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In recent years, order-reduction techniques based on Krylov 
subspaces have become the methods of choice for generating 
macromodels of large multi-port RLC circuits. A widely- 
used method of this type is PRIMA. Its main features 
are provably passive reduced-order models and a moment- 
matching property. On the other hand, PRIMA does not 
preserve other structures, such as reciprocity or the block 
structure of the circuit matrices, inherent to RLC circuits, 
which makes it harder to synthesize the PRIMA models as 
actual circuits. Moreover, the PRIMA models match only 
half as many moments as optimal, but non-passive, moment- 
matching techniques such as SyMPVL. In this paper, we 
propose the new reduction technique SPFUM that overcomes 
these disadvantages of PRIMA. In particular, SPRIM gener- 
ates provably passive and reciprocal macromodels of multi- 
port RLC circuits, and the SPRIM models match twice as 
many moments as the corresponding PRIMA models ob- 
tained with identical computational work. Numerical results 
are reported that illustrate the higher accuracy of SPRIM 
vs. PRIMA. 

1. INTRODUCTION 
Electronic circuits often contain large linear subnetwork of 
passive components. Such subnetwork may represent inter- 
connect automatically extracted from layout as large RLC 
networks, models of IC packages, or models of wireless prop- 
agation channels. Often these subnetworks are so large that 
they need to be replaced by much smaller reduced-order 
models, before any numerical simulation becomes feasible. 
Ideally, these models would produce a good approximation 
of the input-output behavior of the original subnetwork, at 
least in a limited domain of interest, e.g., a frequency range. 

*This research was performed while the author was with 
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In recent years, reduced-order modeling techniques based 
on Pad& approximation have been recognized to be power- 
ful tools for various circuit simulation tasks. The first such 
technique was asymptotic waveform evaluation (AWE) 1211, 
which uses explicit moment matching. More recently, the 
attention has moved to reduced-order models generated by 
means of Krylov-subspace algorithms, which avoids the typ- 
ical numerical instabilities of explicit moment matching. 

PVL [E, 91 and its multi-port version MPVL [lo] use vari- 
ants of the Lanczos process [17] to stably compute reduced- 
order models that represent Pad6 or matrix-Pad6 approx- 
imations [5] of the circuit transfer function. SyPVL [14] 
and its multi-port version SyMPVL [ll, 15, 161 are versions 
of PVL and MPVL, respectively, that are tailored to RLC 
circuits. By exploiting the symmetry of RLC transfer func- 
tions, the computational costs of SyPVL and SyMPVL are 
only half of those of general PVL and MPVL. The Arnoldi 
process [3] is another popular Krylov-subspace algorithm. 
Arnoldi-based reduced-order model techniques were recently 
proposed in [24, 19, 7, 201. These models are not defined by 
Pad6 approximation, and as a result, in general, they are 
not as accurate as a Padbbased model of the same size. In 
fact, Arnoldi-based models are known to match only half as 
many moments as Lanczos-based models; see [24, 19,20, 131. 

In many applications, in particular those related to VLSI in- 
terconnect, the reduced-order model is used as a substitute 
for the full-blown original model in higher-level simulations. 
In such applications, it is very important for the reduced- 
order model to maintain the passivity properties of the orig- 
inal circuit. In [15, 16, 41, it is shown that SyMPVL is pas- 
sive for RC, RL, and LC circuits. However, the Pad&-based 
reduced-order model that characterizes SyMPVL cannot be 
guaranteed to he passive for general RLC circuits. On the 
other hand, in [19,20], it was proved that the Arnoldi-based 
reduction technique PRIMA produces passive reduced-order 
for general RLC circuits. PRIMA employs a block version of 
the Arnoldi process and then obtains reduced-order models 
by projecting the matrices defining the RLC transfer func- 
tion onto the Arnoldi basis vectors. While PRIMA gen- 
erates provably passive reduced-order models, it does not 
preserve other structures, such as reciprocity or the block 
structure of the circuit matrices, inherent to RLC circuits. 
This has motivated the development of algorithms such as 
ENOR [23] and its variants [6] that generate passive and 
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reciprocal reduced-order models, yet still match as many 
moments as PRIMA. However, the moment-matching prop- 
erty of the PRIMA models is not optimal. In fact, the 
PRIMA models match only half as many moments as op- 
timal, hut non-passive, moment-matching techniques such 
as SyMPVL. 

In this paper, we introduce the new reduction technique 
SPRIM that overcomes these disadvantages of PRIMA. In 
particular, SPRIM generates provably passive and recipro- 
cal macromodels of multi-port RLC circuits, and the SPRIM 
models match twice as many moments as the corresponding 
PRIMA models obtained with identical computational work. 
Numerical results are reported that illustrate the higher ac- 
curacy of SPRIM vs. PRIMA. 

2. RLC CIRCUIT EQUATIONS 
In this section, we briefly review the form of RLC circuit 
equations. 

The connectivity of a circuit can he captured using a di- 
rectional graph. The nodes of the graph correspond to the 
nodes of the circuit, and the edges of the graph correspond 
to each of the circuit elements. An arbitrary direction is 
assigned to graph edges, so one can distinguish between the 
source and destination nodes. The adjacency matrix, E, of 
the directional graph describes the connectivity of a circuit. 
Each row of E corresponds to a graph edge and, therefore, to 
a circuit element. Each column of E corresponds to a graph 
or circuit node. The column corresponding to the datum 
(ground) node of the circuit is omitted in order to remove 
redundancy. By convention, a row of E contains +1 in the 
column corresponding to the source node, -1 in the column 
corresponding to the destination node, and 0 everywhere 
else. Kirchhoff's laws, which depend only on connectivity, 
can be expressed in terms of E as follows: 

KCL: ETis = 0, 

KVL: Ev, =vs .  

Here, the vectors is and v b  contain the branch currents and 
voltages, respectively, and vn the non-datum node voltages. 

We are interested in analyzing RLC circuits, and for sim- 
plicity, we assume that the circuit is excited just by current 
sources. In this case, E, vb, and is  can be partitioned ac- 
cording to circuit-element types as follows: 

(1) 

Here, the subscripts i, g, c, and 1 stand for branches con- 
taining current sources, resistors, capacitors, and inductors, 
respectively. 

The set of circuit equations is completed by adding the so- 
called bmnch constitutive relationships (BCRs), which d e  
scribe the physical behavior of the circuit elements. In the 
case of RLC circuits, the BCRs are as follows: 

Here, It(t) is the vector of current-source values, G and C 
are diagonal matrices whose diagonal entries are the conduc- 
tance and capacitance values of each element. Clearly, these 
values are positive for any physical circuit. The inductance 
matrix L is always symmetric and positive semi-definite. In 
the absence of inductive coupling, L is also a diagonal ma- 
trix. However, in the case of inductive coupling, the matrix 
L is full in general. An important special case is inductance 
matrix L whose inverse, the so-called susceptance matrix, 
S = L-' is sparse; see [27, 281. 

The modified nodal formulation (MNA) of the circuit equa- 
tions is obtained by combining equations (1) with (Z) ,  and 
eliminating as many current unknowns as possible. For RLC 
circuits, only inductor currents are left as unknowns. The 
resulting MNA equations are 

d 
dt G x + C - x = B I t ( t ) ,  

We remark that G, C, and L are symmetric positive definite 
matrices. This implies that 

G + E T t O  and C t O .  (4) 

Here, M t 0 means that the matrix M is symmetric and 
positive semi-definite. 

We view the RLC circuit as an m-terminal component, and 
next, we determine its network functions. Since we allowed 
only current sources, it is natural to determine the matrix 
Z(s) of 2-parameters. By applying the Laplace transform 
to (3) and assuming zero initial conditions, we obtain 

(G + s C) x = BI.(s), 
vi = BTX. ( 5 )  

Here, X, I.(s), and V; represent the Laplace transforms of 
the unknown vector x, the excitation current It(t), and the 
vector of voltages across the excitation sources, respectively. 
Eliminating X in (5) gives 

Vi = [E; 01 X = Z(s)I,(s), 

where Z(s) = BT (G + sC)-' B. 
(6) 

3. ORDER REDUCTION BY PROJECTION 
In this section, we discuss reduced-order modeling via one- 
sided projection onto block Krylov subspaces. 

We consider general m-input m-output transfer functions of 
the form 

Z(s) = B T ( G + s C ) - l B ,  (7) 
where the matrices 0 and C are N x N, and B is N x m. 
We remark that N is called the statespace dimension of (7). 
Moreover, we assume that 9, C, and B have the block struc- 
ture 
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where the suhhlocks GI, CI,  and BI have the same number 
of rows, and 

GI t o ,  CI to, C z > O .  (9) 

The conditions (9) imply that the matrices G and C satisfy 
(4). We also assume that G + s C is a regular matrix pencil, 
i.e., the matrix G + s C  is singular only for finitely many 
values of s E C Clearly, RLC transfer functions of the 
form (6) are a special case of (7). 

3.1 Reduced-Order Models 
Let n (< N) denote the desired statespace dimension of a 
reduced-order model of the original transfer function (7), Z, 
of statespace dimension N .  

A reduced-order model of statespace dimension n is given 
by a reduced-order transfer function Z, of the form 

where Gn and C, are n x n matrices, and B, is an n x m 
matrix. Note that, in order for (10) to he meaningful, the 
matrix pencil En + sC, needs to he regular. 

Reduced-order models (10) can be obtained easily by means 
of projection. To this end, let 

v, = [VI vz " '  V"] (11) 

be any N x n matrix, and set 

G,=VTGV,, C,=V,'CV,,, B , = V T B .  (12) 

Provided that the matrix V,, is such that the matrix pencil 
9, +s C, is regular, the matrices (12) define a reduced-order 
model. 

3.2 Block Krylov Subspaces 
The simple projection (12) yields powerful model-order re- 
duction techniques, such as SyMPVL and PRIMA, when the 
columns of the matrix ( l l ) ,  V,, are chosen as basis vector 
of certaiu.blork Krylov subspaces. 

To this end, let so E C be a suitably chosen expansion point 
such that the matrix G + soC is nonsingular. We can then 
rewrite (7) as follows: 

Z(3) = BT (G + s o c  + (s - so) C)-L B 

=BT(Z+(s-so)  d ) - ' R ,  (13) 
where A =  ( G + s o C ) - ' C ,  R = ( G + s o C ) - ' B .  

We will use block Krylov subspaces induced by the matrices 
d and R in (13) to generate reduced-order models for (7). 
Next, we briefly review the notion of block Krylov subspaces; 
see [l] for a more detailed discussion. The matrix sequence 
R, d R ,  d Z R , .  . . , do-' R,. . . is called a block Kylov se- 
quence. The columns of the matrices in this sequence are 
vectors of length N, and thus at most N of these columns 
are linearly independent. By scanning the columns of the 
matrices in the block Krylov sequence from left to  right and 
deleting each column that is linearly dependent on earlier 
columns, we obtain the deflated block Krylov sequence 

RI ,  dR2, d'R3.. . . , %,"-x. (14) 

This process of deleting linearly dependent vectors is called 
deflation. In (14), each R, is a submatrix of q - 1 ,  Denoting 
by m, the number of columns of R,, we thus have 

m 2 ml 2 mz 2 . . . 2 mamar 2 1. (15) 
By construction, the columns of the matrices (14) are lin- 
early independent, and for each n, the subspace spanned by 
the first n of these columns is called the n-th block Kylov 
subspace (induced by d and R) and denoted by L ( d , R )  
in the sequel. 

In the following, we always assume that 1 5 q 5 qma. is 
arbitrary, and we set 

n = ml +mz +...+ m,. 

Note that, by (15), n 5 m .  q with n = m . q if no deflation 
has occurred. For n in (16), the n-th block Krylov subspace 
is given by 

L ( d , R )  = d s p a n { R i , d R z , .  . . , dq-'Rq} 

(16) 

3.3 PRIMA and Moment Matching 
PRIMA combines projection with block Krylov subspaces. 
More precisely, the n-th PRIMA model Z, is defined by (10) 
and (12), where the matrix ( l l ) ,  V,, is chosen such that its 
columns span the n-th block Krylov subspace L(d, E ) ,  i.e., 

spanVn = L ( d , E ) .  (17) 

Although the PRIMA model Z, is defined by a simple pro- 
jection, Z, satisfies a moment-matching property. For the 
special cme so = 0 and basis vectors generated by block 
Arnoldi without deflation, the moment-matching property 
was first observed in [19]. In 1121, this result was extended 
to the most general case where possibly nonzero expansion 
points SO are allowed and where the underlying block Krylov 
subspaces allow the necessary deflation of linearly dependent 
vectors. The result can he stated as follows. 

THEOREM 1. Let n = ml + mz + . . . + m, and the ma- 
tr iz V ,  in (11) satisfy (17). Then, the first q moments in 
the ezpansions of Z and the n-th PRIMA model Z, about so 
are identical : 

z ( s ) = z , ( s ) + 0 ( ( 3 - s 0 ) ~ ) .  

Recall that, for RLC circuits, the matrices 9, C ,  and B in (7) 
exhibit the particular block structure (8). However, for the 
PRIMA reduced-order model, the matrices Gn, C,, and B, 
in (10) and (12) are dense in general, and in particular, the 
block structure (8) is not preserved. 

Next, we describe the SPRIM reduction technique, which 
preserves the block structure (8) and at the same time, 
matches twice as many moments ar PRIMA. 

4. THE SPRIM ALGORITHM 
The development of the SPRIM algorithm was motivated by 
the following insight. In order to have the moment-matching 
property stated in Theorem 1, it is not necessary_that the 
projection matrix V ,  satisfies (17). Instead, let V, be any 
matrix, possibly with more than n columns, such that the 
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space spanned hy the columns of ?,, contains the n-th block 
Krylov subspace IC,(d,R), i.e., 

ICn (d, R) C span c,, . (18) 

Then, using such a matrix v,,, we define a reduced-order 
model as follows: 

E,(,)=% ( A + s c , ) - ' t ,  (19) 

where 

& = c T G k ,  ~,=czCc,,, gn=c:E. (20) 

In analogy to Theorem 1, we have the following result. 

THEOREM 2. Let n = ml + mz + '. . + m, and let c,, be 
a matrix, possibly with more than n columns, such that (18) 
is satisfied. Then, the first pmoments in the ezpansions 
of Z and the projected model 2, (defined by (19) and (20)) 
about SO are identical : 

z ( s ) = z " ( s ) + o ( ( s - s o ) ~ ) .  

PROOF. It is easy to see that the proof of [13, Theorem 
71 readily extends to the slightly more general situation of 
Theorem 2. U 

Now let V ,  again be the basis matrix used in PRIMA. Recall 
that V, satisfies (17). Let 

be the partitioning of V,, corresponding to the block sizes of 
G and C in (8). We set 

A= [; v"J 
Together with (17), it follows that - 

IC, (A, R) = span V,, L span V,  

Hence, we can project onto the columns of q,,, and in view of 
Theorem 2, we obtain a reduced-order model that matches 
at  least as many moments as PRIMA. In fact, as we will 
show in the next section, the resulting SPFUM reduced-order 
model even matches twice as many moments as PRIMA. 
Furthermore, the special block structure (21) of the matrix 
V,  implies that the SPFUM reduced-order model 2, pre- 
serves the block structure (8) of the original transfer func- 
tion 2. 

An outline of the SPRIM algorithm is as follows. 

SPRIM algorithm: 
Input: matrices 

- 

where the subblocks GI,  CI ,  and BI have the same 
number of rows, and the subblocks of G and C satisfy 
G I  >- 0, CI t 0, and Cz + 0; 
an expansion point so. 

Formally set 

d = ( P + s o C ) - ' C ,  ?E= (G+soC)-'E. 

Until n is large enough, run your favorite block Krylov 
subspace method (applied to d and 72) to construct 
the columns of the basis matrix 

v, = [VI va '. ' v.] 

of the n-th block Krylov subspace &(d,R),  i.e., 

spanV,, = IC,(d,R). 

Let 

vn = K:] 
be the partitioning of V ,  corresponding to the block 
sizes of E and C. 

Set 

and 

Output: the reduced-order model 2, in first-order 
form 

E, (s) = s7f (a + s C) -' ri,, (23) 

and in second-order form 
- 1  1 -T - - I  - %(s)  =E?  (SEI +81 + ;G, Cz Ga) 51. (24) 

We remark that the main computational cost of the SPRIM 
algorithm is running the block Krylov subspace method to 
obtain V,. This is the same as for PRIMA. Thus gener- 
ating the PRIMA reduced-order model 2, and the SPFUM 
reduced-order model 2, involves the same computational 
costs. 

On the other hand, when written in first-order form (23), 
it would appear that the SPRIM model has state-space di- 
mension 2n, and thus it would be twice as large as the cor- 
responding PRIMA model. However, unlike the PRIMA 
model, the SPFUM model can always be represented in the 
second-order form (24); see Subsection 5.3 below. In (24), 
the matrices e,, 51, and CT E;' 82 are all of size n x n, 
and the matrix f i ~  is of size n x m. These are the same 
dimensions as in the PRIMA mdoel (10). Therefore, the 
SPFUM model z, (written in second-order form (24)) and of 
the corresponding PRIMA model Z, indeed have the same 
statespace dimension n. 

83 

Authorized licensed use limited to: INESC. Downloaded on February 6, 2009 at 07:47 from IEEE Xplore.  Restrictions apply.



5. PROPERTIES OF SPRIM 
In this section, we describe some properties of the SPRIM 
algorithm. 

5.1 Moment Matching 
Recall that, in view of Theorem 2, the SPRIM reduced-order 
model matches at least as many moments as the PRIMA 
reduced-order model. However, it turns out that the SPRIM 
model matches even twice as many moments, a t  least as long 
as the expansion point SO is chosen to be a real number, i.e., 
so E R Note that, in practice, in order to avoid complex 
arithmetic, one usually chooses so E R anyway. 

This enhanced moment-matching property can he stated as 
follows. 

THEOREM 3. Let SO E R. Let n = m l  + mz i,, , + mp 
and let be the mat& (21) that is used in the SPRIM 
algorithm. Then, the first 2q-moments in the ezpansions 
of Z and the projected model Z, (defined by (19) and (20)) 
about so are identical : 

Z(s) = ?.&) + 0 ((s - s o p )  . 

We remark that for the special case of so = 0, the result of 
this theorem can he traced back to [25]. Next, we present 
the proof of Theorem 3 for the general case of so E R. 

PROOF. First, note that from (13), we obtain the expan- 
sion 

m 

Z(S) = ~ ( - l ) ' B ' d ' R ( s - ~ o ) ' .  (25) 
j=o  

Similarly, using the first-order representation (23) of z,, we 
have 

Z"(S) ==y(-1)'87f&Z,(s-so)', (26) 
m 

j = O  

where 

z,, = (c,, + so&-'zn, 2, = (5" + sozn)-'&. (27) 

In view of (25) and (26), the claim of Theorem 3 is equivalent 
to the following property: 

BTdiR=87f&c, , ,  j = O , l ,  ..., 2 q - - 1 .  (28) 

We prove (28) by establishing these relations: 

BT d" cn = 87f 2, ji = 0 , 1 , .  . . , q, (29) 

and 
-. - 

dJ' R = Fn R,, j z  = 0 ,  1, . . . , q - 1. (30) 
Indeed, (29) and (30) together imply 

BT dj'tj? = dl1 cn 2 2, 
= B, A -J1+j2En, j l  + j z  = 0, I , .  . . , ~q - I, 

which is jnst the desired identity (28). 

Thus it remains to show (29) and (30). The relation (30) is 
essentially the one established in [13, Proposition 61, and we 

refer the reader to the proof in that paper. We stress that 
the relation (30) holds true for general transfer functions (7), 
and that it does not require the special structures (8) or (9). 
The relation (29), on the other hand, follows from (30) and 
the special structures (8) and (9). 

A sketch of the proof of (29) is as follows. Since E,, = pz 5, 
(29) is trivially satisfied for j l  = 0. Therefore, let 1 5 ji  5 q. 
Using (8) and (9) one readily verifies that 

(A)'' = 3-l (C (5 + soC)- ' )J '  .7 and B = .7U, (31) 

where 
I O  

3=3-'= [; 
and JI and Jz are identity matrices of the_size of +e diago- 
nal blocks of 5 and C. Since the matrices Gn and C, exhibit 
the same structures as 5 and C, we also have the relation 

(&')'I = 3;' (E,, (8, + s o f n ) - ' ) J '  A, (32) 

where 3" is the appropriate reduced-oder version of 3. Re- 
call that 72 = ( G + s o C ) - ' B ,  and together with (31), it 
follows that 

(dT)j.B =j-1cdjk-1R, (33) 

Inserting the relation (30) (with j z  = j l  - 1) into (33), we 
get 

By taking the transpose of (34), multiplying the result from 
the right by k, and using (32), one readily verifies that 

B'd'' Gn =B7f%-'.7n(?,(8n 
=E&. 

This is just the desired relation (29), and the proof is com- 
plete. 0 

5.2 Passivity 
We now return to the RLC transfer functions Z described 
in Section 2. Recall that Z is defined by (6) with G, C, B 
given by (3). In this subsection, we assume that 50 E R  . 

It is well known (see, e.g., [Z, 261) that Z is passive if, and 
only if, the following three conditions are satisfied: 

(i) Z ( s ) b a s n o p o l e s i n C + = { s E @ I R e s > O } ;  

(ii) Z(S) = z(s) for s E 

(Xi) Re (x" Z(s)x) 2 0 for all s E C+ and x E CY. 

In particular, RLC transfer functions Z are passive. 

In [12, 131, it was shown that reduced-order models of RLC 
circuits obtained by projection, as described in Section 3, 
preserve passivity. In particular, this result applies to the 
SPMM model, and so we have the following theorem. 
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THEOREM 4. The SPRIM reduced-order model z, given 
by (23) (or, equiwalently, (24)) as passive. 

5.3 Second-Order Form 
The original transfer function (7) can be rewritten in so- 
called second-order form. 

Indeed, using the block structure (8), it is easy to verify that 
the matrix (G + sC)-' in (7) is of the form 

where 

(36) Q ( s )  = SCI + G I  + ;GT C;' Gz. 

Inserting (35) into (7), it foIlows tbat the transfer fnnction 
Z can also be rewritten as follows: 

1 

- I  Z(s)=BT ( ~ C ~ C G I + ; G ~ C ; ' G Z )  1 Bi.  (37) 

Moreover, in view of (9), the coefficient matrices of Q in (36) 
satisfy 

CI 2 0, GI t 0, GT C i l  Gz t 0, 

and thus they are in particular symmetric. This means that 
the transfer function (37), Z, is reciprocal; see, e.g., 121. 

Since PRIMA does not preserve the block structure (8) of 
the original transfer function, the PRIMA model cannot be 
written in second-ordzr form and is not reciprocal in general. 
The SPRIM model Z, however, can always be written in 
second-order form. Indeed, using (22) and (23), it follows 
that 

and 
-T --, - & t o ,  6 1 k 0 ,  G z C z  G z t O .  

Hence, the SPRIM model preserves reciprocity, and thus can 
be more easily synthesized as an actual circuit. 

6. NUMERICAL EXAMPLES 
In this section, we present some numerical examples that 
illustrate the higher accuracy of the SPRIM reduced-order 
models vs. the PRIMA reduced-order models. 

6.1 A PEEC Circuit 
The f i s t  example is a circuit resulting from the so-called 
PEEC discretization [ZZ] of an electromagnetic problem. 
The circuit is an RLC network consisting of 2100 capacitors, 
172 inductors, 6990 inductive couplings, and a single resis 
tive source that drives the circuit. The circuit is formulated 
as a 8-port. We compare the PRIMA and SPRIM models 
corresponding to the same dimension n of the underlying 
block Krylov subspace. The expansion point so = 2 s  x lo* 
was used. In Figure 1, we plot the absolute value of the ( 2 , l )  
component of the 2 x 2-matrix-valued transfer function over 

however, bas not yet converged to the exact transfer func- 
tion in large parts of the frequency range of interest. Fig- 
ure 1 clearly illustrates the better approximation properties 
of SPRIM due to matching of twice as many moments as 
PRIMA. 

6.2 A Package Model 
The second example is a 64-pin package model used for an 
RF integrated circuit. Only eight of the package pins carry 
signals, the rest being either unused or carrying supply volt- 
ages. The package is characterized as a 16-port component 
(8 exterior and 8 interior terminals). The package model is 
described by approximately 4000 circuit elements, resistors, 
capacitors, inductors, and inductive couplings. We again 
compare the PRIMA and SPRIM models corresponding to 
the same dimension n of the underlying block Krylov sub- 
space. The expansion point so = 5s x log was used. In 
Figure 2, we plot the absolute value of one of the compo- 
nents of the 16 x 16-matrix-valued transfer function over 
the frequency range of interest. The state-space dimension 
n = 80 was sufficient for SPRIM to match the exact trans- 
fer function. The corresponding PRIMA model of the same 
dimension, however, does not match the exact transfer func- 
tion very well near the high frequencies; see Figure 3. 

6.3 A Mechanical System 
Exploiting the equivalence (see, e.g., [18]) between RLC cir- 
cuits and mechanical systems, both PRIMA and SPFUM can 
also be applied to reduced-order modeling of mechanical sys- 
tems. Such systems arise for example in the modeling and 
simulation of MEMS devices. In Figure 4, we show a com- 
parison of PRIMA and SPRIM for a finite-element model of 
a shaft. The expansion point SO = s x lo3 was used. The di- 
mension n = 15 was sufficient for SPRIM to match the exact 
transfer function in the frequency range of interest. The cor- 
responding PRIMA model of the same dimension, however, 
has not converged to the exact transfer function in large 
parts of the freauencv range of interest. Fimre 4 again il- - 

the frequency rauge of intercst. The dimension n = 120 was 
sufficient lor SPRIM to march the  exact transfer function. 
The corresponding PRIMA model of thP same dimension, 

lustrates the better approximation propertiesofSPRlh1 due 
to the matching of twice a5 inanv nioments as P R I M A .  
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Figure 3: The padrage model, high frequencies 

Figure 4 A mechanical system 

7. CONCLUDING REMARKS 
We have taken a fresh look at Krylov subspace-based pro- 
jection techniques, such as PRIMA, for reduced-order mod- 
eling of large RLC circuits. We have shown that in order to 
obtain a PRIMA-like moment-matching property, one does 
not need to project onto a hasis matrix for the underlying 
block Krylov subspace, hut one can use any matrix whose 
column span contains that block Krylov subspace. Based 
on this insight, we proposed a novel projection technique, 
the SPRIM algorithm, that preserves all the crucial struc- 
tures, such as passivity, reciprocity, and second-order form, 
of RLC circuits. In particular, since the SPRIM reduced- 
order models are reciprocal, they are easier to synthesize as 
actual RLC circuits; see, e.g., fZ]. In addition, it also turns 
out that the SPRIM reduced-order models even match twice 
as many moments as the corresponding PRIMA models ob- 
tained with the same computational work. We presented nu- 
merical results that illustrate the higher accuracy of SPRIM 
vs. PRIMA. 
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