(λ1, . . . , λL) = Mu
y = NT v(λ1, . . . , λL)

(11)

where C, G ∈ Rn×n are again, respectively, the capacitance and conductance matri-
ces, M ∈ Rn×p is the matrix that relates the input vector u ∈ Rp to the inner states
v ∈ Rn and N ∈ Rn×q is the matrix that links those inner states to the outputs
y ∈ Rq. The elements of the matrices C and G, as well as the states of the system
v, depend on a set of L parameters λ = [λ1, λ2, . . . , λL] which model the effects of
the mentioned uncertainty. Usually the system is formulated so that the matrices
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related to the inputs and outputs (M and N) do not depend on the parameters. This
time-domain descriptor yields a parametric dependent frequency response modeled
via the transfer function

H(s, λ1, . . . , λL) = NT (sC(λ1, . . . , λL) + G(λ1, . . . , λL))−1M (12)

for which we seek to generate a reduced order approximation, able to accurately
capture the input-output behavior of the system for any point in the parameter
space.

Ĥ(s, λ1, . . . , λL) = N̂T (sĈ(λ1, . . . , λL) + Ĝ(λ1, . . . , λL))−1M̂ (13)

In general, one attempts to generate a reduced order model whose structure is,
as much as possible, similar to the original, i.e. exhibiting a similar parametric
dependence.

3.2 Methods

In the following we summarize the main methods presented for dealing with this
problem.

Perturbation-Based Techniques

One of the earliest attempts to address this variational issue was to combine per-
turbation theory with moment matching MOR algorithms [13]. To model the vari-
ational effects of the interconnects, an affine model can be built for the capacitance
and conductance matrices, so that

G(λ1, . . . , λL) = G0 + λ1G1 + . . . + λLGL

C(λ1, . . . , λL) = C0 + λ1C1 + . . . + λLCL
(14)

where now C0 and G0 are the nominal matrix values, i.e. the value of the matrices
under no parameter variation, and Ci and Gi, i = 1, · · · , L, are its sensitivities with
respect to those parameters. For small parameter variations, the projection matrix
obtained via a moment-matching type algorithm such as PRIMA also suffers small
perturbations. Therefore, the idea was to draw several samples in the parameter
space for the system matrices G(λ1, . . . , λL) and C(λ1, . . . , λL), and for each sample
PRIMA was applied so a projection matrix is obtained. Fitting is later applied over
all the computed projectors in order to determine the coefficients of a parameter
dependent projection matrix

V (λ1, . . . , λL) = V0 + λ1V1 + . . . + λLVL (15)

which is in turn applied in a congruence-like transformation to the parametric
system in (11), yielding a reduced system parametrized with respect to the set
[λ1, λ2, . . . , λL].

Another approach also based on perturbation theory arguments was applied to
the Truncate Balanced Realization (TBR) [14, 17] framework, so that a theoreti-
cally based perturbation matrix was obtained starting from the affine models shown
in (14) [8]. This matrix was then applied via a congruence transformation over the
Gramians to address the variability, and yield the perturbed Gramians. These in



12 Authors Suppressed Due to Excessive Length

turn were used inside a balancing truncation procedure. As with most TBR-inspired
methods, this one is also expensive to compute and hard to implement.

The above methods have obvious drawbacks, perhaps the most glaring of which
is the heavy computation cost required for obtaining the reduced models and the
limitation that comes from first order approximations possibly leading to inaccuracy
in certain cases.

Multi-Dimensional Moment Matching

These techniques appear as extensions to nominal moment-matching techniques [15,
6, 21]. Moment matching algorithms have gained a well deserved fame in nominal
MOR due to their simplicity and efficiency. The extensions of these techniques to
the parametric case are usually based in the implicit or explicit moment matching
of the parametric transfer function (12).

This type of algorithms assumes small fluctuations of the parameters, so that
a model based on the Taylor Series expansion can be used for approximating the
behavior of the conductance and capacitance, G(λ) and C(λ), expressed as a function
of the parameters

G(λ1, . . . , λL) =
∑∞

i1=0
. . .

∑∞
iL=0

Gi1,...,iLλi1
1 . . . λiL

L

C(λ1, . . . , λL) =
∑∞

i1=0
. . .

∑∞
iL=0

Ci1,...,iLλi1
1 . . . λiL

L

(16)

where G0, C0, Gi1,...,iL and Ci1,...,iL are the multidimensional Taylor series coeffi-
cients. This Taylor series can be extended up to the desired (or required) order,
including cross derivatives, for the sake of accuracy. If this formulation is used, the
structure for parameter dependence may be maintained if the projection is not only
applied to the nominal matrices, but to the sensitivities as well.

The Multi-Parameter Moment Matching method is a single-point expansion of
the transfer function (12) in the joint space of the frequency s and the parameters
λi, i = 1, · · · , L, in order to obtain a power series in several variables s, λ1, . . . , λL [3],

v(s, λ1, . . . , λL) =

∞∑
k=0

k∑
ks=0

k−ks∑
k1=0

. . .

k−ks−k1....−kL−1∑
kL=0

Mk,ks,k1,...,kLsksλk1
1 . . . λkL

L

(17)
where Mk,ks,k1,...,kL is a k-th (k = ks +k1 + . . .+kL) order multi-parameter moment

corresponding to the coefficient term sksλk1
1 . . . λkL

L . Following the same idea used
in the nominal moment matching techniques, a basis for the subspace formed from
these moments can be built and the resulting matrix V can be used as a projection
matrix for reducing the original system. It has been shown that this parametrized
reduced model matches up to the k-th order multi-parameter moment of the original
system. The main inefficiency of this method is that process parameters fluctuate
in a small range around their nominal value, whereas the frequency range is much
larger, and a higher number of moments are necessary in order to capture the global
response for the whole frequency range. For this reason, the reduced model size
grows exponentially with the number of parameters and the moments to match. A
similar idea but more efficient, is to rely in a two-step moment matching scheme [12].
In this method, one first matches in an explicit way the multi-parameter moments
for the process variability parameters (by expanding the state space vector v and the
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matrices G and C in its Taylor Series only w.r.t. the parameters), and in a second
stage implicitly match moments with respect to the frequency via Krylov projec-
tion. This two-step approach avoids the exponential growth of model size with the
number of moments matched, suffered by the multi-parameter moment matching.
This method allows a certain degree of flexibility as the number of moments matched
with respect to the frequency and to the parameters can be different. In principle, in
spite of the larger size of the augmented model, the order of the reduced system can
be much smaller than in the previous cases. On the other hand, the structure of the
dependence with respect to the parameters is lost since the parametric dependence
is shifted to the later projected output related N matrix.

A different multi-dimensional moment matching approach was also presented [7],
which relies on the computation of several subspaces, built separately for each dimen-
sion, i.e. the frequency s and the parameter set λ. So given a parametric system (11),
the first step of the algorithm is to obtain the ks block moments of the transfer func-
tion with respect to the frequency when the parameters take their nominal value (for
example, via PRIMA). This block moments will be denoted as Qs. The next step is
to obtain the subspaces which match kλi block moments of v with respect to each
of the parameter λi, and will be denoted by Qλi . Once all the subspaces have been
computed, an orthonormal basis can be obtained so that its columns spans the joint
of all subspaces. Applying the resulting matrix in a projection scheme ensures that
the parametric ROM4 matches ks moments of the original system with respect to
the frequency, and kλi moments with respect to the parameter λi. If the cross-term
moments are needed for accuracy reasons, the subspace that spans these moments
can be also included by following the same scheme.

Variational PMTBR

A novel approach was recently proposed that extends the PMTBR algorithm to
include variability [16]. This approach is based on the statistical interpretation of the
algorithm (see [19] for details) and enhances its applicability. In this interpretation,
the Gramian is seen as a covariance matrix for a Gaussian variable, v(0), obtained
by exciting the (presumed stable) system with white noise. Rewriting the Gramian
as

Xλ =

∫
Sλ

∫ ∞

−∞
(sCλ + Gλ)−1MMT (sCλ + Gλ)−Hp(λ)dwdλ (18)

where p(λ) is the probability density of λ in the parameter space, Sλ. Just as in
PMTBR, a quadrature rule can be applied in the overall parameter plus frequency
space to approximate the Gramian via numerical computation. But in this case the
weights are chosen taking into account the PDF5 of λi and the frequency constraints.
This can be generalized to a set of parameters, where a joint PDF of all the param-
eters can be applied to the joint parameter space, or the individual PDF of each
parameter can be used. The ability to do this represents an interesting advantage,
since a-priori knowledge of the parameters and the frequency can be included in
order to constrain the sampling and yield a more accurate reduced model. As in the
deterministic case, an error analysis and control can be included, via the eigenvalues
of the SVD, but in this variational case only an expected error bound can be given:

4Reduced Order Model
5PDF – Probability density function.
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Fig. 3. Variational PEEC: effects on the frequency response (left) and performance
of parametric MOR methods (right).

E{‖v̂0 − v0‖2
2} ≤

n∑
i=r+1

σ2
i (19)

where r is the reduced order and n the original number of states. In this method,
the issue of sample selection, already an important one in the deterministic version,
becomes even more relevant, since the sampling must now be done in a potentially
much higher-dimensional space.

3.3 Results

To illustrate (for a qualitative analysis mostly) the effect of parameter variability on
the response of a circuit we resort to a simple example of a partial equivalent electric
circuit (PEEC) model. The system under analysis is an RLC model of a connector of
order 304. In this example we consider the effect of five geometric parameters, each
having a different effect on the conductance and capacitance matrices. Figure 3-a)
shows the effect of random variations on each parameter up to a limit of 5%, 15%
and 30%. It can be seen that even small range variations in the parameters can result
in large deviations from nominal. An important effect of the parameter variation is
that those deviations not only can change the overall shape of the frequency response
but also cause frequency shifts in the pole location. Figure 3-b) shows a comparison
of the reduction of the variational system with two different methods: variational
PMTBR and parametrized time-domain macromodels [7], all of the same order,
versus the nominal response and the system response under parameter variation
(Perturbed). As can be seen, the parametric MOR algorithms are able to maintain
an acceptable accuracy up to high frequencies in the presence of strong variations.

4 Conclusions

Model order reduction is a crucial enabling technique for simulation, control, and
optimization of complex physical systems. In this paper we discussed how, in spite
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of the progress achieved in the area in the last few years, certain types of problems
such as those derived from massively coupled systems, still pose difficulties to the
existing approaches. We also discussed new challenges in the field, brought by new
applications such as the reduction of parametric systems, that are becoming increas-
ingly relevant, raising new issues in the quest for increased performance. Clearly, we
have but scratched the surface of the relevant issues facing us. Other challenging
problems exist, like the reduction on nonlinear systems, which has also been subject
to extensive research.
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